The High Yield Neurologic Examination • Mental Status-Brief Review • Cranial Nerves – Common/Urgent Patterns John Engstrom, M.D

Total Page:16

File Type:pdf, Size:1020Kb

The High Yield Neurologic Examination • Mental Status-Brief Review • Cranial Nerves – Common/Urgent Patterns John Engstrom, M.D Overview – The Neurologic Examination The High Yield Neurologic Examination • Mental status-brief review • Cranial nerves – common/urgent patterns John Engstrom, M.D. • Motor exam – common/urgent patterns April 2017 • Sensory exam – common/urgent patterns • Selective demonstrations Q1: Which statement regarding the Screening Mental Status mental status exam is false? 1) Attention span (immediate recall) is not • Orientation-time, place, person abnormal in patients with dementia • Attention-Digit span forward (nl > 6-7) 2) Language testing is a screen for aphasia • Language-repetition, naming, comprehension 3) If recent memory testing is abnormal, then • Memory-Recall of 3 common objects at 5 attention is probably also abnormal minutes; if misses an answer give a prompt 4) Abstractions are often abnormal in the setting of dementia • Abstractions-Similarities and differences (e.g.-apple vs. orange; lake vs. river) 5) Attention span is often abnormal in late dementia 1 Assessment of Vision Screening for Visual Field Deficits • Measure acuity with glasses on/contacts in • Allows you to test function of broad areas of brain • Establishing a visual field cut establishes a – Lobes-occipital, temporal, parietal – Optic nerves, chiasm, thalamus structural lesion (eye vs. brain) • Clinical Importance • The pupils always react in cortical blindness – “An anatomic sedimentation rate of the brain” – Afferent-retina, optic nerve/tract, brainstem – Detect abnormalities that require brain imaging – Efferent-midbrain, third nerve, ciliary muscle – Localize the deficit (right vs. left brain) Screening for Visual Field Deficits- Ambulatory, Cooperative Patient • Imagine visual field cut in four equal pieces • Move examiner finger in the center of each quadrant with patient gaze fixed • Test each eye by covering the opposite eye, present stimulus in center of all 4 quadrants • Describe the deficit in terms of the portion of the visual field affected 2 Q2: What causes sustained dilation Cranial Nerve Exam-Pupils of a pupil in response to a light? • Anatomic pathways-afferent CN II, 1) Afferent pupillary defect midbrain, efferent bilat parasymp in CN III 2) Hippus – Best tested dim light; Est size before/after light 3) Efferent pupillary defect – Assess baseline symmetry of shape and size 4) Stroke affecting the parietal lobe – Assess direct and consensual response 5) Stroke affecting the occipital lobe – No other part of the nervous system affected! • Abnormalities may be in CN II or III Common Pupillary Exam Patterns • Common False Positives – Mydriatic drugs (unilateral if topical); child – Inadequacy of light stimulus (use bright light against a dim background) – Post surgical-cataracts, prosthetic eye • Afferent pupil defect-Light stimulus doesn’t reach brainstem due to diseased CN II – Pupil dilates despite constant light stimulus – Examples-multiple sclerosis, meningioma 3 Urgent Outpatient Pupillary Exam Pattern • Exclude false positives • History/exam suggest intracranial process? • Efferent pupil dilated unilaterally (6-9 mm) – Accompanied by CN III palsy (eye down/out) – Greater than 1 mm asymmetry – Compression of CN III by temporal lobe brain tissue displaced from a mass – Consider urgent brain MRI or head CT What Cranial Nerves Have in Common Cranial Nerves III, IV, and VI • Brainstem portion-many other brainstem • Movements-eye out is VI, eye down and in findings present (e.g.