Ammonites from Alaska and Montana

Total Page:16

File Type:pdf, Size:1020Kb

Ammonites from Alaska and Montana Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descriptions and illustrations of cephalopods of possible late Middle Jurassic (Eathonian\ age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abst ract _ _ _-_-_---______-_-_--_---_-__-____________ C-l Age of the faunas Continued Introduction _______________________________________ C-l Callovian versus Bathonian in Greenland._________ C-12 Biologic analysis____________________________________ C-2 Callovian versus Bathonian in Alaska and Montana. C-13 Stratigraphic summary______________________________ C-2 Paleogeographic considerations. __________________ C-13 Cook Inlet region, Alaska.--_____________________ C-2 Summation of the evidence. _ ____________________ C-14 Iniskin Peninsula----_---___--_--___________ C-2 Comparisons with other faunas.______________________ C-14 Peninsula north of Chinitna Bay______________ C-3 Western interior of Canada.---_-_-_-_-______-_-- C-14 Talkeetna Mountains______________________ C-3 Arctic region._____-____-__--___-__-----___--_-- C-15 Western Montana. _____________________________ C-5 other regions._______________-_----_---__----__- C-15 Rocky Mountain front north of the Sun River _ C-5 Geographic distribution...________-_____-_--____---_- C-15 Drummond area____________________________ C-10 Summary of results.--____-___-_--___---_--__----___ C-19 Age of the faunas___________________________________ C-10 Systematic descriptions_--__-_--__-_-_---_--__-_---_- C-22 Evidence from Alaska.__________________________ C-10 Literature cited________-____-____-_----_----_-_---_- C-28 Evidence from Montana.________________________ C-l2 Index....______-_____-_--_-__---_---------------.- C-31 ILLUSTRATIONS [Plates 1-8 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Poroeco.rcms.es)?, and Arctocephalites (Cranocephalites). 2. Arctocephalites!, Siemiradzkia!, and Arctocephalites (Cranocephalites). 3, 4. Arctocephalites (Cranocephalites). 5. Arctocephalites (Cranocephalites) and Arcticoceras!. 6. Arctocephalites!, Cobbanites, and Xenocephalitesl. 7. Parareineckeia and Cobbanites. 8. Cobbanites. Page FIGURE 1. Index map of the principal areas of Jurassic rocks in the Cook Inlet region, Alaska. -____--_________--__----- C-4 2. Index map showing occurrences of fossils in the Arctocephalites (Cranocephalites) beds in the Talkeetna Mountains, Alaska.______________________________________________________-_____--_--_---_--_-_--_------------ C-5 3. Index map showing occurrences of fossils in the Arctocephalites (Cranocephalites) beds in the peninsula south of Tuxedni Bay, Alaska__________________________-_____________-----__------------------------------ C-6 4. Index map showing occurrences of fossils in the Arctocephalites (Cranocephalites) beds in the Iniskin Peninsula, Alaska._._____________________________________________________________--_----_-_-----_--_-------- C-7 5. Index map showing occurrences of fossils in the Arctocephalites (Cranocephalites) beds in northwestern Montana from the Sun River area northward__________________________-__--____--_---_--_-----_-_-_----------- C-8 6. Index map showing occurrences of fossils in the Arctocephalites (Cranocephalites) beds in the Drummond area in western Montana.-___________________________________-________--_----____-_-_-_-----_------------- C-9 7. Correlation of some Middle and Late Jurassic formations in the Cook Inlet region, Alaska, and in western Montana. C-ll TABLES Page TABLE 1. Ammonite genera in the Arctocephalites (Cranocephalites) beds in Alaska and Montana showing biological relation­ ships and relative numbers available for study._________-_______________--_-__----_-__---_-----_------- C-2 2. Occurrences and stratigraphic positions of the Callovian ammonites from the upper part of the Bowser member of the Tuxedni formation, above the beds containing Arctocephalites (Cranocephalites) _________________________ C-3 3. Localities at which ammonites of Bathonian or early Callovian age have been collected in the Arctocephalites (Crano­ cephalites) beds in the Cook Inlet region, Alaska_________________________________________-__-_-_-------- C-16 4. Localities at which ammonites of Bathonian or early Callovian age have been collected in the upper member of the Sawtooth formation in western Montana._-________________________-___-__-_--_------_--_------------- C-17 5. Geographic distribution of fossils from the Arctocephalites (Cranocephalites) beds in the Cook Inlet region, Alaska. C-20 6. Geographic distributicn of fossils from the Sawtooth formation in northwestern