<<

ACUTE & SUBCHRONIC NMDA BLOCKADE ALTERS

NICOTINE-EVOKED RELEASE

AThesispresentedtotheFacultyoftheGraduateSchool UniversityofMissouriColumbia InPartialFulfillment OftheRequirementsfortheDegree MasterofArts by KELLIRENEERODVELT

Dr.DennisK.Miller,ThesisSupervisor

MAY2007

Theundersigned,appointedbytheDeanoftheGraduateSchool,have examinedthethesisentitled ACUTE&SUBCHRONICNMDARECEPTORBLOCKADEALTERS EVOKEDDOPAMINERELEASE PresentedbyKelliR.Rodvelt AcandidateforthedegreeofMasterofArts Andherebycertifythatintheiropinionitisworthyofacceptance. ______ ProfessorDennisK.Miller ______ ProfessorToddR.Schachtman ______ ProfessorMatthewJ.Will ______ ProfessorThomasM.Piasecki ______ ProfessorGeorgeR.Kracke

ACKNOWLEDGEMENTS

ThereareseveralpeoplethatIwouldliketothank;withoutthemthis projectcouldnothavebeencompleted.First,IwouldliketothankDr.DennisK.

Miller,myadvisor,forhistime,patience,expertise,guidance,andinspiration.To allmycommitteemembers,Dr.ToddR.Schachtman,Dr.MatthewJ.Will,Dr.

ThomasM.Piasecki,andDr.GeorgeR.Kracke,Iwouldliketothankyouforall thetimeandencouragementthatyouhavegivenmeandthisproject.Thankyou forbelievinginmeandhelpingmetobecomeabetterresearcher.Iwouldalso liketogiveaspecialthankyoutoAaronLuebbeandGretchenHendricksonfor theircountlesshoursofstatisticaladvice.

ii

TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………………...ii LISTOFFIGURES……………………………………………………………………..iv LISTOFTABLES………………………………………………………………………..v LISTOFABBREVIATIONS……………………………………………………………vi ABSTRACT……………………………………………………………………………..vii INTRODUCTION………………………………………………………………………..1 PharmacologicalAnimalModelsof……………………………………………1 TheDopamineHypothesis………………………………………………………………………2 TheNmethylDaspartateHypothesis…………………………………………………………4 Facilitationof……………………………..6 EffectsofNMDAAntagonistsinBehavioralExperiments…………………………………..10 EffectsofNMDAAntagonistsinNeurochemicalExperiments……………………………..13 NicotineandSchizophrenia…………………………………………………………………….16 Summary…………………………………………………………………………………………22 EXPERIMENTALDESIGNANDPROPOSAL……………………………………...24 EXPERIMENT1:EVOKED[ 3H]OVERFLOW……………………….32 MaterialsandMethods………………………………………………………………………….32 Results……………………………………………………………………………………………34 Discussion………………………………………………………………………………………..36 EXPERIMENT2:EFFECTOFNMDARECEPTORBLOCKADE, BYKETAMINE,ONNICOTINEEVOKED[ 3H]OVERFLOW……………………..39 MaterialsandMethods………………………………………………………………………….39 Results……………………………………………………………………………………………42 Discussion………………………………………………………………………………………..50

EXPERIMENT3:EFFECTOFSUBCHRONICKETAMINEEXPOSURE ONNICOTINEEVOKED[ 3H]OVERFLOW………………………………………...58 MaterialsandMethods………………………………………………………………………….58 Results……………………………………………………………………………………………61 Discussion………………………………………………………………………………………..69 SUMMARYANDCONCLUSION…………………………………………………….74 FutureStudies…………………………………………………………………………………...76 REFERENCES…………………………………………………………………………77

