Geological Survey Canada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Post-Carboniferous Stratigraphy, Northeastern Alaska by R
Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ---------------------------------- -
Text of Draft
Reconnaissance bedrock geologic map for the northern Alaska Peninsula area, southwest Alaska Including the Dillingham, Iliamna, Lake Clark, Taylor Mountains and the western part of the Kenai and Seldovia 1:250,000-scale quadrangles Compiled by Frederic H. Wilson, Robert B. Blodgett, Charles D. Blomé, Solmaz Mohadjer, Cindi C. Preller, Edward P. Klimasauskas, Bruce M. Gamble, and Warren L. Coonrad DISCLAIMER This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This World-Wide-Web publication was prepared by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Although all data and software published on this Web-site have been used by the USGS, no warranty, expressed or implied, is made by the USGS as to the accuracy of the data and related materials and (or) the functioning of the software. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of this data, software, or related materials. -
Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter. -
Characteristic Jurassic Mollusks from Northern Alaska
Characteristic Jurassic Mollusks From Northern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D Characteristic Jurassic Mollusks From Northern Alaska By RALPH W. IMLAY A SHORTER CONTRIBUTION TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-D A study showing that the northern Alaskan faunal succession agrees with that elsewhere in the Boreal region and in other parts of North America and in northwest Europe UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - BMMH§ts (paper cover) Price $1.00 CONTENTS Page Abstract_________________ 69 Introduction _________________ 69 Biologic analysis____________ 69 Stratigraphic summary. _______ 70 Ages of fossils________________ 73 Comparisons with other faunas. 75 Ecological considerations___ _ 75 Geographic distribution____. 78 Summary of results ___________ 81 Systematic descriptions__ _. 82 Literature cited____________ 92 Index_____________________ 95 ILLUSTRATIONS [Plates &-13 follow Index] PLATE 8. Inoceramus and Gryphaea 9. Aucella 10. Amaltheus, Dactylioceras, "Arietites," Phylloceras, and Posidonia 11. Ludwigella, Dactylioceras, and Harpoceras. 12. Pseudocadoceras, Arcticoceras, Amoeboceras, Tmetoceras, Coeloceras, and Pseudolioceras 13. Reineckeia, Erycites, and Cylindroteuthis. Page FIGXTKE 20. Index map showing Jurassic fossil collection localities in northern Alaska. -
Palaeontology and Biostratigraphy of the Lower Cretaceous Qihulin
Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Master of Science: Gang Li Born in: Heilongjiang, China Oral examination: 30 November 2001 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes (Printed with the support of German Academic Exchange Service) Palaeontology and biostratigraphy of the Lower Cretaceous Qihulin Formation in eastern Heilongjiang, northeastern China Referees: Prof. Dr. Peter Bengtson Prof. Pei-ji Chen This manuscript is produced only for examination as a doctoral dissertation and is not intended as a permanent scientific record. It is therefore not a publication in the sense of the International Code of Zoological Nomenclature. Abstract The purpose of the study was to provide conclusive evidence for a chronostratigraphical assignment of the Qihulin Formation of the Longzhaogou Group exposed in Mishan and Hulin counties of eastern Heilongjiang, northeastern China. To develop an integrated view of the formation, all collected fossil groups, i.e. the macrofossils (ammonites and bivalves) and microfossils (agglutinated foraminifers and radiolarians) have been studied. The low-diversity ammonite fauna consists of Pseudohaploceras Hyatt, 1900, and Eogaudryceras Spath, 1927, which indicate a Barremian–Aptian age. The bivalve fauna consists of eight genera and 16 species. The occurrence of Thracia rotundata (J. de C: Sowerby) suggests an Aptian age. The agglutinated foraminifers comprise ten genera and 16 species, including common Lower Cretaceous species such as Ammodiscus rotalarius Loeblich & Tappan, 1949, Cribrostomoides? nonioninoides (Reuss, 1836), Haplophragmoides concavus (Chapman, 1892), Trochommina depressa Lozo, 1944. The radiolarians comprise ten genera and 17 species, where Novixitus sp., Xitus cf. -
