Tree-Climbing Mangrove Crabs: a Case of Convergent Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Crabs in Tekkali Creek, Srikakulam District, Andhra Pradesh
International Journal of Fisheries and Aquatic Studies 2016; 4(1): 414-418 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 Diversity of crabs in Tekkali creek, Srikakulam district, (GIF) Impact Factor: 0.352 IJFAS 2016; 4(1): 414-418 Andhra Pradesh © 2016 IJFAS www.fisheriesjournal.com Received: 15-11-2015 Myla S Chakravarty, PRC Ganesh, D Amarnath, B Shanthi Sudha, V Vivek Accepted: 16-12-2015 Myla S Chakravarty Abstract Department of Marine Living Tekkali Creek is located on the East coast of India in Srikakulam District, Andhra Pradesh being Resources, Andhra University, connected by different channels, canals, streams etc. The creek was surveyed for different crab Visakhapatnam – 530 003, populations. Fifteen species belonging to five families– Ocypodidae, Grapsidae, Sesarmidae, Portinidae Andhra Pradesh, India. and Varunidae and nine genera- Ocypode, Uca, Grapsus, Sesarma, Perisesarma, Episesarma, Portunus, Scylla and Hemigrapsus were recorded. Of the species identified seven were marine and eight were PRC Ganesh brackish water. Department of Marine Living Resources, Andhra University, Keywords: Tekkali Creek, Brachyuran Crabs. Visakhapatnam – 530 003, Andhra Pradesh, India. 1. Introduction D Amarnath Crabs are one of the important faunal communities serving as very good food source to human Department of Marine Living beings in the marine and brackish water ecosystems. They are predacious carnivores and Resources, Andhra University, scavengers and playing an important role in detritus formation, recycling of nutrients and Visakhapatnam – 530 003, [1] [2] Andhra Pradesh, India. overall dynamics of ecosystems . Crabs are distributed up to 6000 m depth . About 5000 to [2- 10,000 species of brachyuran crabs belonging to 700 genera have been reported worldwide B Shanthi Sudha 9]. -
An Exploratory Study on Grapsid Crab Zonation in Kenyan Mangroves
An exploratory study on grapsid crab zonation in Kenyan mangroves 1, 1 2 3 4 1 F. Dahdouh-Guebas ∗, M. Verneirt , S. Cannicci , J.G. Kairo , J.F. Tack & N. Koedam 1Laboratory of General Botany and Nature Management, Mangrove Management Group, Vrije Universiteit Brus- sel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium; 2Dipartimento di Biologia Animale e Genetica ‘Leo Pardi’, Universita` degli Studi di Firenze, Via Romana 17, I-50125 Firenze, Italia; 3Kenya Marine and Fisheries Research Institute, PO Box 81651, Mombasa, Kenya; 4Belgian Biodiversity Platform, c/o Institute of Nature Conservation, Kliniekstraat 25, B-1070 Brussels, Belgium; ∗Author for correspondence: Tel: +32 02 629 34 22, Fax: 34 13, E-mail: [email protected] Key words: crab, Detrended Correspondence Analysis, Grapsidae, Kenya, mangrove, zonation Abstract Despite earlier efforts to understand the role played by grapsid crabs in mangroves, their importance in the struc- turing and functioning of such systems is fully appreciated, particularly with regard to small-scale studies. The present study provides some new data on the interaction between mangroves and crabs, namely the link between the distribution of particular mangrove tree species and the distribution of certain crab species at the assemblage level. Floristic and faunistic relevés were made in Gazi Bay (2 sites) and Mida Creek (3 sites), 140 km apart on the Kenyan coast, along five transects in a series of quadrats covering the width of the mangrove belts. Zonation of both mangrove vegetation and brachyuran fauna was described and height above datum and distance to the mainland (limit of non-flooded area) measured. -
Investigating Spawning of ʻalamihi (Metopograpsus Thukuhar) in Relation to the Hawaiian Lunar Calendar and Tidal Changes
