DNA Computers for Work and Play

Total Page:16

File Type:pdf, Size:1020Kb

DNA Computers for Work and Play INFORMATION SCIENCE COMPUTERS DNA FOR WORK AND PL AY TIC-TAC-TOE-PLAYING COMPUTER consisting of DNA strands in solution demonstrates the potential of molecular logic gates. © 2008 SCIENTIFIC AMERICAN, INC. Logic gates made of DNA could one day operate in your bloodstream, collectively making medical decisions and taking action. For now, they play a mean game of in vitro tic-tac-toe By Joanne Macdonald, Darko Stefanovic and Milan N. Stojanovic rom a modern chemist’s perspective, the mentary school in Belgrade, Serbia, we hap- structure of DNA in our genes is rather pened to be having dinner, and, encouraged by Fmundane. The molecule has a well-known some wine, we considered several topics, includ- importance for life, but chemists often see only ing bioinformatics and various existing ways of a uniform double helix with almost no function- using DNA to perform computations. We decid- al behavior on its own. It may come as a surprise, ed to develop a new method to employ molecules then, to learn that this molecule is the basis of a to compute and make decisions on their own. truly rich and strange research area that bridges We planned to borrow an approach from synthetic chemistry, enzymology, structural electrical engineering and create a set of molec- nanotechnology and computer science. ular modules, or primitives, that would perform Using this new science, we have constructed elementary computing operations. In electrical molecular versions of logic gates that can oper- engineering the computing primitives are called ate in water solution. Our goal in building these logic gates, with intuitive names such as AND, DNA-based computing modules is to develop OR and NOT. These gates receive incoming nanoscopic machines that could exist in living electrical signals that represent the 0s and 1s of organisms, sensing conditions and making deci- binary code and perform logic operations to sions based on what they sense, then responding produce outgoing electrical signals. For instance, with actions such as releasing medicine or kill- an AND gate produces an output 1 only if its ing specific cells. two incoming inputs are both 1. Modern-day We have demonstrated some of the abilities of computers have hundreds of millions of such KEY CONCEPTS our DNA gates by building automata that play logic gates connected into very complex circuits, n DNA molecules can act perfect games of tic-tac-toe. The human player like elaborate structures built out of just a few as elementary logic gates adds solutions of DNA strands to signal his or kinds of Lego blocks. Similarly, we hoped that analogous to the silicon- her moves, and the DNA computer responds by our molecular modules could be mixed together based gates of ordinary lighting up the square it has chosen to take next. into increasingly complex computing devices. computers. Short strands Any mistake by the human player will be pun- We did not aim, however, to compete with sil- of DNA serve as the gates’ ished with defeat. Although game playing is a icon-based computers. Instead, because Sto- inputs and outputs. long way from our ultimate goals, it is a good janovic had just finished a brief stint with a phar- n Ultimately, such gates test of how readily the elementary molecular maceutical company, we settled on developing a could serve as dissolved computing modules can be combined in plug- system that could be useful for making “smart” “doctors”—sensing mole- and-play fashion to perform complicated func- therapeutic agents, such as drugs that could sense cules such as markers on tions, just as the silicon-based gates in modern and analyze conditions in a patient and respond cells and jointly choosing computers can be wired up to form the complex appropriately with no human intervention after how to respond. logic circuits that carry out everything that com- being injected. For example, one such smart n Automata built from these puters do for us today. agent might monitor glucose levels in the blood DNA gates demonstrate and decide when to release insulin. Thus, our the system’s computation- Dissolved Doctors molecular logic gates had to be biocompatible. al abilities by playing Near the end of 1997 two of us (Stojanovic and Such molecular modules could have innumer- an unbeatable game of Stefanovic) decided to combine our individual able functions. For instance, in diseases such as tic-tac-toe. skills in chemistry and computer science and leukemia, numerous subpopulations of white —The Editors JEAN-FRANCOIS PODEVINJEAN-FRANCOIS work on a project together. As friends from ele- blood cells in the immune system display char- www.SciAm.com © 2008 SCIENTIFIC AMERICAN, INC. SCIENTIFIC AMERICAN 85 acteristic markers on their cell surfaces, depend- very analogous to the workings of silicon logic