The Evolution of the Jurassic Ammonite Family Cardioceratidae
THE EVOLUTION OF THE JURASSIC AMMONITE FAMILY CARDIOCERATIDAE by J. H. CALLOMON ABSTRACT.The beginnings of the Jurassic ammonite family Cardioceratidae can be traced back rather precisely to the sudden colonization of a largely land-locked Boreal Sea devoid of ammonites by North Pacific Sphaer- oceras (Defonticeras) in the Upper Bajocian. Thereafter the evolution of the family can be followed in great detail up to its equally abrupt extinction at the top of the Lower Kimmeridgian (sensu onglico). Over a hundred successive assemblages have been recognized, spanning some four and a half stages, twenty-eight standard ammonite zones and sixty-two subzones, equivalent on average to time-intervals of perhaps 250,000 years. Material at most levels is sufficiently abundant to delineate intraspecific variability and dimorphism. Both vary with time and can be very large. They point strongly to an important conclusion, that the assemblages found at any one level and place are monospecific. Morphological overlap between successive assemblages then identifies phyletic lineages. Evolution was on the whole gradualistic, with noise, although the principal lineage can be seen to have undergone phylogenetic division at least twice, followed by a major geographic migration of one or both branches. At other times, considerable mierations. which could be eeologicallv tns~antancous,did not lead to phylogenetic rpeciation. Thc habxtat 07 the famtly remaned broadly 'Horeil thro~phout,local endemlsmr hrinz infrequent and short-livcd Mot~holoeicall\,- .~the family evolved through almost the complete spectrum ofcoiling and sculpture to be found in ammonites as a whole, excluding heteromorphs. The nature of the selection-pressure, if any, remains totally obscure. -
The Upper Bajocian–Lower Bathonian Boundary Section in the Outskirts of Saratov: Molluscan Characteristics and Biostratigraphy V
ISSN 08695938, Stratigraphy and Geological Correlation, 2011, Vol. 19, No. 5, pp. 502–514. © Pleiades Publishing, Ltd., 2011. Original Russian Text © V.V. Mitta, V.A. Zakharov, I.S. Barskov, V.B. Sel’tser, A.V. Ivanov, 2011, published in Stratigrafiya Geologicheskaya Korrelyatsiya, 2011, Vol. 19, No. 5, pp. 32–45. The Upper Bajocian–Lower Bathonian Boundary Section in the Outskirts of Saratov: Molluscan Characteristics and Biostratigraphy V. V. Mittaa, V. A. Zakharovb, I. S. Barskova, V. B. Sel’tserc, and A. V. Ivanovc a Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117647 Russia email: [email protected] b Geological Institute (GIN), Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Chernyshevskii Saratov State University, Astrakhanskaya ul. 83, Saratov. 410012 Saratov Received February 4, 2011; in final form April 13, 2011 Abstract—The analysis of all available data on the structure of the Bajocian–Bathonian boundary section in the outskirts of Saratov (Sokur quarry) and the taxonomic composition of its ammonites, belemnites, and bivalves revealed a continuous succession of the Pseudocosmoceras michalskii (Upper Bajocian), Oraniceras besnosovi, and Arcticoceras ishmae (Lower Bathonian) zones. In connection with the critique by Meledina et al. (2009), correlation of Bajocian and Bathonian boundary strata of the Central Russia and Northern Siberia is discussed. The inconsistency of Siberian bivalve and belemnite assemblages with Central Russian ammonite zones is explained by heterochronous invasions of different molluscan groups. Keywords: Saratov Volga region, ammonites, Bajocian, Bathonian, biostratigraphy, zones, Boreal–Tethyan correlation. DOI: 10.1134/S086959381105008X INTRODUCTION sediments in the Saratov–Volgograd region (Lower Volga River). -
Geological Survey Canada