Investigating spawning of ʻAlamihi (Metopograpsus thukuhar) in relation to the Hawaiian lunar calendar and tidal changes Kainalu Steward Marine Science Department University of Hawaiʻi at Hilo MOP ADVISOR Lisa Parr, Marine Science Department, University of Hawaiʻi at Hilo PROJECT ADVISOR Kamala Anthony, Hui Hoʻoleimaluō April 30, 2020 ABSTRACT Loko iʻa, traditional Hawaiian aquaculture systems, were essentially sustainable refrigerators for the people of Hawaiʻi. Loko iʻa rely on saltwater and freshwater inputs to create a brackish water environment that attracts various marine life to feed within. The ʻalamihi or Metopograpsus thukuhar is an understudied crab that is commonly found in rocky and muddy brackish environments, including loko i‘a. This study took place at Honokea loko iʻa located at Waiuli in Hilo, Hawaii. The objective of this project was to observe the timing and abundance of Metopograpsus thukuhar spawning in comparison with the native Hawaiian lunar calendar and tidal changes. Although ʻalamihi are plentiful in Hawaiʻi, very little information is known about their life history and ecological contribution, especially in relation to loko iʻa. Many marine organisms time their reproduction to release planktonic larvae or gametes on nights around new and full moons (Palmer 1995). A total of nine nights between September and December 2019 were sampled, such as Hilo (new moon) within the hoʻonui (waxing) period, Mahealani (full moon) that fell within the poepoe (rounded) period, and ʻOlekūlua (quarter moon) that fell within the hoʻēmi (waning) period, and tidal data were recorded. Three people collected crabs by hand for a duration of 30 minutes each night. The crabs were sexed and carapace width was measured, and it was noted if a crab was carrying eggs or had a soft shell, which could indicate a recent molt. -
Selection of an Omnivorous Diet by the Mangrove Tree Crab Aratus Pisonii in Laboratory Experiments ⁎ Amy A
Journal of Sea Research 59 (2008) 59–69 www.elsevier.com/locate/seares Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments ⁎ Amy A. Erickson a, , Ilka C. Feller b, Valerie J. Paul a, Lisa M. Kwiatkowski a, Woody Lee a a Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, USA 34949 b Smithsonian Environmental Research Center, 647 Contees Wharf Rd., PO Box 28, Edgewater, MD, USA 21037 Received 16 October 2006; accepted 12 June 2007 Available online 26 July 2007 Abstract Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ∼ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet. -
Complete Larval and Early Juvenile Development of the Mangrove Crab
JOURNAL OF PLANKTON RESEARCH j VOLUME 26 j NUMBER 12 j PAGES 1389–1408 j 2004 Complete larval and early juvenile development of the mangrove crab Perisesarma fasciatum (Crustacea: Brachyura: Sesarmidae) from Singapore, with a larval comparison of Parasesarma and Perisesarma GUILLERMO GUERAO1*, KLAUS ANGER2, U. W. E. NETTELMANN2 AND CHRISTOPH D. SCHUBART3 1 DEPARTAMENT DE BIOLOGIA ANIMAL (ARTRO` PODES), FACULTAT DE BIOLOGIA (U.B.), AV. DIAGONAL 645, 08028 BARCELONA, SPAIN, 2 ALFRED-WEGENER-INSTITUT FU¨ R POLAR- UND MEERESFORSCHUNG, BIOLOGISCHE ANSTALT HELGOLAND, MEERESSTATION, 27498 HELGOLAND, 3 GERMANY AND BIOLOGIE 1: ZOOLOGIE, UNIVERSITA¨ T REGENSBURG, 93040 REGENSBURG, GERMANY *CORRESPONDING AUTHOR: [email protected] Received January 22, 2004; accepted in principle June 2, 2004; accepted for publication July 13, 2004; published online July 23, 2004 The complete larval development of the sesarmid crab Perisesarma fasciatum (Lanchester, 1900) from Singapore was obtained from laboratory culture. All four zoeal stages, the megalopa and the first crab stage are described and illustrated. The morphological characteristics of the larvae of P. fasciatum are compared with those of other known larvae of the genera Perisesarma and Parasesarma. The larval morphology of P. fasciatum clearly presents the typical combination of features that characterize sesarmid larvae. Overall, larval stages are very similar in Perisesarma and Parasesarma and it is impossible to distinguish these two genera by larval morphology. INTRODUCTION still being revised -
DIET of Labuanium Politum (AN OBLIGATE ARBOREAL CRAB) at KAMPUNG TANJONG ASSAM, SPAOH, SARAWAK
DIET OF Labuanium politum (AN OBLIGATE ARBOREAL CRAB) AT KAMPUNG TANJONG ASSAM, SPAOH, SARAWAK NUR AMIRAH BINTI MOHAMAD ALWIE Bachelor of Science with Honours (Aquatic Resource Science and Management) 2015/2016 Pusat Khidmat "WaklwuatAkadem. UMVEItSITt MALAYSIASARAWAi. P. KNIDMAT MAKLUMAT AKADEMIK UNIMAS 11 100027267911111 Diet of Labuanium politum (An Obligatei Arboreali i11111 iCrab) at Kampung Tanjung Assam, Spaoh, Sarawak Nur Amirah Binti Mohamad Alwie This report is submitted in partial fulfillment of the requirement for degree of Bachelor of Science with Honours (Aquatic Resource Science and Management) Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK DECLARATION OF AUTHORSHIP I, NUR AMIRAH BINTI MOHAMAD ALWIE declarethat the final year project report entitled: DIET OF