ing on the cells’ lineage and their stage of devel- OTHER DNA gates. Nevertheless, DNA clearly had a lot of po- opment. Present-day therapies using antibodies COMPUTERS tential for biocompatible computation, and a eliminate large numbers of these subpopulations couple of other advances gave us the tools to in- Researchers over the years at once, because they target only one of the sur- have devised several ways to vent our own brand of DNA logic gates. face markers. Such indiscriminate attacks can perform computations by First, in 1995 Gerald F. Joyce of the Scripps suppress the patient’s immune system by wiping exploiting DNA’s ability Research Institute in La Jolla, Calif., developed out too many healthy cells, leading to serious to store information in its a method for producing enzymes made out of sin- complications and even death. Molecular mod- sequence of bases. gle strands of DNA that cut other pieces of sin- ules capable of working together to sense and gle-stranded DNA into two segments. These so- 1994: Leonard M. Adleman — analyze multiple markers including perform- of the University of Southern called deoxyribozymes have two short arms that ing logical operations such as “markers A and California solved a puzzle will bind only to another stretch of DNA that has either B or C are present, but D is absent”— known as the Hamiltonian path the correct complementary sequence of bases, so might be able to select the specific subpopula- problem by encoding all the they are very specific about which substrate DNA tions of cells that are diseased and growing out possible solutions (both correct strands they will cleave [see box on page 88]. and incorrect) on a large num- of control and then eliminate only those cells. ber of DNA molecules and Special dye molecules attached to each end of Another application of our modules could be carrying out a series of steps to the substrate strands enable laboratory workers in the analysis of DNA, looking for a large array isolate the molecules with the to monitor the cleaving process. At one end of of possible genetic mutations or identifying one correct solution [see “Comput- the substrate, the dye molecule is a “quencher,” of a wide variety of microbiological pathogens. ing with DNA,” by Leonard M. which prevents the fluorescent marker dye at the Adleman; SCIENTIFIC AMERIC A N , Our most advanced tic-tac-toe-playing automa- August 1998]. other end from fluorescing as long as the strand ton combines 32 different short DNA sequences remains intact, keeping the quencher close (oligonucleotides). That many logic gate inputs 1995: Erik Winfree, now at the enough to be effective. After the strand is cut, its could analyze four billion possible combinations California Institute of Technolo- two pieces move apart and the marker dye mol- of oligonucleotides and partition them into thou- gy, proposed that tiles made ecule can fluoresce unhindered. As the work of sands of patterns, each pattern being character- of DNA could be designed to the DNA enzymes progresses, cutting more and perform computations by self- istic of certain pathogens or genotypes. assembling into two-dimension- more strands, the solution gradually lights up al structures [see “Nano- with the marker dye’s fluorescent color. Molecular Logic technology and the Double The other key advance came soon after our Researchers reported logic gates based on syn- Helix,” by Nadrian C. Seeman; initial planning, when Ronald R. Breaker of Yale thetic molecules as long ago as the early 1990s. SCIENTIFIC AMERIC A N , June 2004]. University reported a way to integrate a deoxyri- In 1993, for instance, A. Prasanna de Silva and bozyme with molecular groups acting as recog- 2004: Ehud Shapiro of the his collaborators at Queen’s University Belfast Weizmann Institute of Science nition modules. These modules work like sensors made AND gates out of small organic molecules in Rehovot, Israel, and Yaakov that either activate or inhibit their attached DNA that would fluoresce only if both hydrogen ions Benenson of Harvard Universi- enzyme when the correct input molecule is bound (from acid) and sodium ions were bound to ty, building on a proposal by to them. Breaker even combined two such mod- them. In 1997 J. Fraser Stoddart, now at North- Paul W. K. Rothemund of ules in a construct that could serve as an AND Caltech, developed a “doctor in western University, and his co-workers made a cell.” Enzymes operating on gate with two small input molecules. Very in- “exclusive OR” (XOR) gates, in which the mol- DNA analyzed whether a com- triguingly, his group has found that such two- ecules fluoresced in the presence of either, but bination of RNA molecules sensor constructs have been used by natural ri- not both, of the inputs (in this case, hydrogen indicative of a disease was boswitches—molecules made of RNA used by ions and molecules called amines).