-MS, tumor) is IV, everything else is III • Subarachnoid space-CN and nerve roots – Move finger in horizontal and vertical planes pass through the CSF after exit cord – Move finger in and down bilaterally-IVth – Often multiple CN involved • Monocular diplopia – Example-infectious/carcinomatous meningitis, – Pt cover one eye; is only one image remaining? • Skull base-inside/outside skull to target – Strongly consider ordering brain MRI to cover tissue innervated (e.g.-motor/sensory) brainstem, skull base, and orbit 4 Cranial Nerve VII-Muscles of Q3: What facial movement is normal in Facial Expression upper motor neuron weakness? • Upper 1/3-Furrowing the eyebrows 1) Smile • Middle 1/3-Eye closure-can test power by 2) Eye closure forcing eyes open against resistance 3) Eyebrow furrowing • Lower 1/3-Smile 4) Lower 2/3 of face • All three affected-Lower motor neuron 5) Upper 2/3 of face facial paresis (e.g.-Bell’s palsy) • Lower 2/3 affected-upper motor neuron (brain or upper brainstem) CN VII-Utility of Testing CN VII-Examination • Lower 2/3 face-MRI of brain • Upper 1/3-furrowing brow, symmetry • Entire face-Bell’s palsy • Middle 1/3-degree eye closure, symmetry – LMN VII only finding – Power testing-force eyelids open using thumbs- one each at upper and lower orbit – Acute onset; stabilize/improve over days-weeks – With effort, globe rotates upward-see sclera • Apparent Bell’s but CNS location (e.g.-MS, – Lack of effort, globe motionless-see iris + pupil brain tumor) • Lower 1/3-excursion of smile, symmetry – Other neurol symptoms/signs – Coincident medical illness (e.g.-meningitis) 5 CN V, VIII, X, XI • CN V-test three divisions of face with pin or light touch • CN VIII-finger rub next to each ear; audiogram if questionable • CN X-uvula elevation in the midline • CN XI-symmetry/power of shoulder shrug CN XII-Tongue Motor Exam • Two muscles fused midline; separate CNs • Bulk-smooth lateral contour, symmetry • Bulk-place the contour of the muscle on a • Power screen-tongue protrusion midline nl perpendicular to your line of vision • Grading power-hold tongue-in-cheek vs. • Tone-move limb passively across a joint resistance slowly and rapidly • Dysarthria-slurred speech due to weakness • Power-grade 1-5 on the MRC scale – Lips (labial dysarthria) • Reflexes-grade 0-4 – Tongue (lingual dysarthria) • Gaits-Demonstration at the end of talk – Palate (nasal dysarthria) 6 The Weak Patient: The Symptom of Weakness Pertinent History Temporal sequence • Patients mean a functional limitation of Functional activities motor activity SOB • Confused with: – fatigue Ambulation-independent vs. cane vs. walker – depression (“neurasthenia”) vs. wheelchair – decreased sensation Stand up/reach overhead-proximal muscles – decreased force moving a painful limb Stand on toes; use pen/spoon-distal muscles Complete motor exam-not power alone Breakaway Weakness is Not Examination Signs of True Weakness True Weakness • Reduced but constant resistance when • DEFINITION: Variable resistance by the testing the power a muscle on clinical patient during muscle power testing examination • ASSOCIATED WITH PAIN: Cannot • There are only two types of true weakness: determine if underlying weakness present – Central: brain, brainstem, cord • UNASSOCIATED WITH PAIN: Poor effort – Peripheral: anterior horn cell, root, plexus, or attention nerve, neuromuscular junction, muscle 7 Weak Patient: History and Examination Q4: Which statement is FALSE re/ clinical utility of distinguishing UMN from LMN weakness on exam? 1) Informs decision to obtain imaging NEUROLOGIC NON-NEUROLOGIC 2) Informs the decision of what part of the nervous system to image UPPER MOTOR LOWER MOTOR FATIGUE BREAKAWAY NEURON NEURON 3) Determines need for neuromuscular referral POOR EFFORT 4) Helps determine differential diagnosis PAIN 5) None of the above statements is false Weak Patient: Central Weakness I Weak Patient: Central Weakness II Power - distal > proximal in limbs Spasticity-velocity-dependent increase in tone extensors > flexors in arms to passive stretch of a limb that is greatest in the dorsiflexors > plantar flexors in legs flexors of the arms and extensors of the legs lower 2/3 of face (if from brain injury) -Rapid, repetitive movements are slow in the Bulk - Normal fingers and feet; dominant side normally faster Tone - spastic; Babinski sign(s) present -Pronator drift-pronation the essential finding; may also flex the fingers and drop the arm Reflexes - 8 Motor Exam-Grading Power Motor Exam-The Challenge of SCORE RESPONSE Grading Power 5 Full power • Most weakness is between 4 and 5 4+/5- Minimal weakness • Inter-examiner variability 4 Mild weakness • What do you do with the weight-lifter? 4- Moderate weakness • Qualitative scale: mild, moderate, severe? 3 Severely weak; able to move vs. gravity • Pattern weakness usually more informative 2 Moves, but not against gravity than attempt to exactly quantify weakness 1 Flicker of contraction 0 No muscle contraction Motor Examination-Common Traps Motor Exam-Grading Reflexes • Focal atrophy from disuse or pain with use SCORE RESPONSE • Tongue fasciculations-all tongues twitch 4 Clonus • Apparent increased tone from patient 3 Hyperactive inability to relax during the exam 2 Normoactive • Nocturnal headaches can be caused by CO2 1 Hypoactive retention during sleep in NM resp failure Trace Present with reinforcement only 0Absent 9 Q5: Which answer is an inadequate Weak Patient-Lower Motor explanation for an absent DTR? Neuron Weakness 1) Inadequate stretch on tendon being struck • All features of true weakness on exam 2) Contracture of the tendon • Patterns of weakness and other findings 3) Vinca alkaloid use (e.g.-vincristine) determine the differential diagnosis 4) Muscle weakness – Distal polyneuropathy-weakness first in distal 5) Absence of muscle tissue attached to the legs with sensory loss and absent ankle reflexes tendon being struck – Myopathy-proximal weakness in arms and legs without sensory loss or reflex changes – Global new areflexia-always needs explanation CNS Sensory Loss (2 Cs) and PNS Sensory Loss (2 Ps) Sensory Examination • Central-Circumferential
Recommended publications
  • Detection of Focal Cerebral Hemisphere Lesions Using the Neurological Examination N E Anderson, D F Mason, J N Fink, P S Bergin, a J Charleston, G D Gamble
    545 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.043679 on 16 March 2005. Downloaded from PAPER Detection of focal cerebral hemisphere lesions using the neurological examination N E Anderson, D F Mason, J N Fink, P S Bergin, A J Charleston, G D Gamble ............................................................................................................................... J Neurol Neurosurg Psychiatry 2005;76:545–549. doi: 10.1136/jnnp.2004.043679 Objective: To determine the sensitivity and specificity of clinical tests for detecting focal lesions in a prospective blinded study. Methods: 46 patients with a focal cerebral hemisphere lesion without obvious focal signs and 19 controls with normal imaging were examined using a battery of clinical tests. Examiners were blinded to the diagnosis. The sensitivity, specificity, and positive and negative predictive values of each test were measured. See end of article for authors’ affiliations Results: The upper limb tests with the greatest sensitivities for detecting a focal lesion were finger rolling ....................... (sensitivity 0.33 (95% confidence interval, 0.21 to 0.47)), assessment of power (0.30 (0.19 to 0.45)), rapid alternating movements (0.30 (0.19 to 0.45)), forearm rolling (0.24 (0.14 to 0.38)), and pronator Correspondence to: Dr Neil Anderson, drift (0.22 (0.12 to 0.36)). All these tests had a specificity of 1.00 (0.83 to 1.00). This combination of tests Department of Neurology, detected an abnormality in 50% of the patients with a focal lesion. In the lower limbs, assessment of power Auckland Hospital, Private was the most sensitive test (sensitivity 0.20 (0.11 to 0.33)).