Montana_______-_. ___-_------- C-21 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY JURASSIC (BATHONIAN OR EARLY CALLOVIAN) AMMONITES FROM ALASKA AND MONTANA By RALPH W. IMLAY ABSTRACT Cranocephalites beds are biologically close to ammonites in the Jurassic ammonites of possible late Middle Jurassic (Bathonian) Callovian and are not likely to be older than late Bathonian. age occur in western Montana in the upper member of the Saw­ Considering both stratigraphic and faunal evidence, the Cra­ tooth formation and in the Cook Inlet area, Alaska, in the nocephalites beds are tentatively correlated with the Bathonian middle part of the Bowser member of the Tuxedni formation. rather than the Callovian stage and with the late rather than They are characterized by Cranocephalites, a subgenus of Arc- the early Bathonian. If this correlation is valid, the ammonites tocephalites. They include, also, Holcophylloceras, Parareineck- of Bathonian time occupied two distinct realms of which one eia, a new genus of the Reineckeiidae, Cobbanites, a new genus of included central and southern Europe and the Tethyan region the Perisphinctidae, and some specimens assigned questionably from Mexico to Indonesia, and the other included the Arctic to Oecotraustes, Xenocephalites, Arcticoceras, Siemiradskia, and region and part of the North Pacific Ocean. Arctocephalites. Stratigraphically the beds containing these ammonites occupy INTRODUCTION the position of the Bathonian stage or the basal part of the The ammonites described herein have been studied Callovian stage of Europe. In the Iniskin Peninsula, Alaska, primarily to determine whether the middle Jurassic they lie unconformably on beds containing late Bajocian am­ monites and grade upward into beds containing early Callovian (Bathonian) stage is represented by sedimentary rocks ammonites. In the Talkeetna Mountains, Alaska, they lie on in Alaska and the western interior of the United States. beds of Early Jurassic age and are overlain by beds containing The study was prompted at this time in order to test typical early Callovian ammonites, but are more restricted in recent inferences and statements by W. J. Arkell distribution than the Callovian beds. The fact that in many (1956, p. 609) that a retreat of the Arctic Ocean from places the Callovian beds rest directly on Bajocian beds could mean either that the Cranocephalites beds were never deposited bordering lands began after early Bajocian time, in those places or that they were eroded before the deposition that the seas retreated from most of the known land of the Callovian beds. areas of the world about middle Bathonian time, In Montana the Cranocephalites beds seem to grade down­ that the Arctic Ocean was probably isolated from the ward into beds containing middle Bajocian ammonites and are other oceans during the Bajocian-Bathonian regression, overlain sharply with possible disconformity by beds character­ ized by the early Callovian ammonite Arcticoceras. As the and that Bathonian rocks are absent in North America Arcticoceras beds are equivalent to at least part of the European north of southern Mexico with the possible exception zone of Macrocephalus macrocephalites at the base of the Callo­ of one place in northern Alberta. Evaluation of the vian, the Cranocephalites beds cannot be younger than the fossil evidence bearing on the presence or absence of basal part of that zone. A somewhat older age for the Crano­ the Bathonian in the United States and Canada should cephalites beds in Montana would be favored if a disconformity exists between the Cranocephalites and Arcticoceras beds. Con­ be interesting to many geologists. ceivably the Cranocephalitei, beds could span the entire Batho­ The fossils from the Cook Inlet region, Alaska were nian as well as the basal Callovian, but such a long time span collected by G. C. Martin in 1913, A. A. Baker in 1921, for a single ammonite faunule seems unlikely. Helmuth Wedow and L. B. Kellum in 1944, C. E. Faunally the beds characterized by Cranocephalites cannot be Kirschner in 1946, D. J. Miller and R. W. Imlay in dated exactly. They do not contain any genera typical of the 1948, Arthur Grantz in 1951-53, R. D. Hoare in 1952, Callovian of Europe and only two ammonites that probably L. F. Fay in 1953, and R. L. Detterman in 1958. belong to the Bathonian genus Siemiradzkia. A Callovian age is slightly favored by the presence of the family Reineckeiidae, The fossils from western Montana were collected by by the fact that the new genera Parareineckeia
Recommended publications
  • Or Early Callovian) Ammonites from Alaska and Montana
    Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2.