Recommended publications
  • Natural Computing Conclusion
    Introduction Natural Computing Conclusion Natural Computing Dr Giuditta Franco Department of Computer Science, University of Verona, Italy [email protected] For the logistics of the course, please see the syllabus Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Natural Computing Natural (complex) systems work as (biological) information elaboration systems, by sophisticated mechanisms of goal-oriented control, coordination, organization. Computational analysis (mat modeling) of life is important as observing birds for designing flying objects. "Informatics studies information and computation in natural and artificial systems” (School of Informatics, Univ. of Edinburgh) Computational processes observed in and inspired by nature. Ex. self-assembly, AIS, DNA computing Ex. Internet of things, logics, programming, artificial automata are not natural computing. Dr Giuditta Franco Slides Natural Computing 2017 Introduction Natural Computing Natural Computing Conclusion Bioinformatics versus Infobiotics Applying statistics, performing tools, high technology, large databases, to analyze bio-logical/medical data, solve problems, formalize/frame natural phenomena. Ex. search algorithms to recover genomic/proteomic data, to process them, catalogue and make them publically accessible, to infer models to simulate their dynamics. Identifying informational mechanisms underlying living systems, how they assembled and work, how biological information may be defined, processed, decoded. New
    [Show full text]
  • Alternative Computational Models: a Comparison of Biomolecular and Quantum Computation
    Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation John H. Reif Department of Computer Science Duke University ∗ Abstract Molecular Computation (MC) is massively parallel computation where data is stored and processed within objects of molecular size. Biomolecular Computation (BMC) is MC using biotechnology techniques, e.g. recombinant DNA operations. In contrast, Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of basis states. Both BMC and QC may be executed at the micromolecular scale by a variety of methodologies and technologies. This paper surveys various methods for doing BMC and QC and discusses the considerable theoretical and practical advances in BMC and QC made in the last few years. We compare bounds on key resource such as time, volume (number of molecules times molecular density), energy and error rates achievable, taking particular note of the scalability of these methods with the size of the problem solved. In addition to NP search problems and database search problems, we enumerate a wide variety of further potential practical applications of BMC and QC. We observe that certain problems (e.g., NP search problems), if solved with polynomial time bounds, requires exponentially large volume for BMC, so BMC does not scale well to solve very large NP search problems. However, we describe a number of applications (e.g., search within large data bases and simu- lation of parallel machines) where the volume grows polynomial. Also, we note that the observation operation of QC, which is a fundamental operation of QC used for obtaining classical output, may potentially suffer from exponentially large volume requirements.
    [Show full text]
  • Solving Travelling Salesman Problem in a Simulation of Genetic Algorithms with Dna
    International Journal "Information Theories & Applications" Vol.15 / 2008 357 SOLVING TRAVELLING SALESMAN PROBLEM IN A SIMULATION OF GENETIC ALGORITHMS WITH DNA Angel Goñi Moreno Abstract: In this paper it is explained how to solve a fully connected N-City travelling salesman problem (TSP) using a genetic algorithm. A crossover operator to use in the simulation of a genetic algorithm (GA) with DNA is presented. The aim of the paper is to follow the path of creating a new computational model based on DNA molecules and genetic operations. This paper solves the problem of exponentially size algorithms in DNA computing by using biological methods and techniques. After individual encoding and fitness evaluation, a protocol of the next step in a GA, crossover, is needed. This paper also shows how to make the GA faster via different populations of possible solutions. Keywords: DNA Computing, Evolutionary Computing, Genetic Algorithms. ACM Classification Keywords: I.6. Simulation and Modeling, B.7.1 Advanced Technologies, J.3 Biology and Genetics Introduction In a short period of time DNA based computations have shown lots of advantages compared with electronic computers. DNA computers can solve combinatorial problems that an electronic computer cannot like the well known class of NP complete problems. That is due to the fact that DNA computers are massively parallel [Adleman, 1994]. However, the biggest disadvantage is that until now molecular computation has been used with exact and “brute force” algorithms. It is necessary for DNA computation to expand its algorithmic techniques to incorporate aproximative and probabilistic algorithms and heuristics so the resolution of large instances of NP complete problems will be possible.
