Larger Genomes Linked to Slower Development and Loss of Late-Developing Traits

Total Page:16

File Type:pdf, Size:1020Kb

Larger Genomes Linked to Slower Development and Loss of Late-Developing Traits vol. 194, no. 6 the american naturalist december 2019 Larger Genomes Linked to Slower Development and Loss of Late-Developing Traits Molly C. Womack,1,* Marissa J. Metz,1,2 and Kim L. Hoke1 1. Department of Biology, Colorado State University, Fort Collins, Colorado 80523; 2. Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80521 Submitted September 25, 2018; Accepted June 3, 2019; Electronically published October 18, 2019 Online enhancements: appendix. Dryad data: https://doi.org/10.5061/dryad.k02pq01. abstract: Genome size varies widely among organisms and is known 2002a), and slower development rate (Goin et al. 1968; to affect vertebrate development, morphology, and physiology. In am- Bachmann 1972; Bennett 1977; Oeldorf et al. 1978; Horner phibians, genome size is hypothesized to contribute to loss of late- and Macgregor 1983; Camper et al. 1993; White and McLaren forming structures, although this hypothesis has mainly been discussed 2000; Chipman et al. 2001; Roth and Walkowiak 2015; Liedtke in salamanders. Here we estimated genome size for 22 anuran species et al. 2018). Within amphibians, larger genome size and the and combined this novel data set with existing genome size data for associated larger cell sizes (Horner and Macgregor 1983; an additional 234 anuran species to determine whether larger genome Roth et al. 1994; Gregory 2001; Mueller et al. 2008; Roth size is associated with loss of a late-forming anuran sensory structure, the tympanic middle ear. We established that genome size is negatively and Walkowiak 2015) have been hypothesized to affect the correlated with development rate across 90 anuran species and found development of late-forming anatomical structures via two that genome size evolution is correlated with evolutionary loss of the potential mechanisms. Larger cells take longer to proliferate middle ear bone (columella) among 241 species (224 eared and 17 ear- (Shuter et al. 1983; Vinogradov 1999), which is thought to less). We further tested whether the development of the tympanic middle contribute to slower embryonic development (Bachmann 1972; ear could be constrained by large cell sizes and small body sizes during Oeldorf et al. 1978; Horner and Macgregor 1983; Chipman key stages of tympanic middle ear development (metamorphosis). To- et al. 2001), larval development (Goin et al. 1968; Camper gether, our evidence suggests that larger genomes, slower development rate, and smaller body sizes at metamorphosis may contribute to the loss et al. 1993), and limb regeneration (Sessions and Larson 1987) of the anuran tympanic middle ear. We conclude that increases in an- in amphibians with larger genomes. This slowing of devel- uran genome size, although less drastic than those in salamanders, may opment rate (neoteny) can lead to paedomorphosis, a form affect development of late-forming traits. of heterochrony (change in developmental timing) in which organisms become sexually mature before all traits have reached Keywords: trait loss, evo-devo, heterochrony, paedomorphosis, tym- panic middle ear loss, earless. their adult phenotype (Wake 1966; Gould 1977; Alberch et al. 1979; McNamara 1986). However, it also possible that larger cell sizes associated with large genomes constrain develop- Introduction ment at small body sizes due to limits on cell number, as pro- posed in salamanders (Wake 1991; Hanken and Wake 1993). Genome size evolution alters development, morphology, and fi However, the relationship between larger genome size and physiology across vertebrates. Speci c consequences of larger evolutionary lability of late-forming traits has limited empir- genomes include larger cell size (Ohno 1970; Szarski 1970, 1983; ical support. Olmo and Morescalchi 1975, 1978; Horner and Macgregor Most work focused on the association between genome size 1983; Walker et al. 1991; Gregory 2000, 2001, 2002a; Hardie and trait loss has occurred in salamanders, which have an ex- and Herbert 2003; Mueller et al. 2008; Roth and Walkowiak treme range of genome sizes (from 10.1 pg in Gyrinophilus 2015), slower metabolic rate (Vinogradov 1995, 1997; Gregory porphyriticus to 120.6 pg in Necturus lewisi; Gregory 2018) that are sometimes accompanied by toe and lung loss (Wake * Corresponding author. Present address: Department of Vertebrate Zoology, 2009). However, frogs and toads (anurans) provide an excel- National Museum of Natural History, Smithsonian Institution, Washington, lent opportunity to test whether less extreme genome size DC 20560; email: [email protected]. evolution could affect the development of late-forming struc- ORCIDs: Womack, https://orcid.org/0000-0002-3346-021X; Hoke, https:// orcid.org/0000-0001-5553-0138. tures. Genome size varies in anurans (from 0.95 pg in Limno- Am. Nat. 2019. Vol. 194, pp. 000–000. q 2019 by The University of Chicago. dynastes ornatus to 19 pg in Arenophryne rotunda;Gregory 0003-0147/2019/19406-58760$15.00. All rights reserved. 