iii

LIST OF FIGURES Figure Page 1. CorticalSubcorticalNeurocircuitry………………………………………..8 2. Nicotineproducedaconcentrationdependentincreaseintotal [3H]overflowfromratstriatalslicespreloadedwith[ 3H]DA…………...18 3. Experiment1[ 3H]OverflowAssay……………………………………….33 4. Experiment2[ 3H]OverflowAssay……………………………………….40 5. Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease total[ 3H]overflowfromratstriatalslicespreloadedwith[ 3H]DAina concentrationdependentmanner………………………………………..45 6. Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease total[ 3H]overflowfromratPFCslicespreloadedwith[ 3H]DAina concentrationdependentmanner………………………………………..46 7. Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease fractional[3H]DAreleasefromratstriatalslicespreloadedwith [3H]DAinatimeandconcentrationdependentmanner………………48 8. Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease fractional[3H]DAreleasefromratPFCslicespreloadedwith [3H]DAinatimeandconcentrationdependentmanner………………49 9. EC 25 ,EC 50 ,andEC 75valuesforstriatalslices………………………….52 10. EC 25 ,EC 50 ,andEC 75valuesforPFCslices…………………………….53 11. Experiment3Timeline…………………………………………………….60 12. LocomotorActivityonDay30&31……………………………………...63 13. Ketamine(30–50mg/kg)alteredtheeffectofnicotineontotal [3H]overflowfromratstriatalslicespreloadedwith[ 3H]DA…………...65 14. Ketamine(30–50mg/kg)alteredtheeffectofnicotineontotal [3H]overflowfromratPFCslicespreloadedwith[ 3H]DA……………...66

iv

LIST OF TABLES Table Page 1. Ketamine(0.1–300M)didnotsignificantlyevoke[ 3H]overflow fromeitherstriatalorPFCslices…………………………………………….35

v

LIST OF ABBREVIATIONS

Phencyclidine–PCP NMethylDAspartate–NMDA Dopamine–DA PrepulseInhibition–PPI PrefrontalCortex–PFC GammaAminobutyric–GABA NucleusAccumbens–NAc VentralTegmentalArea–VTA Mesocortical–MC Mesolimbic–ML Glutamate–GLU Ventral–VST PedunculopontineTegmentum–PPT ConditionedAversion–CTA LatentInhibition–LI NicotinicReceptors–nAChRs DopamineTransporter–DAT HumanEmbryonicHEK

vi

ABSTRACT

Blockadeofionotropicglutamatereceptorscaninducechangesincentral dopamineandglutamatecircuits,whichmodelthesymptomsofschizophrenia.

Nicotineevokesdopaminereleasethroughactivationofnicotinicacetylcholine receptors,andhumanresearchindicatesthatnicotineimprovesnegativeand cognitivesymptomsofschizophrenia.Theobjectivewastodeterminetheeffect oftheglutamatereceptorantagonist,ketamine,onthefunctionofnicotinic receptorsthatmediatedopaminerelease.Ketaminedidnothaveintrinsicactivity toevokedopaminereleasefromratstriatalorprefrontalcorticalslices.Acute

NMDAreceptorblockadeaugmentedtheeffectofnicotinetoevokedopamine release.Tomodelprogressionofschizophrenia,ratsreceivedinjectionsofeither ahighorlowofketamineorvehiclefor30daysandthennicotineevoked dopaminereleasewasmeasured.SubchronicNMDAreceptorblockadealtered theeffectofnicotinetoevokedopaminerelease.Overall,thesedataindicatethat nicotinicreceptorfunctionisalteredinthismodelofschizophrenia,andsupporta rolefornicotinicreceptorsinschizophreniatreatment.

vii

INTRODUCTION

Schizophreniaisachronic,severeneuropsychiatricdisorderthathas beenstudiedfordecades.However,scientistsarestillbaffledbytheunderlying mechanismsofthisdevastatingdisorder.Schizophreniaaffectscognitionand behaviorandischaracterizedbyacombinationofpositiveandnegative symptomsandcognitivedysfunction.Positivesymptomsinclude, delusions,aswellasthoughtandmovementdisorders("Schizophrenia",2006).