    [Show full text]
  • A Neurological Examination
    THE 3 MINUTE NEUROLOGICAL EXAMINATION DEMYSTIFIED Faculty: W.J. Oczkowski MD, FRCPC Professor and Academic Head, Division of Neurology, Department of Medicine, McMaster University Stroke Neurologist, Hamilton Health Sciences Relationships with commercial interests: ► Not Applicable Potential for conflict(s) of interest: ► Not Applicable Mitigating Potential Bias ► All the recommendations involving clinical medicine are based on evidence that is accepted within the profession. ► All scientific research referred to, reported, or used is in the support or justification of patient care. ► Recommendations conform to the generally accepted standards. ► Independent content validation. ► The presentation will mitigate potential bias by ensuring that data and recommendations are presented in a fair and balanced way. ► Potential bias will be mitigated by presenting a full range of products that can be used in this therapeutic area. ► Information of the history, development, funding, and the sponsoring organizations of the disclosure presented will be discussed. Objectives ► Overview of neurological assessment . It’s all about stroke! . It’s all about the chief complaint and history. ► Overview: . 3 types of clinical exams . Neurological signs . Neurological localization o Pathognomonic signs o Upper versus lower motor neuron signs ► Cases and practice Bill ► 72 year old male . Hypertension . Smoker ► Stroke call: dizzy, facial droop, slurred speech ► Neurological Exam: . Ptosis and miosis on left . Numb left face . Left palatal weakness . Dysarthria . Ataxic left arm and left leg . Numb right arm and leg NIH Stroke Scale Score ► LOC: a,b,c_________________ 0 ► Best gaze__________________ 0 0 ► Visual fields________________ 0 ► Facial palsy________________ 0 ► Motor arm and leg__________ -Left Ptosis 2 -Left miosis ► Limb ataxia________________ -Weakness of 1 ► Sensory_______________________ left palate ► Best Language______________ 0 1 ► Dysarthria_________________ 0 ► Extinction and inattention____ - .
    [Show full text]
  • THE NEUROLOGY Exam & Clinical Pearls
    THE NEUROLOGY Exam & Clinical Pearls Gaye McCafferty, RN, MS, NP-BC, MSCS, SCRN NPANYS-SPHP Education Day Troy, New York April 7, 2018 Objectives I. Describe the core elements of the neurology exam II. List clinical pearls of the neuro exam Neurology Exam . General Physical Exam . Mental Status . Cranial Nerves . Motor Exam . Reflex Examination . Sensory Exam . Coordination . Gait and Station 1 General Systemic Physical Exam Head Trauma Dysmorphism Neck Tone Thyromegaly Bruits MSOffice1 General Systemic Physical Exam .Cardiovascular . Heart rate, rhythm, murmur; peripheral pulses, JVD .Pulmonary . Breathing pattern, cyanosis, Mallampati airway .General Appearance Hygiene, grooming, weight (signs of self neglect) .Funduscopic Exam Mental Status Level of Consciousness . Awake . Drowsy . Somnolent . Comatose 2 Slide 5 MSOffice1 , 6/14/2009 Orientation & Attention . Orientation . Time . Place . Person Orientation & Attention . Attention . Digit Span-have the patient repeat a series of numbers, start with 3 or 4 in a series and increase until the patient makes several mistakes. Then explain that you want the numbers backwards. Normal-seven forward, five backward Hint; use parts of telephone numbers you know Memory Immediate recall and attention Tell the patient you want him to remember a name and address – Jim Green – 20 Woodlawn Road, Chicago Note how many errors are made in repeating it and how many times you have to repeat it before it is repeated correctly. Normal: Immediate registration 3 Memory . Short-term memory . About 5 minutes after asking the patient to remember the name and address, ask him to repeat it. Long –term memory . Test factual knowledge . Dates of WWII . Name a president who was shot dead Memory Mini-Mental State Exam – 30 items Mini-Cog – Rapid Screen for Cognitive Impairment – A Composite of 3 item recall and clock drawing – Takes about 5 minutes to administer Mini-Cog Mini-Cog Recall 0 Recall 1-2 Recall 3 Demented Non-demented Abnormal Clock Normal Clock Demented Non-demented 4 Memory .