2002b) and is positively associated with length of embryonic DOI: 10.1086/705897 (Bachmann 1972; Oeldorf et al. 1978; Horner and Macgregor This content downloaded from 131.179.060.207 on November 06, 2019 08:06:37 AM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). 000 The American Naturalist 1983; Chipman et al. 2001) and larval (Goin et al. 1968; middle ear development at sparse ontogenetic time points Camper et al. 1993) development in the limited taxa studied among nine anuran species and attributed middle ear varia- to date. Furthermore, Roth et al. (1994) and Roth and Wal- tion to truncated development (progenesis). Smirnov (1991) kowiak (2015) found that anurans (and salamanders) with compared tympanic middle ear development in 10 anuran larger genome size had lower complexity of late-forming brain species and argued that three different paedomorphic mech- structures. Thus, genome size variation in anurans may alter anisms could explain middle ear variation in three families morphology, although the prevalence of such morphological (Microhylidae, progenesis; Bombina, neoteny; Bufonidae, changes and the underlying developmental mechanisms re- postdisplacement) based on lineage-specific differences in main unclear. developmental timing of cranial structures. However, none One late-forming structure that may be affected by genome of these studies explicitly tested for differences in develop- size evolution in anurans is the tympanic middle ear. The tym- ment rate among species to determine whether slower devel- panic middle ear facilitates detection of airborne sounds and opment rate (neoteny) could explain middle ear loss. One is a key tetrapod adaptation for hearing on land (reviewed reason development rate has not been rigorously compared in Manley 2010). Surprisingly, within anurans, the tym- between species that vary in middle ear presence/absence is panic middle ear has been lost at least 38 times (Pereyra et al. a lack of development rate data for earless species. However, 2016) despite reduction of high-frequency (above 1 kHz) genome size, which is more easily measured and correlates hearing sensitivity (Lombard and Straughan 1974; Womack positively with length of embryonic (Horner and Macgregor et al. 2017) and lack of clear environmental selection pres- 1983) and larval (Goin et al. 1968) development in the few sures to explain tympanic middle ear loss (Jaslow et al. 1988). anurans species studied, may provide indirect evidence that Furthermore, some frogs that are earless (completely lack slower development promotes middle ear loss. all tympanic middle ear structures) or have reduced tympanic A non-mutually-exclusive mechanism by which genome middle ears, such as Bombina bombina and B. orientalis, also size could affect lability of late-forming structures is cell size have large genomes (Roth and Walkowiak 2015). Therefore, to body size ratios that constrain the space available for struc- we hypothesize that the loss of peripheral auditory structures tures to form. Genome sizes are associated with larger cell in anurans may result from larger genome sizes, which either sizes in anurans (Olmo and Morescalchi 1978; Horner and result in paedomorphic loss of the tympanic middle ear or Macgregor 1983; Gregory 2001; Mueller et al. 2008; Roth result in larger cell sizes that impose space constraints on and Walkowiak 2015) as well as all other vertebrates (Ohno small-bodied anurans. 1970; Szarski 1970, 1983; Olmo and Morescalchi 1975, 1978; The tympanic middle ear forms quite late, making it vul- Walker et al. 1991; Gregory 2000, 2001, 2002a; Hardie and nerable to genome size expansion and associated shifts in de- Herbert 2003). Wake (1991) and Hanken and Wake (1993) velopment rate, such as paedomorphosis. Development of the proposed that large cell sizes and small body sizes prevent middle ear structures begins just prior to metamorphosis and formation of late-developing peripheral digits in salaman- proceeds proximally to distally (Hetherington 1987; Voro- ders. Furthermore, the large cells and small bodies of the sal- byeva and Smirnov 1987; Smirnov 1991; Womack et al. amander Thorius appear to generate a developmental trade- 2018b). Middle ear structures are lost in a distal to proximal off between the eyes and the brain, resulting in deformation fashion; hence, loss may reflect incomplete development and posterior placement of the brain (Hanken 1983; Wake (Vorobyeva and Smirnov 1987; Smirnov 1991; Pereyra et al. 1991). The anuran middle ear
Recommended publications
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Tadpole Consumption Is a Direct Threat to the Endangered Purple Frog, Nasikabatrachus Sahyadrensis