GEOLOGICAL BULLETIN 74 SURVEY 1 p OF CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS THE JURASSIC FAUNAS OF THE CANADIAN ARCTIC MIDDLE AND UPPER JURASSIC AMMONITES Hans Frebold 5" Price, $2.00 1961 THE JURASSIC FAUNAS OF THE CANADIAN ARCTIC Middle and Upper Jurassic Ammonites 3,000—1960—1789 89772-8—li GEOLOGICAL SURVEY OF CANADA BULLETIN 74 THE JURASSIC FAUNAS OF THE CANADIAN ARCTIC MIDDLE AND UPPER JURASSIC AMMONITES By Hans Frebold DEPARTMENT OF MINES AND TECHNICAL SURVEYS CANADA ROGER DUHAMEL, F.R.S.C. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1961 Price $2.00 Cat. No. M42-74 PREFACE This report is based on fossil collections made over a vast area of the Canadian Arctic extending from Ellesmere Island in the north to the Aklavik region of the mainland. Detailed study of these ammonite faunas permits correla tion of the associated Jurassic rocks and shows their faunal and stratigraphic relationships with East Greenland and Siberia. J. M. HARRISON, Director, Geological Survey of Canada OTTAWA, June 22, 1960 CONTENTS PAGE Introduction 1 Fossil localities 2 Richardson and British Mountains region 2 Canadian Arctic islands 3 Description of ammonites 5 Age and correlation 25 The zoogeographical position of the Middle and Upper Jurassic ammonite faunas of the Canadian Arctic 32 The time of the manifestation of the Jurassic boreal realm 35 The Arctic seas in Middle and Late Jurassic times 37 References 41 Table I. Correlation chart of the Middle and Upper Jurassic of the Canadian Arctic with other Arctic regions Facing p. 26 Illustrations Plates I—XXI. -
Bedrock Geologic Map of the Northern Alaska Peninsula Area, Southwestern Alaska Compiled by Frederic H
Bedrock Geologic Map of the Northern Alaska Peninsula Area, Southwestern Alaska Compiled by Frederic H. Wilson, Robert B. Blodgett, Charles D. Blome, Solmaz Mohadjer, Cindi C. Preller, Edward P. Klimasauskas, Bruce M. Gamble, and Warren L. Coonrad Pamphlet to accomopany Scientific Investigations Map 2942 2017 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ...........................................................................................................................................................1 Introduction and Previous Work .................................................................................................................1 Geographic, Geologic, and Physiographic Framework ...........................................................................2 Geologic Discussion ......................................................................................................................................3 Ahklun Mountains Province ................................................................................................................4 Lime Hills Province ...............................................................................................................................4 Alaska-Aleutian Range Province .......................................................................................................4 Map Units Not Assigned to a Province .............................................................................................4 Digital Data......................................................................................................................................................5 -
Stratigraphy, 1968
Stratigraphy, 1968 GEOLOGICAL SURVEY BULLETIN 1274 This volume was published as separate chapters A-Q UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director CONTENTS [Letters designate the separately published chapters] (A) Changes in stratigraphic nomenclature by the U.S. Geological Survey, 1967, by George V. Cohee, Robert G. Bates, and Wilna B. Wright. (B) Stratigraphy of the Albemarle Group of the Carolina slate belt in central North Carolina, by Arvid A. Stromquist and Harold W. Sundelius. (C) New and revised stratigraphic names in the Santa Rita Mountains of south- . eastern Arizona, by Harald Drewes. (D) The coal-bearing group in the Nenana coal field, Alaska, by Clyde Wahr- haftig, Jack A. Wolfe, Estella B. Leopold, and Marvin A. Lanphere. (E) Definition of Wisconsinan Stage, by John C. Frye, H. B. Willman, Meyer Rubin, and Robert F. Black. (F) The Reany Creek Formation, Marquette County, Michigan, by Willard P. Puffett. (G) The Aguada Limestone of northwestern Puerto Rico, by Watson H. Monroe. (H) Cretaceous Tertiary boundary in New Jersey, Delaware, and eastern Maryland, by James P. Minard, James P. Owens, Norman F. Sohl, Harold E. Gill, and James F. Mello. (I) Six new Paleozoic and Mesozoic formations in east-central Alaska, by Earl E. Brabb. (J) Four new members of the Upper Cretaceous Straight Cliffs Formation in the southeastern Kaiparowits region, Kane County, Utah, by Fred Peterson. (K) Summary of Cretaceous stratigraphy in part of the McCarthy quadrangle, Alaska., by D. L. Jones and E. M. MacKevett, Jr. (L) The Quimby and Greenvale Cove Formations in western Maine, by Robert H. -
