Natural Computing Conclusion

Total Page:16

File Type:pdf, Size:1020Kb

Natural Computing Conclusion Introduction Natural Computing Conclusion Natural Computing Dr Giuditta Franco Department of Computer Science, University of Verona, Italy [email protected] For the logistics of the course, please see the syllabus Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Natural Computing Natural (complex) systems work as (biological) information elaboration systems, by sophisticated mechanisms of goal-oriented control, coordination, organization. Computational analysis (mat modeling) of life is important as observing birds for designing flying objects. "Informatics studies information and computation in natural and artificial systems” (School of Informatics, Univ. of Edinburgh) Computational processes observed in and inspired by nature. Ex. self-assembly, AIS, DNA computing Ex. Internet of things, logics, programming, artificial automata are not natural computing. Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Bioinformatics versus Infobiotics Applying statistics, performing tools, high technology, large databases, to analyze bio-logical/medical data, solve problems, formalize/frame natural phenomena. Ex. search algorithms to recover genomic/proteomic data, to process them, catalogue and make them publically accessible, to infer models to simulate their dynamics. Identifying informational mechanisms underlying living systems, how they assembled and work, how biological information may be defined, processed, decoded. New theories and tools to discover general law underlying biology (mental experiments: Darwin theory, Schrodinger - DNA structure, wave equation, cat experiment). Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Life, information, computation Manca Vincenzo Manca Infobiotics Vincenzo Manca The book presents topics in discrete biomathematics. Mathematics has been widely used in modeling biological phenomena. However, the EMERGENCE, molecular and discrete nature of basic life processes suggests that their COMPLEXITY logics follow principles that are intrinsically based on discrete and AND informational mechanisms. The ultimate reason of polymers, as key element of life, is directly based on the computational power of strings, 1 COMPUTATION ECC and the intrinsic necessity of metabolism is related to the mathematical Infobiotics notion of multiset. The switch of the two roots of bioinformatics suggests a change of perspective. In bioinformatics, the biologists ask computer scientists to assist them in processing biological data. Conversely, in infobiotics mathematicians and computer scientists investigate principles and Infobiotics theories yielding new interpretation keys of biological phenomena. Life is too important to be investigated by biologists alone, and though computers are essential to process data from biological laboratories, Information in Biotic Systems many fundamental questions about life can be appropriately answered by a perspicacious intervention of mathematicians, computer scientists, and physicists, who will complement the work of chemists, biochemists, biologists, and medical investigators. The volume is organized in seven chapters. The first part is devoted to research topics (Discrete information and life, Strings and Genomes, Algorithms and Biorhythms, Life Strategies), the second one to mathematical backgrounds (Numbers and Measures, Languages and Grammars, Combinations and Chances). ISSN 2194-7287 isbn 978-3-642-36222-4 9 7 8 3 6 4 2 3 6 2 2 2 4 › springer.com 123 Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion (Conventional) Computation Turing in ’30s formalized the concept of computation and (silico-based) computer (software), von Neumann in 50s implemented the idea of computational machine (hardware). Main ingredients: 1 physical system (mean to store discrete data, namely representing an optimization combinatorial problem) 2 finite number of states, initial state, final state 3 program: list of instructions (out of a finite number of predefined ones), such as reading, writing (deletion, by a blanck symbol), state changing, bidirectional movement 4 termination criterion to establish which (where) is the output. What “discrete” and “finite” mean? Any computation assumes finite and illimited space1. 1Remark: limited/illimited, finite/infinite Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Unconventional Computing UC is every way to compute beyond Turing’s model. Examples: distributed, cloud, network computing (VPN: virtual private network), machine learning is part of artificial intelligence (ex. computer learning games). Further examples: Light/optical computing (unconventional mean to store data information), DNA/RNA computing (unconventional mean and instructions), quantum computing.. The second ones are some models of natural computing, within a proper subset of unconventional computing. Computational models may be either inspired by nature (ex. cellular automata) or using nature to compute (ex. biomolecular computing). Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Looking for new machine models Information is carried, by a program evolution, from initial state to final one of a mean. Computation is an information flow from input to output, and this may be made up of water, electricity, or something else - one of the motivations to look for new ways to perform computing is the definition of new machine models. Miniaturization is another main motivation. Richard Feynman, nobel laureate in physics (1961): “ There’s plenty of room at the bottom". He founded nanotechnology, having the key idea that molecules (and even atoms) can be machine components. Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Motivation • “In the future, computers may weigh less than 1 ½ tonnes…” • Since then, we have achieved massive miniaturisation of computer components Andrew Hamilton, Brains that Click, Popular Mechanics 91, no. 3, March 1949, pp. 162-167, 256, 258 Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Development of computers 60 years ENIAC (Electronic Numeric Cell processor (PS3), Integrator and Calculator), Sony/Toshiba/IBM, c. 2006 University of Pennsylvania, 1946 25.6 gigaflops 230 M2, 3 “calculations” per second Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion History Prior to World War 2, most people believed that the future lay with analogue computers Used real, continuous, physical quantities to represent data Spaghetti sort is a realisation of this idea Problem: constructed to solve a specific problem; difficult to generalise Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Differential Analyzer Built by Vannevar Bush from 1927, later versions were used to design the “bouncing bomb” Gears, pulleys and rods to represent a set of differential equations Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Transistor Fundamental building block of modern computers Semiconductor device, used to amplify or switch electronic signals University of Arizona Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Intel Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Miniaturisation • “The computing power of processors doubles every 18 months” Gordon Moore, Intel • How true is this, now that miniaturisation is approaching atomic resolutions? • Eventually (10-15 years?), we will hit problems as far as traditional fabrication techniques are concerned • Moore's Wall Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Why? Transistors act as gates, channelling electrons around a circuit Their walls are thick enough to contain the electrons, and ensure that they “behave correctly” However, when the gates reach a critical width (c. 5nM), the electrons tunnel through the walls, causing interference Slide courtesy of prof. Martin Amos, Manchester Metropolitan University, UK Dr Giuditta Franco Slides Natural Computing 2017 Introduction Miniaturization Natural Computing A dozen NC trends Conclusion Why? Also, transistor leakage manifests itself as heat “...We find that we are rapidly approaching the point where compromises are forced between device density and switching speed due to thermal constraints.” George
Recommended publications
  • DNA Computers for Work and Play
    INFORMATION SCIENCE COMPUTERS DNA FOR WORK AND PL AY TIC-TAC-TOE-PLAYING COMPUTER consisting of DNA strands in solution demonstrates the potential of molecular logic gates. © 2008 SCIENTIFIC AMERICAN, INC. Logic gates made of DNA could one day operate in your bloodstream, collectively making medical decisions and taking action. For now, they play a mean game of in vitro tic-tac-toe By Joanne Macdonald, Darko Stefanovic and Milan N. Stojanovic rom a modern chemist’s perspective, the mentary school in Belgrade, Serbia, we hap- structure of DNA in our genes is rather pened to be having dinner, and, encouraged by Fmundane. The molecule has a well-known some wine, we considered several topics, includ- importance for life, but chemists often see only ing bioinformatics and various existing ways of a uniform double helix with almost no function- using DNA to perform computations. We decid- al behavior on its own. It may come as a surprise, ed to develop a new method to employ molecules then, to learn that this molecule is the basis of a to compute and make decisions on their own. truly rich and strange research area that bridges We planned to borrow an approach from synthetic chemistry, enzymology, structural electrical engineering and create a set of molec- nanotechnology and computer science. ular modules, or primitives, that would perform Using this new science, we have constructed elementary computing operations. In electrical molecular versions of logic gates that can oper- engineering the computing primitives are called ate in water solution. Our goal in building these logic gates, with intuitive names such as AND, DNA-based computing modules is to develop OR and NOT.
    [Show full text]
  • Dynamics of Information As Natural Computation
    Information 2011, 2, 460-477; doi:10.3390/info2030460 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Dynamics of Information as Natural Computation Gordana Dodig Crnkovic Mälardalen University, School of Innovation, Design and Engineering, Sweden; E-Mail: [email protected] Received: 30 May 2011; in revised form: 13 July 2011 / Accepted: 19 July 2011 / Published: 4 August 2011 Abstract: Processes considered rendering information dynamics have been studied, among others in: questions and answers, observations, communication, learning, belief revision, logical inference, game-theoretic interactions and computation. This article will put the computational approaches into a broader context of natural computation, where information dynamics is not only found in human communication and computational machinery but also in the entire nature. Information is understood as representing the world (reality as an informational web) for a cognizing agent, while information dynamics (information processing, computation) realizes physical laws through which all the changes of informational structures unfold. Computation as it appears in the natural world is more general than the human process of calculation modeled by the Turing machine. Natural computing is epitomized through the interactions of concurrent, in general asynchronous computational processes which are adequately represented by what Abramsky names “the second generation models of computation” [1] which we argue to be the most general representation of information dynamics. Keywords: philosophy of information; information semantics; information dynamics; natural computationalism; unified theories of information; info-computationalism 1. Introduction This paper has several aims. Firstly, it offers a computational interpretation of information dynamics of the info-computational universe [2,3].