    [Show full text]
  • Cerebellar Examination 1. General Inspection As Above 2. Posture
    Cerebellar Examination 1. General Inspection as above 2. Posture: - Whilst the child is sitting, get him/her to lift his feet from the ground with arms crossed (Truncal ataxia) - Get the child to stand up and maintain position with feet together and eyes opened. And then with eyes closed (Rhomberg ’s test). If the child is ataxic and unsteady with eyes closed (Rhomberg ’s test positive), then the problem is likely to be sensory ataxia, rather than cerebellar ataxia. 3. Gait - Get patient to walk (broad-based ataxic gait, falls towards the side of the lesion) , then ask him to STOP, turn back and do - Heel to toe walk 4. Face - Eyes : H test for extraocular muscles and pause at lateral gaze – horizontal nystagmus, towards the side of the lesion (lateral cerebellar lesion) - Speech: Ask the child question / ask him to read/ for older child, ask him to say baby hippotamus, West register street/ british constitution (staccato speech/ scanning dysarthria) 5. Upper limbs -Pronator drift – ask patient to hold his arms out with his palm facing upwards and his eyes closed : Pronator drift – weakness ; Upward drift – cerebellar lesion -Rebound test- whilst patients arms are held out, push his wrist down quickly (Holmes’ rebound phenomenon – over correction of passive displacement of limb) -Hypotonia - Rapid palm test (Dysdiadoschokinesia) -Finger-nose test (Dysmetria) 6. Lower limbs - Hypotonia - Reflex: pendular reflex, best seen when patients limb left hanging in the air - Heel-shin test To complete the examination, I would -check the fundi for papilloedema (space occupying lesion) - perform a full neurological examination Causes of cerebellar lesions: 1.
    [Show full text]
  • Tests of Motor Function in Patients Suspected of Having Mild Unilateral Cerebral Lesions
    ORIGINAL ARTICLE Tests of Motor Function in Patients Suspected of Having Mild Unilateral Cerebral Lesions Jeanne S. Teitelbaum, Michael Eliasziw, Michael Garner ABSTRACT: Objective: Though various textbooks describe clinical manoeuvres that help detect subtle motor deficits, their sensitivi- ty, specificity and predictive values have not been determined. We investigated the sensitivity, specificity and predictive values of var- ious manoeuvres in order to determine the most sensitive and reliable test or combination thereof. Methods: Straight arm raising (Barré), pronator drift, Mingazzini’s manoeuvre, finger tap, forearm roll, segmental strength and deep tendon reflexes were tested in 170 patients with (86) and without (84) a proven lesion in the motor areas confirmed by computed tomography. Results: Segmental motor strength had good specificity (97.5%) but poor sensitivity (38.9%) and negative predictive value (NPV) (58.7%). The forearm roll had a similar profile. Finger tap had a sensitivity of 73.3% and a specificity of 87.5%. Barré and pronator testing had a sensitivity and specificity of 92.2% and 90.0% respectively. Hyperreflexia had a sensitivity of 68.9% and a specificity of 87.5%. An abnormality of pronator, reflex- es or finger tap had a sensitivity of 97%, and when these three tests were positive, specificity was 97%. When all six tests were posi- tive, the positive predictive value was 100%, when all six tests were negative the NPV was 100%. Conclusion: The detailed segmen- tal examination has very good specificity for detecting motor deficits, but the sensitivity and NPV are unacceptably low. Pronator drift with finger tap and reflexes is the most reliable and time-effective combination of tests for the detection of subtle motor lesions, and could replace the segmental motor examination as a screening for motor lesions.