    SALAMANDRA 51(3) 252–258 30 October 2015 CorrespondenceISSN 0036–3375 Correspondence Tadpole consumption is a direct threat to the endangered purple frog, Nasikabatrachus sahyadrensis Ashish Thomas & S. D. Biju Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi 110 007, India Corresponding author: S. D. Biju, e-mail: [email protected] Manuscript received: 5 July 2014 Accepted: 30 December 2014 by Alexander Kupfer Amphibians across the world are suffering alarming popu- Southeast Asia have witnessed drastic population declines lation declines with nearly one third of the ca 7,300 species caused by overexploitation over the last couple of decades being threatened worldwide (Stuart et al. 2008, Wake & (Warkentin et al. 2008). Often, natural populations are Vredenburg 2008, IUCN 2014). Major factors attributed harvested without regard of the consequences or implica- to the decline include habitat destruction (Houlahan et tions of this practice on the dynamics or sustainability of al. 2000, Sodhi et al. 2008), chemical pollution (Ber ger the exploited populations (Getz & Haight 1989). When 1998), climate change (Adams 1999, Carpenter & Tur- the extent of exploitation is greater than the sustaining ca- ner 2000), diseases (McCallum 2007, Cushman 2006), pacity or turnover rate of a species, there is every possi- and invasive species (Boone & Bridges 2003). The West- bility that the species may become locally extinct, which ern Ghats of India, a global hotspot for amphibian diver- would subsequently have drastic ecological implications sity and endemism (Biju 2001, Biju & Bossuyt 2003), has in the particular region (Duffy 2002, Wright et al. 2006, more than 40% of its amphibian fauna threatened with ex- Carpenter et al.
    [Show full text]
  • Being Highly Sensitive to Environmental Changes
    Being highly sensitive to environmental changes, frogs are a wonderful barometer of the health of Peron's tree frog Recent studies show that four frog species are (Litoria peronii): has a harsh call. Found extinct and, of the 210 species found in Australia, throughout much of seven are critically endangered, eight are south-east Australia. endangered and 12 are vulnerable. Generally soft grey in colour, with small green Frogs are found in almost every habitat, speckles particularly in coastal regions of the east, far south- east and across the north. About 30 frog species are native to Victoria Frogs eat small live insects. Tadpoles can be Growling grass frog (Litoria raniformis) listed as Southern brown tree frog (Litoria ewingi): vegetarian, eating weeds and algae, or carnivorous, endangered and restricted to a handful of sites common across much of southern Victoria. a diet that includes smaller siblings. around Melbourne, including Werribee Open Range High "cree, cree, cree" call, often from grass stems at night Loss and general degradation of habitat, such as Zoo. Distinctive crawark, crok" call. the draining of swamps, and pollution from general Stuttering frog (Mixophyes balbus): this ground- Cane toad (Bufo mannus): introduced to run-off and industrial chemicals, has put many dwelling frog has not been seen in Victoria for 30 Australia in the 1930s in a failed attempt to control species at risk. Chytrid fungus is a threat, as are years, and populations in southern NSW are declining the sugar-cane weevil. Is widespread across north- predators, both native and introduced, such as Listed as vulnerable.
    [Show full text]
  • The Freshwater Crab Liberonautes Latidactylus (De Man, 1903) Preys on Adult Allen’S Giant Frog, Conraua Alleni (Barbour and Loveridge, 1927)
    Herpetology Notes, volume 12: 1073-1076 (2019) (published online on 29 October 2019) The freshwater crab Liberonautes latidactylus (de Man, 1903) preys on adult Allen’s Giant Frog, Conraua alleni (Barbour and Loveridge, 1927) Marvin Schäfer1,*, Joseph Doumbia2, and Mark-Oliver Rödel1 Post-metamorphic anuran amphibians are preyed therein), the role of freshwater crabs as predators is upon by many vertebrates (reviewed by Toledo et less well documented, but particularly for frogs, might al., 2007) and invertebrate predators (Toledo, 2005; be underrated. Freshwater crabs are known to feed on Wells, 2007). Amongst invertebrates, spiders are eggs (Hayes, 1983), tadpoles (Gray and Christy, 2000), most frequently listed (for a recent review concerning juvenile (Affonso and Signorelli, 2011) and adult African examples, see Babangenge et al., 2019), but frogs (Tsuji, 2005; Rosa et al., 2014; Wehrtmann et al., unusual anuran specialists like the carabid beetles 2019). Hence, all anuran life stages are potential prey Epomis have become known as well (Wizen and Gasith, of freshwater crabs. Interestingly, the ability to hunt 2011). Although Diesel (1989) reports an example seems to decrease in freshwater crabs exceeding 25 mm of a tree-hole breeding crab, occasionally preying on of carapace width. Large individuals are supposed to be anuran eggs and tadpoles, crustaceans are only rarely less agile, and hence less effective in capturing elusive mentioned as amphibian predators. Toledo (2005) only prey (Williams, 1962; Williams, 1965; Dobson, 2004). lists one species of decapod crab as a predator of post- Consequently, one might assume that larger and agile metamorphic anurans. More recently, Pyke et al.