    [Show full text]
  • A Computational Model Inspired by Gene Regulatory Networks
    Rui Miguel Lourenço Lopes A Computational Model Inspired by Gene Regulatory Networks Doctoral thesis submitted to the Doctoral Program in Information Science and Technology, supervised by Full Professor Doutor Ernesto Jorge Fernandes Costa, and presented to the Department of Informatics Engineering of the Faculty of Sciences and Technology of the University of Coimbra. January 2015 A Computational Model Inspired by Gene Regulatory Networks A thesis submitted to the University of Coimbra in partial fulfillment of the requirements for the Doctoral Program in Information Science and Technology by Rui Miguel Lourenço Lopes [email protected] Department of Informatics Engineering Faculty of Sciences and Technology University of Coimbra Coimbra, January 2015 Financial support by Fundação para a Ciência e a Tecnologia, through the PhD grant SFRH/BD/69106/2010. A Computational Model Inspired by Gene Regulatory Networks ©2015 Rui L. Lopes ISBN 978-989-20-5460-5 Cover image: Composition of a Santa Fe trail program evolved by ReNCoDe overlaid on the ancestors, with a 3D model of the DNA crystal structure (by Paul Hakimata). This dissertation was prepared under the supervision of Ernesto J. F. Costa Full Professor of the Department of Informatics Engineering of the Faculty of Sciences and Tecnology of the University of Coimbra In loving memory of my father. Acknowledgements Thank you very much to Prof. Ernesto Costa, for his vision on research and education, for all the support and contributions to my ideas, and for the many life stories that always lighten the mood. Thank you also to Nuno Lourenço for the many discussions, shared books, and his constant helpfulness.
    [Show full text]
  • Alternative Computational Models: a Comparison of Biomolecular and Quantum Computation
    Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation John H. Reif Department of Computer Science Duke University ∗ Abstract Molecular Computation (MC) is massively parallel computation where data is stored and processed within objects of molecular size. Biomolecular Computation (BMC) is MC using biotechnology techniques, e.g. recombinant DNA operations. In contrast, Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of basis states. Both BMC and QC may be executed at the micromolecular scale by a variety of methodologies and technologies. This paper surveys various methods for doing BMC and QC and discusses the considerable theoretical and practical advances in BMC and QC made in the last few years. We compare bounds on key resource such as time, volume (number of molecules times molecular density), energy and error rates achievable, taking particular note of the scalability of these methods with the size of the problem solved. In addition to NP search problems and database search problems, we enumerate a wide variety of further potential practical applications of BMC and QC. We observe that certain problems (e.g., NP search problems), if solved with polynomial time bounds, requires exponentially large volume for BMC, so BMC does not scale well to solve very large NP search problems. However, we describe a number of applications (e.g., search within large data bases and simu- lation of parallel machines) where the volume grows polynomial. Also, we note that the observation operation of QC, which is a fundamental operation of QC used for obtaining classical output, may potentially suffer from exponentially large volume requirements.
    [Show full text]
  • Solving Travelling Salesman Problem in a Simulation of Genetic Algorithms with Dna
    International Journal "Information Theories & Applications" Vol.15 / 2008 357 SOLVING TRAVELLING SALESMAN PROBLEM IN A SIMULATION OF GENETIC ALGORITHMS WITH DNA Angel Goñi Moreno Abstract: In this paper it is explained how to solve a fully connected N-City travelling salesman problem (TSP) using a genetic algorithm. A crossover operator to use in the simulation of a genetic algorithm (GA) with DNA is presented. The aim of the paper is to follow the path of creating a new computational model based on DNA molecules and genetic operations. This paper solves the problem of exponentially size algorithms in DNA computing by using biological methods and techniques. After individual encoding and fitness evaluation, a protocol of the next step in a GA, crossover, is needed. This paper also shows how to make the GA faster via different populations of possible solutions. Keywords: DNA Computing, Evolutionary Computing, Genetic Algorithms. ACM Classification Keywords: I.6. Simulation and Modeling, B.7.1 Advanced Technologies, J.3 Biology and Genetics Introduction In a short period of time DNA based computations have shown lots of advantages compared with electronic computers. DNA computers can solve combinatorial problems that an electronic computer cannot like the well known class of NP complete problems. That is due to the fact that DNA computers are massively parallel [Adleman, 1994]. However, the biggest disadvantage is that until now molecular computation has been used with exact and “brute force” algorithms. It is necessary for DNA computation to expand its algorithmic techniques to incorporate aproximative and probabilistic algorithms and heuristics so the resolution of large instances of NP complete problems will be possible.