    [Show full text]
  • The Many Facets of Natural Computing
    The Many Facets of Natural Computing Lila Kari0 Grzegorz Rozenberg Department of Computer Science Leiden Inst. of Advanced Computer Science University of Western Ontario Leiden University, Niels Bohrweg 1 London, ON, N6A 5B7, Canada 2333 CA Leiden, The Netherlands [email protected] Department of Computer Science University of Colorado at Boulder Boulder, CO 80309, USA [email protected] “Biology and computer science - life and computation - are various natural phenomena. Thus, rather than being over- related. I am confident that at their interface great discoveries whelmed by particulars, it is our hope that the reader will await those who seek them.” (L.Adleman, [3]) see this article as simply a window onto the profound rela- tionship that exists between nature and computation. There is information processing in nature, and the natu- 1. FOREWORD ral sciences are already adapting by incorporating tools and Natural computing is the field of research that investi- concepts from computer science at a rapid pace. Conversely, gates models and computational techniques inspired by na- a closer look at nature from the point of view of information ture and, dually, attempts to understand the world around processing can and will change what we mean by computa- us in terms of information processing. It is a highly in- tion. Our invitation to you, fellow computer scientists, is to terdisciplinary field that connects the natural sciences with take part in the uncovering of this wondrous connection.1 computing science, both at the level of information tech- nology and at the level of fundamental research, [98]. As a matter of fact, natural computing areas and topics come in many flavours, including pure theoretical research, algo- 2.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • Computing with DNA
    International Journal of Scientific and Research Publications, Volume 3, Issue 11, November 2013 1 ISSN 2250-3153 Computing With DNA Pratiyush Guleria NIELIT, Chandigarh, Extension Centre, Shimla, Himachal Pradesh, INDIA Abstract- This paper presents a DNA Computing potential in class of problems that is difficult or impossible to solve using areas of encryption, genetic programming, language systems, and traditional computing methods. It's an example of computation at algorithms. DNA computing takes advantage of DNA or related a molecular level, potentially a size limit that may never be molecules for storing information and biotechnological reached by the semiconductor industry. It demonstrates unique operations for manipulating this information. A DNA computer aspects of DNA as a data structure. It demonstrates that has extremely dense information storage capacity, provides computing with DNA can work in a massively parallel fashion. tremendous parallelism, and exhibits extraordinary energy In 2001, scientists at the Weizmann Institute of Science in Israel efficiency. DNA computing devices could revolutionize the announced that they had manufactured a computer so small that a pharmaceutical and biomedical fields. It involves application of single drop of water would hold a trillion of the machines. The information technology to the management of biological devices used DNA and enzymes as their software and hardware information. DNA Computing is brought into focus mainly and could collectively perform a billion operations a second. because of three research directions. First, the size of Now the same team, led by Ehud Shapiro, has announced a novel semiconductor devices approaches the scale of large model of its bimolecular machine that no longer requires an macromolecules.
    [Show full text]
  • DNA Computers
    Eindhoven Honours Class Foundations of Informatics Algorithmic Adventures DNA computing Hendrik Jan Hoogeboom Computer Science Leiden 13 december 2010 natural computation •genetic algoritms •neural networks DNA computing bio-informatics Len Adleman Molecular Computation of Solutions to Combinatorial Problem, Science, 266: 1021-1024, (Nov. 11) 1994. ―the mad scientist at work‖ http://www.usc.edu/dept/molecular-science/fm-adleman.htm Scientific American ―In other words, one could program a Turing machine to produce Watson-Crick complementary strings, factor numbers, play chess and so on. This realization caused me to sit up in bed and remark to my wife, Lori, ‗Jeez, these things could compute.‘ I did not sleep the rest of the night, trying to figure out a way to get DNA to solve problems.‖ Leonard M. Adleman - Computing with DNA Scientific American August 1998 Physicists plunder life's tool chest If we look inside the cell, we see extraordinary machines that we couldn't make ourselves, says Len Adleman. “It's a great tool chest - and we want to see what can we build with it.” Adleman created the first computer to use DNA to solve a problem. He was struck by the parallels between DNA, with its long ribbon of information, and the theoretical computer known as the Turing Machine. Nature News Service april 2003 Physicists plunder life's tool chest Adleman tackled the famous „travelling salesman‟ problem - finding the shortest route between cities. Such problems rapidly become mind- boggling. The only way is to examine every possible option. With many cities, this number is astronomical. DNA excels at getting an astronomical amount of data into a tiny space.