    [Show full text]
  • 124 Epochs of Anosmia and Ageusia in Multiple Sclerosis
    78 ABSTRACTS 2 Director, Head of Corporate Medical Affairs, H. 29.0 for patients with anxious distress in the adjunctive Lundbeck A/S, Valby, Denmark brexpiprazole (n = 462) group and 29.1 in the placebo 3 Director, Global Medical Affairs, Otsuka (n = 327) group; while those with anxious depression Pharmaceutical Development & Commercialization, were 28.9 (brexpiprazole; n = 384) and 28.6 (placebo; Inc., Princeton, NJ, USA n = 282). Compared to those receiving placebo, patients 4 Senior Director, Biostatistics, Otsuka Pharmaceutical with both anxious distress and anxious depression who Development & Commercialization, Inc., Princeton, received adjunctive brexpiprazole showed a greater NJ, USA 5 Senior Director, Global Medical Affairs, Otsuka improvement in MADRS total score (LS mean difference = = Pharmaceutical Development & Commercialization, -2.38, p 0.0001 and -1.68, p 0.012, respectively). Inc., Princeton, NJ, USA These improvements, compared to placebo, were similar to those in patients who had not met the criteria for ABSTRACT: Study objectives: Symptoms of anxiety are anxious distress (-1.40, p = 0.023) or anxious depression prevalent in Major Depressive Disorder (MDD) and are (-2.17, p < 0.001). associated with greater illness severity, suicidality, impaired functioning and poor response to antidepres- CONCLUSION: Adjunctive brexpiprazole may be effica- sant treatment (ADT). In MDD, anxiety symptoms can be cious in reducing depressive symptoms both in patients assessed as ‘anxious distress’ (new DSM-5 specifier) or with or without symptoms of anxiety. ‘anxious depression’ (score ≥7 on the HAM-D anxiety/ FUNDING ACKNOWLEDGEMENTS: The studies were funded somatization factor). Brexpiprazole is a serotonin– by H. Lundbeck A/S and Otsuka Pharmaceutical Devel- dopamine activity modulator that is a partial agonist at opment & Commercialization, Inc.
    [Show full text]
  • Cerebellar Disease Focussed Examination
    Cerebellar Disease Focussed Examination Note: the instructions may be non-specific e.g. ‘examine this patient with a tremor’, Focussed questions ‘examine this patient’s gait and then proceed’ or ‘examine this patient neurologically’. What happened when you first presented with this In this case, approach by asking a few focussed questions (if allowed) or inspecting for condition? tremor/gait abnormalities and then proceed with the relevant focussed examination to How is it affecting you? When is your tremor worst? elicit all the signs of the condition. Do you have other problems, such as problems with balance or co-ordination? Do you have problems with buttons and shoe laces? Turning over in bed at night? Introduction Getting in and out of your car? Wash hands, Introduce self, ask Patients name & DOB & what they like to be called, Examining for tremor Explain examination and get consent 1. Resting tremor (rest hands on lap and close eyes and count down from 20) 2. Postural tremor (hold arms out) 3. Action tremor (finger nose test) General observation General e.g. wheelchair, neurological signs, posture, signs of neglect (alcohol) Gait (walk with them in case they fall) Sit in chair to stand with arms folded (truncal ataxia) Walk away then walk back heel toe if possible (ataxic gait) Posture Stand with feet together Romberg’s test (if steady): ask patient to close eyes and assess stability (sensory ataxia) NOW…work down the body Face Face H test for extraocular muscle function and pause at lateral gaze (nystagmus; saccades) Look from one target to another (hypometric saccades) Speech Say “West register street”, “baby hippopotamus” and “British constitution” (slurring; staccato i.e.
    [Show full text]
  • Validity of the “Drift Without Pronation” Sign in Conversion Disorder Corinna Daum and Selma Aybek*
    Daum and Aybek BMC Neurology 2013, 13:31 http://www.biomedcentral.com/1471-2377/13/31 RESEARCH ARTICLE Open Access Validity of the “Drift without pronation” sign in conversion disorder Corinna Daum and Selma Aybek* Abstract Background: Conversion disorder (CD) is a psychiatric disorder, yet the diagnosis cannot be established without the expertise of a neurologist, as distinguishing a functional from an organic symptom relies on careful bedside examination. Joseph Babinski considered the absence of pronator drift as a ‘positive sign’ for hysterical paresis but the validity of this sign has never been evaluated. The aim of this study was to examine the sensitivity and specificity of the “drift without pronation” sign. Methods: Twenty-six patients with unilateral functional upper limb paresis diagnosed with CD (DSM-IV) and a control group of 28 patients with an organic neurological condition were consecutively included. The arm stabilisation test was performed with arms stretched out in full supination, fingers adducted, eyes closed for 10 seconds. A positive “drift without pronation” sign was defined by the presence of a downward drift without pronation. Results: All CD subjects (100%) displayed a positive sign when only 7.1% of organic subjects did (Fisher’s p < 0.001). The sign yielded a sensitivity of 100% (95% CI:84%-100%) and a specificity of 93% (95% CI:76%-98%). Conclusion: The observation of a “drift without pronation” sign is specific for Conversion Disorder and can be of help in making a quick distinction between organic and functional paresis at the bedside. Keywords: Conversion disorder, Pronator drift, Arm paresis, Functional symptom Background specificity has been a recent focus of clinical research.