Stratigraphy and Structure of Dixon Mountain-Little Water Canyon Area
AN ABSTRACT OF THE THESIS OF Richard A. Klecker for the degree of Master of Science in Geology presented on 1(1.SO Title: Stratigraphy and Structure of the Dixon Mountain- Little Water Canyon Area, Beaverhead County,Montana Abstract approved: Redacted for Privacy Keitil F. Oles Approximately 23 square miles of the east-centralpart of the Tendoy Range are included in the thesisarea which lies three miles west of Dell, Montana. Rocks ranging in age from Late Mississippianto Recent are exposed in the study area. The upper Paleozoic section includes approximately 4,200 feet (1,281 m.)of strata which are divided into four formations. The nine formations of Mesozoic aae total approximately 2,960 feet(903 m.) plus part of the Cretaceous-Tertiary Beaverhead Formation. Cenozoic strata in the thesis area include Beaverheadconglomerates, basaltic andesite flows, tuffs, and breccias,and unconsoli- dated gravels, alluvium, and alluvial fan gravels. The thesis area was examined in detail to defineforma- tion distribution and structural complications. The Triassic and Jurassic (Ellis Group) rockswere examined specifically in an effort to interpret theirdepositional environments. Sedimentary structures, fossils, and petro- graphic evidence indicate a shallow subtidal and intertidal setting for the deposition of Triassic rocks. Algal laminated strata within the Woodside Formation have not previously been described. Much of the Ellis Grout:, was deposited under shallow subtidal and locally shoaling condi- tions. Glauconite calcarenites in the Swift Formation may represent deposition in sand waves. Folding and faulting within the thesis area represent the overlapping influence of geosynclinal and cratonic tectonism in the hinge line setting of the Tendoy Range. -
Boreal Zonal Standard and Biostratigraphy of the Siberian Mesozoic
Russian Geology Geologiya and Geophysics i Geofizika Vol. J8. No. 5. pp. 965-993, 1997 UDC 551.795+551.76(571.11.5) BOREAL ZONAL STANDARD AND BIOSTRATIGRAPHY OF THE SIBERIAN MESOZOIC V. A. Zakharov, Yu. 1.Bogomolov, V. 1.l1'ina, A. G. Konstantinov, N. I. Kurushin, N. K. Lebedeva, S. V. Meledina, B. L. Nikitenko, E. S. Sobolev, and B. N. Shurygin Institute ofGeology, Siberian Branchofthe RAS, Universitetskii pr. 3, Novosibirsk, 630090, Russia We otTer a boreal zonal standard scale providing an etTective panboreal correlation and current geological dating of Mesozoic boreal sediments. The need for establishment of a boreal standard is brought about by the fact that most boreal stratigraphic sections cannot be correlated directly, zone by zone, with Mesozoic type sections located in Western Europe. The standard section of boreal Mesozoic represents the most complete sequence of mollusk (mainly ammonite) zones known in the territory of the boreal realm. It is compiled from fragments of zonal sequences established in more than 30 Triassic, Jurassic, and Cretaceous sections of Northern Eurasia, North America, and Greenland. The boreal standard of the Triassic system comprises 36 ammonoid zones and 2 bivalve zones; Jurassic, 70 ammonite zones; Cretaceous, 37 ammonite zones, subzones, and beds, 6 bivalve zones, and 11 belemnite zones and subzones. Siberia and Northeastern Asia provide stratigraphic sections, many of which are the best in the boreal realm regarding their stratigraphic completeness and detailed zonal subdivision. They include the type section of the Olenekian and one of the most complete boreal sections of the Induan stage. Infrazonal scales are constructed for both Induan and Olenekian stages as well as for the Middle Anisian and Upper Anisian.