Labuanium politum (AN OBLIGATE ARBOREAL CRAB) AT KAMPUNG TANJUNG ASSAM, SPAOH, SARAWAK. and the work presentedin the report are both my own, and have been generatedby me as the result of my own original research.I confirm that: " this work was done wholly or mainly while in candidature for a research degree at this University; " where I have made corrections based on suggestion by supervisor and examiners, this has been clearly stated; " where I have consulted the published work of others, this is always clearly attributed; " where I have quoted from the work of others, the source is always given. With the exception of such quotations, this report is entirely my own work; "I have acknowledged all main sourcesof help; " where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself; " none of this work has been published before submission Signed: d ýA N "11! Aquatic Resource Science and Management Programme Department of Aquatic Science Faculty of Resource Science and Technology Universiti Malaysia Sarawak (UNIMAS) Date: 17 June 2016 I ACKNOWLEDGEMENT Alhamdulillah, all praises to Allah the Almighty for giving me a chance and strength in order to complete my final year project. -
Substrate Mediates Consumer Control of Salt Marsh Cordgrass on Cape Cod, New England
Ecology, 90(8), 2009, pp. 2108–2117 Ó 2009 by the Ecological Society of America Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England 1 MARK D. BERTNESS, CHRISTINE HOLDREDGE, AND ANDREW H. ALTIERI Department of Ecology and Evolutionary Biology, 80 Waterman Street, Brown University, Providence, Rhode Island 02912 USA Abstract. Cordgrass die-offs in Cape Cod, Massachusetts, USA, salt marshes have challenged the view that the primary production of New England salt marshes is controlled by physical factors. These die-offs have increased dramatically over the last decade and are caused by the common herbivorous marsh crab Sesarma reticulatum, but other factors that control crab impacts remain unclear. We examined the influence of plant nutrient supply and disturbances on Sesarma herbivory by fertilizing plots and creating experimental disturbances, since previous studies have revealed that they mediate the intensity of herbivory in other Western Atlantic marshes. Neither nutrient enrichment nor experimental disturbances affected crab grazing intensity despite their strong effects in other marsh systems. Within and among Cape Cod salt marshes, however, Sesarma burrows are concentrated on peat substrate. Surveys of 10 Cape Cod marshes revealed that burrow density, depth, and complexity are all much higher on peat than on sand or mud substrate, and paralleling these patterns, crab abundance, herbivore pressure, and the expansion of die-off areas are markedly higher on peat than on other substrates. Complementing work hypothesizing that predator release is triggering increased crab herbivory in Cape Cod marshes, these results suggest that cordgrass die-offs are constrained to the peat substrate commonly found on the leading edge of marshes and that the vulnerability of New England salt marshes to crab herbivory and future die-offs may be predictable. -
Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA). -
An Invitation to Monitor Georgia's Coastal Wetlands
An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources). -
Redalyc.Population and Life History Features of the Crab Aratus Pisonii
Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Conde, J. E.; Tognella, M. M. P.; Paes, E. T.; Soares, M. L. G.; Louro, I. A.; Schaeffer Novelli, Y. Population and life history features of the crab aratus pisonii (decapoda: grapsidae) in a subtropical estuary Interciencia, vol. 25, núm. 3, mayo-junio, 2000, pp. 151-158 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33904505 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative COMUNICACIONES REPORTS COMUNICAÇÕES POPULATION AND LIFE HISTORY FEATURES OF THE CRAB ARATUS PISONII (DECAPODA: GRAPSIDAE) IN A SUBTROPICAL ESTUARY J. E. Conde1, M. M. P. Tognella2, E. T. Paes2, M. L. G. Soares2, I. A. Louro2 and Y. Schaeffer-Novelli2 SUMMARY Population features of the grapsid crab Aratus pisonii, a similar in the two study sites: 1.63 individuals/m2 in Bertioga-D common inhabitant of the supralittoral zone of roots, branches and 1.41 in Bertioga-Cidade. Females were significantly more and canopy of several species of mangroves, were studied in abundant than males in a ratio of 1.168:1.00 in Bertioga-D, and two estuarine mangrove forests near Bertioga, São Paulo, Bra- 1.153:1.00 in Bertioga-Cidade. J-shaped sex ratio curves were zil. Crabs were larger in Bertioga-D (range: 8.85 - 26.20 mm), observed for both populations. Juvenile crabs were present at where a well-developed mangrove forest is present, than in both locations, but they were much more abundant in Bertioga- nearby Bertioga-Cidade (range: 3.80 - 20.85 mm), where Cidade (34.8%) than in Bertioga-D (3.9%), possibly as a conse- arbustive and stunted mangrove trees prevailed. -