    [Show full text]
  • A Dictionary of Neurological Signs.Pdf
    A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A.J. LARNER MA, MD, MRCP (UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. 123 Andrew J. Larner MA MD MRCP (UK) DHMSA Walton Centre for Neurology & Neurosurgery Lower Lane L9 7LJ Liverpool, UK ISBN 978-1-4419-7094-7 e-ISBN 978-1-4419-7095-4 DOI 10.1007/978-1-4419-7095-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937226 © Springer Science+Business Media, LLC 2001, 2006, 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]
  • The Advanced Neurologic Exam Principles and Practice Robert T
    The Advanced Neurologic Exam Principles and Practice Robert T. Naismith, MD Neurology Clerkship Director 7/2018 Objectives • Students will perform a: • Detailed and comprehensive neurologic examination, • With optimized positioning and phrasing, • Based upon hypotheses from history and prior observations, • To build evidence for a finding or system to be reliably present/absent, • By interconnecting historical and examination components, • With an appreciation of sensitivity/specificity, subjectivity/objectivity, • While ensuring the big picture makes sense. Transferability of Hypothesis Generation • Clinical and scientific approach to: • Bedside Diagnosis in Medical and Surgical Specialties • Image Review and Interpretation • Operations and Procedures more Efficient with Fewer Complications • Histopathology Review and Interpretation • Critical Thinking and Deductive Reasoning • Developing and Going through Your Process • Searching for Clues • Maintain an Open and Nimble Mind • Building a Case, Recognizing Pros/Cons, Typical/Atypical • Determining Best Approach to Proceed Approach • Take your time, there is no need to do a 5 minute neuro exam • The history should include functional elements to preview the exam • Bring your hypotheses to the exam, so you can scrutinize your findings • Make a cheat sheet/scoring sheet • After the history, pause: • Where do I localize their symptoms? • What diseases occur in those locations? • What am I expecting to find on exam? • UMN, LMN, motor, cerebellar, sensory, extrapyramidal, etc • After each section of the exam, document and pause: • Does this make sense with regards to the big picture? • Am I confident in the findings I elicited? Do any need repeating? • Any additional maneuvers I should consider based upon localization and differential, or indeterminant/inconsistent findings? Increasing Reliability • Patient positioning • Sitting vs.
    [Show full text]
  • Medical Student Observation Guide
    Figure e-1. Observation Guide for Students MEDICAL STUDENT OBSERVATION GUIDE BEDSIDE SKILLS MODELING FOR THIRD YEAR MEDICAL STUDENTS DEPARTMENT OF NEUROLOGY UNIVERSITY OF ROCHESTER Modeling: A group of faculty neurologists have been selected to provide you with a formal modeling experience. During the first week of the clerkship, you will be assigned to a specific faculty neurologist preceptor, and will be given the date, time, and location of the patient encounter. All modeling encounters will take place during the physician’s regularly scheduled clinic. As you are meant to see a full history and neurological exam modeled by an attending physician, it will be a new patient encounter that should be carried out directly by the attending and not a resident or fellow. Please plan on arriving at the encounter 5 minutes early. After the case, you will have 5 minutes to ask questions about the encounter, and the physician preceptor should highlight important points. You will fill out the below observation questionnaire during the experience. The guide will list all of the aspects of the history and neurologic exam that you may be observing. Please note that all of these items may not be directly tested in each encounter as many neurologists will do focused examinations based on the chief complaint. Please list general observations and/or questions you have that may arise during the encounter. Also, think about what was done during the visit that was surprising to you or different from what you expected. When participating in the observation experience, you should focus on the technique utilized by your preceptor in obtaining various aspects of the history and performing various aspects of the exam.