    [Show full text]
  • The Many Facets of Natural Computing
    The Many Facets of Natural Computing Lila Kari0 Grzegorz Rozenberg Department of Computer Science Leiden Inst. of Advanced Computer Science University of Western Ontario Leiden University, Niels Bohrweg 1 London, ON, N6A 5B7, Canada 2333 CA Leiden, The Netherlands [email protected] Department of Computer Science University of Colorado at Boulder Boulder, CO 80309, USA [email protected] “Biology and computer science - life and computation - are various natural phenomena. Thus, rather than being over- related. I am confident that at their interface great discoveries whelmed by particulars, it is our hope that the reader will await those who seek them.” (L.Adleman, [3]) see this article as simply a window onto the profound rela- tionship that exists between nature and computation. There is information processing in nature, and the natu- 1. FOREWORD ral sciences are already adapting by incorporating tools and Natural computing is the field of research that investi- concepts from computer science at a rapid pace. Conversely, gates models and computational techniques inspired by na- a closer look at nature from the point of view of information ture and, dually, attempts to understand the world around processing can and will change what we mean by computa- us in terms of information processing. It is a highly in- tion. Our invitation to you, fellow computer scientists, is to terdisciplinary field that connects the natural sciences with take part in the uncovering of this wondrous connection.1 computing science, both at the level of information tech- nology and at the level of fundamental research, [98]. As a matter of fact, natural computing areas and topics come in many flavours, including pure theoretical research, algo- 2.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • Info-Computational Philosophy of Nature
    Alan Turing’s Legacy: Info-Computational Philosophy of Nature Gordana Dodig-Crnkovic1 Abstract. Alan Turing’s pioneering work on computability, and Turing did not originally claim that the physical system his ideas on morphological computing support Andrew Hodges’ producing patterns actually performs computation through view of Turing as a natural philosopher. Turing’s natural morphogenesis. Nevertheless, from the perspective of info- philosophy differs importantly from Galileo’s view that the book computationalism, [3,4] argues that morphogenesis is a process of nature is written in the language of mathematics (The of morphological computing. Physical process, though not Assayer, 1623). Computing is more than a language of nature as computational in the traditional sense, presents natural computation produces real time physical behaviors. This article (unconventional), physical, morphological computation. presents the framework of Natural Info-computationalism as a contemporary natural philosophy that builds on the legacy of An essential element in this process is the interplay between the Turing’s computationalism. Info-computationalism is a synthesis informational structure and the computational process – of Informational Structural Realism (the view that nature is a information self-structuring. The process of computation web of informational structures) and Natural Computationalism implements physical laws which act on informational structures. (the view that nature physically computes its own time Through the process of computation, structures change their development). It presents a framework for the development of a forms, [5]. All computation on some level of abstraction is unified approach to nature, with common interpretation of morphological computation – a form-changing/form-generating inanimate nature as well as living organisms and their social process, [4].
    [Show full text]
  • Computing with DNA
    International Journal of Scientific and Research Publications, Volume 3, Issue 11, November 2013 1 ISSN 2250-3153 Computing With DNA Pratiyush Guleria NIELIT, Chandigarh, Extension Centre, Shimla, Himachal Pradesh, INDIA Abstract- This paper presents a DNA Computing potential in class of problems that is difficult or impossible to solve using areas of encryption, genetic programming, language systems, and traditional computing methods. It's an example of computation at algorithms. DNA computing takes advantage of DNA or related a molecular level, potentially a size limit that may never be molecules for storing information and biotechnological reached by the semiconductor industry. It demonstrates unique operations for manipulating this information. A DNA computer aspects of DNA as a data structure. It demonstrates that has extremely dense information storage capacity, provides computing with DNA can work in a massively parallel fashion. tremendous parallelism, and exhibits extraordinary energy In 2001, scientists at the Weizmann Institute of Science in Israel efficiency. DNA computing devices could revolutionize the announced that they had manufactured a computer so small that a pharmaceutical and biomedical fields. It involves application of single drop of water would hold a trillion of the machines. The information technology to the management of biological devices used DNA and enzymes as their software and hardware information. DNA Computing is brought into focus mainly and could collectively perform a billion operations a second. because of three research directions. First, the size of Now the same team, led by Ehud Shapiro, has announced a novel semiconductor devices approaches the scale of large model of its bimolecular machine that no longer requires an macromolecules.