Sound Production and Reception in Mangrove Crabs Perisesarma Spp
Vol. 5: 107–116, 2009 AQUATIC BIOLOGY Printed May 2009 doi: 10.3354/ab00136 Aquat Biol Published online March 10, 2009 OPEN ACCESS Sound production and reception in mangrove crabs Perisesarma spp. (Brachyura: Sesarmidae) P. Y. Boon*, D. C. J. Yeo, P. A. Todd Department of Biological Sciences, Marine Biology Laboratory, National University of Singapore, 14 Science Drive 4, Blk S1, #02–05, Singapore, 117543 ABSTRACT: Acoustic signalling and sound production structures in the sesarmid crabs Perisesarma eumolpe (De Man) and P. indiarum (Tweedie) from Mandai mangroves, Singapore, were examined using 40 to 20 000 Hz sound recordings and scanning electron microscopy. The sound receptor, Barth’s myochordotonal organ, was identified in both species. Only male crabs were found to display acoustically, and only during agonistic interactions. The present study also revealed key species- specific differences in the morphology of the stridulatory organs, stridulatory movements and result- ing sounds produced. The findings show that acoustic signalling may be a significant component in the social behaviour of mangrove sesarmid crabs. KEY WORDS: Sound · Mangroves · Crab · Crustacea · Brachyura · Sesarmidae · Perisesarma spp. · Stridulation · Singapore Resale or republication not permitted without written consent of the publisher INTRODUCTION vibration or quivering of appendages; (3) percussion or rapping, the striking of a body part on the substrate; Relatively little research has been conducted on and (4) stridulation or rasping, a file-and-scraper the social interactions of mangrove-dwelling sesarmid mechanism involving the appendages and/or the crabs (Mulstay 1980, Seiple & Salmon 1982), despite cephalothorax (Guinot-Dumortier & Dumortier 1960, their important ecological role in this habitat (Smith Salmon & Horch 1972) where the file (pars stridens), et al. -
Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages Within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D
Molecular Phylogenetics and Evolution Vol. 15, No. 2, May, pp. 179–190, 2000 doi:10.1006/mpev.1999.0754, available online at http://www.idealibrary.com on Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D. Schubart*,§, Jose´ A. Cuesta†, Rudolf Diesel‡, and Darryl L. Felder§ *Fakulta¨tfu¨ r Biologie I: VHF, Universita¨ t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany; †Departamento de Ecologı´a,Facultad de Biologı´a,Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain; ‡Max-Planck-Institut fu¨ r Verhaltensphysiologie, Postfach 1564, 82305 Starnberg, Germany; and §Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 Received January 4, 1999; revised November 9, 1999 have attained lifelong independence from the sea (Hart- Grapsoid crabs are best known from the marine noll, 1964; Diesel, 1989; Ng and Tan, 1995; Table 1). intertidal and supratidal. However, some species also The Grapsidae and Gecarcinidae have an almost inhabit shallow subtidal and freshwater habitats. In worldwide distribution, being most predominant and the tropics and subtropics, their distribution even species rich in subtropical and tropical regions. Over- includes mountain streams and tree tops. At present, all, there are 57 grapsid genera with approximately 400 the Grapsoidea consists of the families Grapsidae, recognized species (Schubart and Cuesta, unpubl. data) Gecarcinidae, and Mictyridae, the first being subdi- and 6 gecarcinid genera with 18 species (Tu¨ rkay, 1983; vided into four subfamilies (Grapsinae, Plagusiinae, Tavares, 1991). The Mictyridae consists of a single Sesarminae, and Varuninae). To help resolve phyloge- genus and currently 4 recognized species restricted to netic relationships among these highly adaptive crabs, portions of the mitochondrial genome corresponding the Indo-West Pacific (P.