    [Show full text]
  • Brown-Sequard-Plus Syndrome with Features of Autonomic Dysreflexia
    Brown-Sequard-Plus syndrome with features of Autonomic Dysreflexia and Horner’s syndrome caused by blunt trauma 'DQLHOD$QGHUVRQ7KRPDV$QGHUVRQ $OH[/LQQ'DYLG5HQQHU 'HSDUWPHQWRI1HXURORJ\6FKRRORI0HGLFLQH 7KH8QLYHUVLW\RI8WDK6DOW/DNH&LW\87 Abstract 7KLVFDVHGHVFULEHVWKHFOLQLFDOPDQLIHVWDWLRQRI%URZQ6HTXDUG3OXVV\QGURPH %636 LQDPDOHSDWLHQWZKR Imaging VXVWDLQHG EOXQW FHUYLFDO VSLQH WUDXPD IURP D PRWRU YHKLFOH DFFLGHQW %636 LQYROYHV LQFRPSOHWH VSLQDO FRUG KHPLVHFWLRQ ZLWK LSVLODWHUDO KHPLSOHJLD DQG ORVV RI SURSULRFHSWLRQ FRQWUDODWHUDO SDLQ DQG WHPSHUDWXUH VHQVDWLRQ +RUQHU¶V V\QGURPH $ % ERZHOEODGGHU G\VIXQFWLRQ DQG DXWRQRPLF G\VUHIOH[LD PDQ\ RI ZKLFK ZHUH GHPRQVWUDWHG LQ WKLV FDVH 05, RI WKH FHUYLFDO VSLQH UHYHDOHG 7 K\SHULQWHQVLW\ DQG GLIIXVLRQ UHVWULFWLRQ FRQVLVWHQW ZLWK OHIW KHPLFRUG FRQWXVLRQ 7KH SDWLHQW PHHWV FOLQLFDO DQG UDGLRORJLFDO GLDJQRVWLF FULWHULD IRU %636 FDXVHG E\ LQFRPSOHWH VSLQDO FRUG KHPLVHFWLRQ Patient History $ && /HIWVLGHG ZHDNQHVV Ɣ \HDUROG PDQ SUHVHQWHG ZLWK WUDQVLHQW ORVV RI FRQVFLRXVQHVV DQG OHIWVLGHG ZHDNQHVV DIWHU D KLJK VSHHG PRWRU YHKLFOH DFFLGHQW % Ɣ ,QLWLDO H[DP ZHDNQHVV LQ OHIW XSSHU H[WUHPLW\ DQG OHIW ORZHU Figure 4: MRI C Spine. $$[LDO705,VKRZLQJKHPLFRUGFRQWXVLRQ%6DJLWWDO 67,505,RIFHUYLFDOVSLQHVKRZLQJDFPVHJPHQWRIWKHOHIWKHPLFRUG H[WUHPLW\ DQLVRFRULD DQG XSJRLQJ OHIW JUHDW WRH K\SHULQWHQVHVLJQDOH[WHQGLQJIURPWKHLQIHULRUHQGSODWHRI&WKURXJKWKHVXSHULRU Ɣ )XUWKHUPRUH QRWHG WR KDYH DXWRQRPLF LQVWDELOLW\ ZLWK IOXFWXDWLQJ HQGSODWHRI&7KHUHZDVDQDVVRFLDWHGGLIIXVLRQUHVWULFWLRQDQGVPDOOVHJPHQWRI EORRG SUHVVXUHV DQG KHDUW UDWH VXVFHSWLELOLW\
    [Show full text]