    [Show full text]
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • The Middle Jurassic of Western and Northern Europe: Its Subdivisions, Geochronology and Correlations
    The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations John H. Callomon The palaeogeographic settings of Denmark and East Greenland during the Middle Jurassic are outlined. They lay in the widespread epicontinental seas that covered much of Europe in the post-Triassic transgression. It was a period of continuing eustatic sea-level rise, with only distant connections to world oceans: to the Pacific, via the narrow Viking Straits between Greenland and Norway and hence the arctic Boreal Sea to the north; and to the subtropical Tethys, via some 1200 km of shelf-seas to the south. The sedimentary history of the region was strongly influenced by two factors: tectonism and climate. Two modes of tectonic movement governed basinal evolution: crustal extension lead- ing to subsidence through rifting, such as in the Viking and Central Grabens of the North Sea; and subcrustal thermal upwelling, leading to domal uplift and the partition of marine basins through emergent physical barriers, as exemplified by the Central North Sea Dome with its associated volcanics. The climatic gradient across the 30º of temperate latitude spanned by the European seas governed biotic diversity and biogeography, finding expression in rock-forming biogenic carbonates that dominate sediments in the south and give way to largely siliciclastic sediments in the north. Geochronology of unrivalled finesse is provided by standard chronostratigraphy based on the biostratigraphy of ammonites. The Middle Jurassic saw the onset of considerable bioprovincial endemisms in these guide-fossils, making it necessary to construct parallel standard zonations for Boreal, Subboreal or NW European and Submediterranean Provinces, of which the NW European zonation provides the primary international standard.
    [Show full text]
  • Callovian (Middle Jurassic) Dinoflagellate Cysts from the Algarve Basin, Southern
    1 Callovian (Middle Jurassic) dinoflagellate cysts from the Algarve Basin, southern 2 Portugal 3 4 Marisa E.N. Borges a,b, James B. Riding c,*, Paulo Fernandes a, Vasco Matos a, Zélia 5 Pereira b 6 7 a CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, 8 Campus de Gambelas, 8005-139 Faro, Portugal 9 b LNEG-LGM, Rua da Amieira, 4465-965 S. Mamede Infesta, Portugal 10 c British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 11 5GG, UK 12 13 * Corresponding author. Tel.: +44(0)115 9363447 14 E-mail addresses: [email protected] (M.E.N. Borges), [email protected] (J.B. 15 Riding), [email protected] (P. Fernandes), [email protected] (V. Matos), 16 [email protected] (Z. Pereira). 17 18 ABSTRACT 19 The palynology of three Callovian (Middle Jurassic) limestone-marl successions from 20 the Algarve Basin in southern Portugal was studied. These localities are Baleeira 21 Harbour, Mareta Beach and Telheiro Quarry; they provide a composite succession, tied 1 22 to ammonite zones, through the Lower, Middle and Upper Callovian from the western 23 and eastern subbasins of the Algarve Basin. The three sections generally yielded 24 relatively abundant marine and continental palynofloras. Diversity is low to moderate 25 and the dinoflagellate cyst associations are dominated by Ctenidodinium spp., the 26 Ellipsoidictyum/Valensiella group, Gonyaulacysta jurassica subsp. adecta, 27 Korystocysta spp., Meiourogonyaulax spp., Pareodinia ceratophora, Sentusidinium 28 spp., Surculosphaeridium? vestitum and Systematophora spp. Some intra-Callovian 29 marker bioevents were recorded; these include the range bases of Ctenidodinium 30 ornatum, Gonyaulacysta eisenackii, Korystocysta pachyderma, Mendicodinium 31 groenlandicum, Rigaudella spp.