    [Show full text]
  • Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
    Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago.
    [Show full text]
  • Diversity and Phylogeography of Anurans of the Highlands of Ethiopia
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2015 Diversity and Phylogeography of Anurans of the Highlands of Ethiopia Xenia Freilich Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/932 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1 2 3 4 Diversity and Phylogeography of Anurans of the Highlands of Ethiopia 5 6 By 7 8 Xenia Freilich 9 10 11 12 13 14 15 16 17 18 19 20 21 A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the 22 requirements for the degree of Doctor of Philosophy, The City University of New York 23 2015 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 © 2015 45 Xenia Freilich 46 All Rights Reserved 47 ii 48 This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of 49 the dissertation requirement for the degree of Doctor of Philosophy. 50 51 52 _________________________ ________________________________________________ 53 Date Chair of Examining Committee 54 Dr. Stephane Boissinot, Queens College 55 56 57 58 _________________________ ________________________________________________ 59 Date Executive Officer 60 Dr. Laurel A. Eckhardt 61 62 63 64 ________________________________________________ 65 Dr. Ana Carnaval, City College 66 67 68 69 ________________________________________________ 70 Dr.
    [Show full text]
  • Does Selective Wood Exploitation Affect Amphibian Diversity? the Case of An’Ala, a Tropical Rainforest in Eastern Madagascar
    Oryx Vol 38 No 4 October 2004 Does selective wood exploitation affect amphibian diversity? The case of An’Ala, a tropical rainforest in eastern Madagascar Denis Vallan, Franco Andreone, Vola H. Raherisoa and Rainer Dolch Abstract The diversity of amphibians before and rainforest habitat showed a non-significant 10.1% after low-level forest exploitation in An’Ala forest in decrease in abundance after logging. It appears therefore central-eastern Madagascar was compared over the that amphibians are relatively resilient to a low-level course of 4 years. Neither abundance nor diversity of of forest exploitation and their diversity is apparently not amphibians generally were significantly affected by affected, at least in the short-term. This and other studies low-level selective logging, although the abundance of have, however, shown that logging commonly results individual species differed. Mantelline anurans were in a shift in species composition, with species typical of the most sensitive, in contrast to the tree frogs of the pristine rainforests being replaced by species adapted to subfamily Boophinae (Mantellidae) and Cophylinae secondary habitats. (Microhylidae). The abundance of Mantellinae anurans decreased by 15.8% after logging, whereas Boophinae Keywords Amphibian, Boophinae, Cophylinae, and Microhylidae anurans increased by 12.1% and diversity, Mantellinae, rainforest, selective wood 3.7%, respectively. In general, species strongly tied to exploitation. Introduction deforestation upon natural animal communities is urgently needed. Tropical rainforests worldwide are cleared and exploited Despite the existence of 16 protected areas in the for many reasons, and trees are often felled selectively, eastern rainforests (ANGAP, 2001), the vast majority of especially if the aim is to remove the most valuable the remaining natural vegetation does not have legal timber rather than clear felling for pasture and/or crop protection.
