The RADARSAT-Constellation Mission (RCM) Dr. Heather McNairn Science and Technology Branch, ORDC
[email protected] Daniel De Lisle RADARSAT Constellation Mission Manager Canadian Space Agency
[email protected] Why Synthetic Aperture Radar (SAR)? The Physics: • At microwave frequencies, energy causes alignment of dipoles (sensitive to number of water molecules in target) • Characteristics of structure in target impacts how microwaves scatter (sensitive to roughness and canopy structure) The Operations: • At wavelengths of centimetres to metres in length, microwaves are unaffected by cloud cover and haze • As active sensors, SARs generate their own source of energy; can operate day or night and under low illumination conditions The Reality for Agriculture: • The backscatter intensity and scattering characteristics can be used to estimate amount of water in soils and crops, and tell us something about the type and condition of crops • The near-assurance of data collection is critical for time sensitive applications, in times of emergency (i.e. flooding), risk (i.e. disease), and for consistent measures over the entire growing season (i.e. monitoring crop condition) Why a RADARSAT Constellation? • The use of C-Band SAR has increased significantly since the launch of RADARSAT-1 • Many Government of Canada users have developed operational applications that deliver information and products to Canadians and the international community, based on RADARSAT • This constellation ensures C-Band continuity with improved system reliability, primarily to support current and future operational users • RCM is a government-owned mission, tailored to respond to Canadian Government needs for maritime surveillance, disaster management and ecosystem monitoring Improved stream flow forecasts1 Estimates of crop biomass2 AAFC’s annual crop inventory Produced by ACGEO Contact:
[email protected] 1Bhuiyan, H.A.K.M, McNairn, H., Powers, J., and Merzouki, A.