    [Show full text]
  • DNA Computing
    DNA Computing Uladzislau Maiseichykau Michael Newell Overview ● Introduction to DNA computing ● History ● Differences between DNA and traditional computing ● Potential ● Limitations ● Constructing a DNA computing experiment ● Early DNA computing ● Modern DNA computing ● Future of DNA computing What is DNA Computing? DNA computing uses DNA, chemistry, and molecular hardware instead of traditional silicon-based circuits to run calculations and computations Interest in DNA computing stems from the possibility of processing larger sets of data in a smaller space than silicon computers, and the fast-approaching physical limits to Moore’s Law History ● Initially developed by Leonard Adleman from University of Southern California in 1994 ● Used DNA to solve the Traveling Salesman problem ● In 1997, researchers from University of Rochester used DNA to create logic gates ● Researchers from Weizmann Institute of Science unveiled a programmable computing machine that used enzymes and DNA in 2002 ● 2013, the first biological transistor, the transcriptor, was created Comparison to Standard Computing “DNA computers are unlikely to become stand-alone competitors for electronic computers.” Smallest most efficient computers, modifies cells Build items vs. raw mathematics Potential ● Ultra small devices ● Self assembly (nano) - ex: Sierpinski triangle ● Exotic and new molecular structures ● Nano-Gold + DNA = 10 smaller details on chips Limitations ● Human involvement to set up each experiment/calculation ● Response times can be as slow as minutes, hours,
    [Show full text]
  • Handbook of Natural Computing
    Handbook of Natural Computing Springer Reference Editors • Main Editor – Grzegorz Rozenberg (LIACS, Leiden University, The Netherlands, and Computer Science Dept., University of Colorado, Boulder, USA) • Thomas Bäck (LIACS, Leiden University, The Netherlands) • Joost N. Kok (LIACS, Leiden University, The Netherlands) Details • 4 volumes, 2104 pp., published 08/12 • Printed Book: 978-3-540-92909-3 • eReference (online): 978-3-540-92910-9 • Printed Book + eReference: 978-3-540-92911-6 Overview Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, that is, it investigates models and computational tech- niques inspired by nature, and also it investigates, in terms of information processing, phenomena tak- ing place in nature. Examples of the first strand of research include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata in- spired by intercellular communication; swarm intelligence inspired by the behavior of groups of or- ganisms; artificial immune systems inspired by the natural immune system; artificial life systems in- spired by the properties of natural life in general; membrane computing inspired by the compart- mentalized ways in which cells process information; and amorphous computing inspired by morpho- genesis. Other examples of natural-computing paradigms are quantum computing and molecular com- puting, where the goal is to replace traditional electronic hardware by, for example, bioware in molec- ular computing. In quantum computing, one uses systems small enough to exploit quantum-mechani- cal phenomena to perform computations and to perform secure communications more efficiently than classical physics and, hence, traditional hardware allows.
    [Show full text]
  • What Is DNA Computing, How Does It Work, and Why It's Such a Big Deal
    3/22/2019 What is DNA Computing, How Does it Work, and Why it's Such a Big Deal INNOVATION (HTTPS://INTERESTINGENGCINREYEPRTOINCGU.RCROEMNC/INIENS O(CVRAYTPIOTONC)URRENCIES) AI (AI) ROBOTICS (ROBOTICS) 3D TECHNOLOGIES (3D-TECHNOLOGIES) WEARABLES (WEARABLES) NANOTECHNOLOGY (NANOTECHNOLOGY) ADVERTISEMENT INNOVATION (HTTPS://INTERESTINGENGINEERING.COM/INNOVATION) What is DNA Computing, How Does it Work, and Why it's Such a Big Deal Scientists are making steady progress in DNA computing, but what is DNA computing and how does it work? (https://interestingengineering.com/author/john- (https:(/h/ftatpces:b(/h/otowtpkits.ct:(e/oh/rmwt.tcwp/osswmh:(/h.al/itprsntehipknraes/trd:se loeer) u=httpusr%l=3hAt%tmp2isnF%%i=32tA&rFu%uiner2t&lFe=%urhuert2rlst=Flpt=ihinshnt%ttgetp BMya rJcohh,n 2 1Lsote 201e9r is- is- is- is- is- (https://interestingengineering.com/author/john- dna- dna- dna- dna- dna- loeer) compuctoinmgp-uctoinmgp-uctoinmgp-uctoinmgp-u how- how- how- how- how- does- does- does- does- does- it- it- it- it- it- work- work- work- work- work- and- and- and- and- and- why- why- why- why- why- k its- its- its- its- its- c a such- such- such- such- suchb - d a- a- a- a- e a- e big- big- big- big- big- F deal) deal&tdeexat=l)Wdheaatl%&2dd0eeisasc%l)r2ip https://interestingengineering.com/what-is-dna-computing-how-does-it-work-and-why-its-such-a-big-deal 1/16 3/22/2019 What is DNA Computing, How Does it Work, and Why it's Such a Big Deal INNOVATION (HTTPS://INTERESTINGENGCINREYEPRTOINCGU.RCROEMNC/INIENS O(CVRAYTPIOTONC)URRENCIES) AI (AI) ROBOTICS (ROBOTICS) 3D TECHNOLOGIES (3D-TECHNOLOGIES) WEARABLES (WEARABLES) NANOTECHNOLOGY (NANOTECHNOLOGY) k c a b d e e F Pixabay (https://pixabay.com/illustrations/microbiology-dna-people-structure-163521/) For the past decade, engineers have come up against the harsh reality of physics in the pursuit of more powerful computers: transistors, the on-off switches that power the computer processor, cannot be made any smaller than they currently are.