    [Show full text]
  • Tectonic Setting of the Lower Fernie Formation
    Tectonic setting of the lower Fernie Formation: insights from subsidence analysis Tannis McCartney*, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada [email protected] and Andrew Leier, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada Introduction In this study, the Fernie Formation in west-central Alberta is informally divided into upper and lower Fernie. The lower Fernie contains the Nordegg, Gordondale, Red Deer, Poker Chip and Rock Creek Members. These are separated from the Upper Fernie shales by many unconformities, simplified here as a single regional unconformity (Figure 1). Figure 1: Simplified stratigraphic column of the Fernie Formation. In this study, the Fernie Formation is divided into the Upper Fernie (shales) and the lower Fernie (Rock Creek, Poker Chip Shale, and Nordegg). The unconformities separating the Upper Fernie from the lower Fernie are here represented as a single, regional unconformity. The Nordegg and Gordondale Members of the Fernie Formation were deposited during the early stages of tectonic loading in the Cordillera to the west. These members, along with the Poker Chip and Rock Creek Members, were studied to look for evidence of this tectonic activity in the sedimentary record. The results give new insights into current understandings of the lower Fernie Formation. Theory and Method Tectonic subsidence measures the tectonically controlled vertical movement of a basin. Calculating the amount of tectonic subsidence the basin has undergone involves accounting for sediment compaction, paleobathymetry, sea-level changes and post-depositional sediment compaction. GeoConvention 2012: Vision 1 In basin analysis, tectonic subsidence plotted on a depth vs. age chart is used to classify the type of basin the sediments were deposited in.
    [Show full text]
  • Petroleum Geochemistry of the Lower Cretaceous
    Petroleum Geochemistry of the Lower Cretaceous Mannville and Jurassic Ellis Groups, Southern Alberta, Canada Kim Manzano-Kareah *, Shell International Exploration and Production, Houston, USA [email protected] The variation of oil quality in southern Alberta, Western Canada Sedimentary Basin, Canada is primarily due to differences in oils generated from different source rocks and biodegradation of oils in reservoirs. 280 oil samples were collected and analysed by GC and GC-MS, in order to assess the nature and extent of these petroleum systems. Oils from Lower Cretaceous Mannville and Jurassic Ellis Group reservoirs in southern Alberta, Canada (T1-40; R1-25W5) were generated from at least five different source rocks. The proven/probable source rocks include: the Devonian Duvernay Formation (Family D), the Devonian-Mississippian Exshaw Formation (Family E), a probable Paleozoic source (Family M), a probable Jurassic source (Rierdon/Fernie shales; Family F), and the Cretaceous Ostracod Zone (Family Q). Family D oils are restricted to the northernmost part of the study area (Provost field). Biodegradation and the mixing of degraded with non-degraded oils are the main factors controlling the variation in oil quality within a given family. The much improved understanding of oil families and degree of biodegradation allow for more accurate mapping of likely oil migration pathways. Known reservoir trends, subcrop edges, structure, hydrodynamics, the distribution and quality of known oil pools can all be integrated into mapping migration paths. This allows for more accurate mapping of likely oil and gas migration pathways, which can be used for prospect risking and for the ranking of exploration plays.