    [Show full text]
  • Misgund Orchards
    MISGUND ORCHARDS ENVIRONMENTAL AUDIT 2014 Grey Rhebok Pelea capreolus Prepared for Mr Wayne Baldie By Language of the Wilderness Foundation Trust In March 2002 a baseline environmental audit was completed by Conservation Management Services. This foundational document has served its purpose. The two (2) recommendations have been addressed namely; a ‘black wattle control plan’ in conjunction with Working for Water Alien Eradication Programme and a survey of the fish within the rivers was also addressed. Furthermore updated species lists have resulted (based on observations and studies undertaken within the region). The results of these efforts have highlighted the significance of the farm Misgund Orchards and the surrounds, within the context of very special and important biodiversity. Misgund Orchards prides itself with a long history of fruit farming excellence, and has strived to ensure a healthy balance between agricultural priorities and our environment. Misgund Orchards recognises the need for a more holistic and co-operative regional approach towards our environment and needs to adapt and design a more sustainable approach. The context of Misgund Orchards is significant, straddling the protected areas Formosa Forest Reserve (Niekerksberg) and the Baviaanskloof Mega Reserve. A formidable mountain wilderness with World Heritage Status and a Global Biodiversity Hotspot (See Map 1 overleaf). Rhombic egg eater Dasypeltis scabra MISGUND ORCHARDS Langkloof Catchment MAP 1 The regional context of Misgund Orchards becomes very apparent, where the obvious strategic opportunity exists towards creating a bridge of corridors linking the two mountain ranges Tsitsikamma and Kouga (south to north). The environmental significance of this cannot be overstated – essentially creating a protected area from the ocean into the desert of the Klein-karoo, a traverse of 8 biomes, a veritable ‘garden of Eden’.
    [Show full text]
  • Correlates of Eye Colour and Pattern in Mantellid Frogs
    SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris.
    [Show full text]
  • Amphibian Diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa
    Amphibian diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa FM Phaka orcid.org/0000-0003-1833-3156 Previous qualification (not compuLsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Science at the North-West University Supervisor: Prof LH du Preez Co-supervisor: Dr DJD Kruger Assistant Supervisor: Mr EC Netherlands Graduation May 2018 25985469 Declaration I, Fortunate Mafeta Phaka, declare that this work is my own, that all sources used or quoted have been indicated and acknowledged by means of complete references, and that this thesis was not previously submitted by me or any other person for degree purposes at this or any other university. Signature Date 18/11/2017 i i AcknowLedgements A great debt of gratitude is owed to my study supervisor L.H. Du Preez, co-supervisor D.J.D. Kruger, and assistant supervisor E.N. Netherlands for guidance and encouragement to focus on my strengths. To my mentors, D. Kotze and L. De Jager, and the Phaka clan, your faith in me has kept me going through all these years. Thank you to African Amphibian Conservation Research Group and Youth 4 African Wildlife for accepting me as part of your family. Members of the Zululand community are thanked for their enthusiasm and assistance towards this study. Fieldwork and running expenses for this research were funded by the South African National Biodiversity Institute’s (SANBI) Foundational Biodiversity Information Programme (Grant UID 98144). Financial assistance for studying towards this degree was provided by SANBI’s Foundational Biodiversity Information Programme (National Research Foundation Grant- Holder Linked Bursary for Grant UID 98144), and the North-West University (NWU Masters Progress Bursary, and NWU Masters Bursary).
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Amphibian Physiology and Immunology and Immunology
    2/12/2013 Amphibian Physiology and Immunology Lecture Road Map • Amphibian organ systems • Function of systems • Physiological adaptations – Hibernation – Immune response Integumentary system • Amphibian Integument • Epidermis‐single or few layers of Epidermis‐keratinized cells Aquatic amphibians‐no keratinized cells • Extremely permeable Absorb water directly from environment • Dermis‐chromatophores and glands produce secretions which help protect the amphibian’s skin 1 2/12/2013 Vision • Lacrimal and harderian glands present in most amphibians • Produce secretions that combine to form the tear film • Eyes protected by nictitactin membranes • Caecilians‐eyes covered with skin • Amphibian eyes‐often protrude ventrally into the oral cavity when animal swallowing Circulatory system • Double circulatory system • Heart is not always completely separated into two pumps. • Three‐chambered heart. Heart • Two atria • One ventricle 2 2/12/2013 Heart • Ventricle Regions • Cavum venosum:paired aortic arches,lead to aortic arches,lead to systemic circulation • Cavum arteriosum:receives blood from pulmonary veins and directs oxygenated blood to cavum venosum • Cavum pulmonale: receives blood from right atrium and directs into pulmonary circulation Heart • Pressure differences of out flow tracts and muscular ridge that partially separates cavum venosum and cavum pulmonale maintain separation of oxygenated and deoxygenated blood Heart rate • Depends on species, size, temperature, activity level, and metabolic function • Heart rate=33.4 ×(Weight in
    [Show full text]