    [Show full text]
  • DNA Computing: a Complete Overview
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 DNA Computing: A Complete Overview Vartika Sharma NIMS University, Institute of Management and Computer Science, Shobha Nagar, Jaipur Delhi Highway, NH 11C, Jaipur, Rajasthan, India Abstract: DNA computing is a nascent technology that seeks to capitalize on the enormous informational capacity of DNA, biological molecules that can store huge amounts of information and are able to perform operations similar to computers through the deployment of enzymes, biological catalysts that act like software to execute desired operations i.e. Computers made of genes' building blocks. Because of their speed, miniaturization and Data Storage potential DNA computers are being considered as a replacement for silicon-based computers. Current DNA computer research has already proven that DNA computers are capable of solving complex mathematical equations and storing enormous amounts of data. Keywords: DNA Computing, DNA Computing techniques, Operations on DNA for Computing, Applications of DNA Computing, DNA Computing as future technology. 1. Introduction basic operations, such as arithmetic and boolean operations, that are executed in single steps by conventional machines. When an important property of DNA is that it can replicate, In addition, these basic operations should be executable in or make copies of itself. Each strand of DNA in the double massively parallel fashion. Guarnieri and Bancroft developed helix can serve as a pattern for duplicating the sequence of a DNA-based addition algorithm employing successive bases. Therefore every DNA sequence has a natural primer extension reactions to implement the carries and the complement.
    [Show full text]
  • Opportunities and Risks of Nanotechnologies Report in Co-Operation with the OECD International Futures Programme Contents
    Small sizes that matter: Small sizes that matter: Opportunities and risks of Nanotechnologies Report in co-operation with the OECD International Futures Programme Contents 1. Executive Summary 3 1.1. Nanotechnology and the market place 3 1.2. Investments in nanotechnology 4 1.3. The environmental, health and safety discussion related to nanoparticles 4 1.4. Allianz’s position on industrial insurance cover 5 2. What is nanotechnology and what makes it different? 6 2.1. Introduction 6 2.2. Nanomaterials: basic building blocks 8 2.3. Nano tools and fabrication techniques 11 2.4. Present and future areas of application 12 3. Market prospects and opportunities 14 3.1. Sectoral example: Medicine 15 3.2. Sectoral example: Food and agriculture 17 3.3. Sectoral example: Semiconductors and computing 18 3.4. Sectoral example: Textiles 20 3.5. Sectoral example: Energy 21 3.6. Nanotechnology and the situation of developing countries 22 4. Players 24 5. Nanotechnology programs of governments 26 6. What are the risks of Nanotechnology? 27 6.1. Broad range of technologies, variety of risks 27 6.2. Positive effects on human health and the environment 28 6.3. Manufactured nanoparticles 28 6.4. Nanoparticles and human health 30 6.5. Nanoparticles and the environment 35 6.6. Explosion hazards of nanoparticles 36 6.7. Self replication of miniature machines 37 6.8. Regulatory considerations of authorities and other stakeholders 38 6.9. Position of the industry 39 6.10. Position of pressure groups 40 6.11. Position of reinsurers and insurers 40 7. Chances and risks for the Allianz Group 41 7.1.
    [Show full text]