    [Show full text]
  • Text of Draft
    Reconnaissance bedrock geologic map for the northern Alaska Peninsula area, southwest Alaska Including the Dillingham, Iliamna, Lake Clark, Taylor Mountains and the western part of the Kenai and Seldovia 1:250,000-scale quadrangles Compiled by Frederic H. Wilson, Robert B. Blodgett, Charles D. Blomé, Solmaz Mohadjer, Cindi C. Preller, Edward P. Klimasauskas, Bruce M. Gamble, and Warren L. Coonrad DISCLAIMER This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This World-Wide-Web publication was prepared by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Although all data and software published on this Web-site have been used by the USGS, no warranty, expressed or implied, is made by the USGS as to the accuracy of the data and related materials and (or) the functioning of the software. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of this data, software, or related materials.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Geological Survey Canada
    BULLETIN 119 GEOLOGICAL SURVEY OF CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS THE JURASSIC FAUNAS OF THE CANADIAN ARCTIC CADOCERATINAE Hans Frebold Price $2.50 1964 GEOLOGICAL SURVEY OF CANADA BULLE TIN 119 THE JURASSIC FAUNAS OF THE CANADIAN ARCTIC CADOCERATINAE By Hans Frebold DEPARTMENT OF MINES AND TECHNICAL SURVEYS CANADA © Crown Copyrights reserved Available by mail from the Queen's Printer, Ottawa, from Geological Survey of Canada, 601 Booth St., Ottawa, and at the following Canadian Government bookshops: OTTAWA Daly Building, corner Mackenzie and Rideau TORONTO Mackenzie Building, 36 Adelaide St. East MONTREAL JEterna-Vie Building, 1182 St. Catherine St. West or through your bookseller A deposit copy of this publication is also available for reference in public libraries across Canada Price $2.50 Catalogue No. 42-119 Price subject to change without notice ROGER DUHAMEL, F.R.S.C. Queen's Printer and Controller of Stationery Ottawa, Canada 1964 PREFACE This report is based on fossil collections made over a vast area of the Canadian Arctic extending from Axel Heiberg Island in the north to the Aklavik region of the mainland and is a further contribution by the author on the Jurassic faunas of the Canadian Arctic. Detailed study of these ammonite faunas permits correlation of the associated Jurassic rocks and shows their faunal and stratigraphic relation­ ships with Alaska, East Greenland, and the Arctic areas of Europe and Asia. J. M. HARRISON, Director, Geological Survey of Canada OTTAWA, December 2, 1963 BULLETIN 119 — Die Jurafaunen der kanadischen Acktis CADOCERATINAE. Von Hans Frebold BiojiJieTeHt, 119 — r. <3>pe6ojib,,zT.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Letter to the Editor
    GeoArabia, Vol. 10, No. 3, 2005 Gulf PetroLink, Bahrain LETTER TO THE EDITOR from Ghaida Al-Sahlan ([email protected]), Kuwait Oil Company, Ahmadi, Kuwait n the recent GeoArabia, Haq and Al-Qahtani (2005) updated the chronostratigraphic Arabian Plate Iframework of Sharland et al. (2001). These studies cite the paper by Yousif and Nouman (1997) to represent the Jurassic type section of Kuwait. Yousif and Nouman published the composite log for the Minagish-27 well (see Figure on page 194) and depicted the Jurassic formations and stages, side-by- side, but only in a generalized manner. In order to refine the ages for this section, I would like to share some preliminary unpublished biostratigraphic and Sr isotope data (see Table and Notes) from analyses by Varol Research (1997 unpublished report), ExxonMobil (1998 unpublished report) and Fugro-Robertson (2004 unpublished report). To convert Sr ages (Ma) to biostages, or biostages to ages, I have used the Geological Time Scale (GTS) 2004 (Gradstein et al., 2004). I thank G.W. Hughes, A. Lomando, M. Miller and O. Varol for their comments. Unit or Boundary Age and Stage Gradstein et al. (2004) Makhul (Offshore) Tithonian-Berriasian (Bio) Base Makhul (N. Kuwait) No younger than Tithonian (Bio) greater than 145.5 + 4.0 Top Hith (W. Kuwait) 150.0 (Sr) = c. Tithonian/Kimmeridgian ? 150.8 + 4.0 Upper Najmah (S. Kuwait) 155.0 (Sr) = c. Kimmeridgian/Oxfordian 155.7 + 4.0 Najmah (N. Kuwait) No older than Oxfordian (Bio) less than 161.2 + 4.0 Lower Najmah Shale (N. Kuwait) middle and late Bathonian (Bio) 166.7 to 164.7 + 4.0 Top Sargelu (S.
    [Show full text]