    [Show full text]
  • DNA Computers
    Eindhoven Honours Class Foundations of Informatics Algorithmic Adventures DNA computing Hendrik Jan Hoogeboom Computer Science Leiden 13 december 2010 natural computation •genetic algoritms •neural networks DNA computing bio-informatics Len Adleman Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994. ―the mad scientist at work‖ http://www.usc.edu/dept/molecular-science/fm-adleman.htm Scientific American ―In other words, one could program a Turing machine to produce Watson-Crick complementary strings, factor numbers, play chess and so on. This realization caused me to sit up in bed and remark to my wife, Lori, ‗Jeez, these things could compute.‘ I did not sleep the rest of the night, trying to figure out a way to get DNA to solve problems.‖ Leonard M. Adleman - Computing with DNA Scientific American August 1998 Physicists plunder life's tool chest If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. “It's a great tool chest - and we want to see what can we build with it.” Adleman created the first computer to use DNA to solve a problem. He was struck by the parallels between DNA, with its long ribbon of information, and the theoretical computer known as the Turing Machine. Nature News Service april 2003 Physicists plunder life's tool chest Adleman tackled the famous „travelling salesman‟ problem - finding the shortest route between cities. Such problems rapidly become mind- boggling. The only way is to examine every possible option. With many cities, this number is astronomical. DNA excels at getting an astronomical amount of data into a tiny space.
    [Show full text]
  • Natural Computing Methods in Bioinformatics: a Survey
    Natural Computing Methods in Bioinformatics: A Survey Francesco Masulli a;b;¤ and Sushmita Mitra c aDepartment of Computer and Information Sciences, University of Genova, Via Dodecaneso 35, 16146 Genoa, ITALY. bCenter for Biotechnology, Temple University, 1900 N 12th Street Philadelphia PA 19122, USA. cMachine Intelligence Unit, Indian Statistical Institute, Kolkata 700 108, INDIA. Abstract Often data analysis problems in Bioinformatics concern the fusion of multisensor outputs or the fusion of multi-source information, where one must integrate dif- ferent kinds of biological data. Natural computing provides several possibilities in Bioinformatics, especially by presenting interesting nature-inspired methodologies for handling such complex problems. In this article we survey the role of natural computing in the domains of protein structure prediction, microarray data analysis and gene regulatory network generation. We utilize the learning ability of neural networks for adapting, uncertainty handling capacity of fuzzy sets and rough sets for modeling ambiguity, and the search potential of genetic algorithms for e±ciently traversing large search spaces. Key words: Natural Computing, Bioinformatics, protein structure prediction, microarray data analysis, biological networks modeling. 1 Introduction The 20th Century is frequently referred as the Century of Biology, given the huge developments of this scienti¯c area that concluded that century with the great success of the Human Genome Project [1,2] producing the full human DNA sequencing.
    [Show full text]
  • DNA Computing
    DNA Computing Uladzislau Maiseichykau Michael Newell Overview ● Introduction to DNA computing ● History ● Differences between DNA and traditional computing ● Potential ● Limitations ● Constructing a DNA computing experiment ● Early DNA computing ● Modern DNA computing ● Future of DNA computing What is DNA Computing? DNA computing uses DNA, chemistry, and molecular hardware instead of traditional silicon-based circuits to run calculations and computations Interest in DNA computing stems from the possibility of processing larger sets of data in a smaller space than silicon computers, and the fast-approaching physical limits to Moore’s Law History ● Initially developed by Leonard Adleman from University of Southern California in 1994 ● Used DNA to solve the Traveling Salesman problem ● In 1997, researchers from University of Rochester used DNA to create logic gates ● Researchers from Weizmann Institute of Science unveiled a programmable computing machine that used enzymes and DNA in 2002 ● 2013, the first biological transistor, the transcriptor, was created Comparison to Standard Computing “DNA computers are unlikely to become stand-alone competitors for electronic computers.” Smallest most efficient computers, modifies cells Build items vs. raw mathematics Potential ● Ultra small devices ● Self assembly (nano) - ex: Sierpinski triangle ● Exotic and new molecular structures ● Nano-Gold + DNA = 10 smaller details on chips Limitations ● Human involvement to set up each experiment/calculation ● Response times can be as slow as minutes, hours,
    [Show full text]