Negativesymptomsincludesocialwithdrawal,flattened,anddecreased motivationandrewardfunction("Schizophrenia",2006).Cognitivedysfunction includesdeficitsin,,,andexecutivefunction

("Schizophrenia",2006).Scientistshavedevelopedpreclinicalmethodstostudy behavioralchangesandunderlyingmechanismsassociatedwithpositiveand negativesymptomsandcognitivedysfunctionofschizophrenia.

Pharmacological Animal Models of Schizophrenia

Animalmodelsofschizophreniahavebeendevelopedinordertostudy cause,progression,andtreatmentofthisdisorder.Mostofthesemodelsare basedonmanipulation,namelypharmacologicalmodelsof schizophrenia.Animalsexhibitchangesinbehaviorassociatedwithpositiveand negativesymptomsandcognitivedysfunctionofschizophreniawhentreatedwith likeketamineand(PCP),noncompetitiveNmethylD aspartate(NMDA)receptorantagonistsorindirectdopamine(DA)receptor ,like.Behavioralchangesassociatedwithpositive

1

symptomsinanimalsincludehyperactivityandstereotypy.Changesinbehavior associatedwithnegativesymptomsinanimalsincludesocialwithdrawaland decreasedrewardfunction.Behavioralchangesassociatedwithcognitive dysfunctioninanimalsincludeworkingmemoryandlearningimpairments.

Pharmacologicalmodelsofschizophreniahaveprimarilybeenbasedupontwo majorneurochemicaltheoriesofschizophrenia,theDAandNMDAhypothesesof schizophrenia.

The Dopamine Hypothesis

TheDAhypothesisofschizophreniaproposesthatdysfunctionof dopaminergicneurotransmissionistheunderlyingcauseofthesymptomsofthe disorder(A.Carlsson,1988;Marcotte,Pearson,&Srivastava,2001).More specifically,anexcessinsubcorticalDAactivityinresponsetoamphetamine administrationresultsinatransientemergenceorexacerbationofpositive symptomsofschizophreniainpatientsdiagnosedwithschizophrenia(Abi

Darghametal.,1998;Laruelle,1998).ThedevelopmentoftheDAhypothesisof schizophreniawasbasedontwomajorobservations(1)abuse

(amphetamineand)enhancesdopaminergicneurotransmissionwhich resemblespositivesymptomsofschizophreniaand(2) blockD 2DAreceptorswhichimprovespositivesymptomsofschizophrenia(Tsai

&Coyle,2002).Hence,alteredDAneurotransmissioncausesbehavioraland neurochemicalchangesassociatedwithpositivesymptomsofschizophrenia.

Theproductionofpositivesymptomsiscausedbyhyperactivityofmesolimbic andnigrostriataldopaminergic(A.Carlsson,1995;Seeman,1987).The

2

mesolimbicDApathwayhasbeenimplicatedinmotivationand, andthenigrostriatalDApathwayhasbeenimplicatedinmotorfunction.

Psychostimulantssuchasamphetamine(Flagstadetal.,2004;Nishijimaetal.,

1996)and(Volkow,Wang,Fowler,&Ding,2005;Volkowetal.,

1999)increaseextracellularDAreleaseandproducepsychoticsymptoms

(Angrist&Gershon,1970;Morland,2000).Hyperactivity(PelegRaibstein,

Sydekum,Russig,&Feldon,2006;Segal&Kuczenski,1997)andstereotypy

(Segal&Kuczenski,1997),behavioralchangesassociatedwithpositive symptomsofschizophrenia,areobservedinratsadministeredescalatingdoses ofamphetamine.Furthermore,hyperactivityandstereotypyaremoreprofound withrepeatedpsychostimulantabuse,likecocaine(,Walker,&Kuhn,

2005).Prepulseinhibition(PPI)isanoperationalmeasureofsensorimotorgating andisimpairedinschizophrenia(Braff&Geyer,1990).Inanimalmodelsof schizophrenia,theinhibitionoftheresponsetothestartlereflexismeasured, whichiscausebyaprecedingweakstimulus.RatstreatedwithDAagonists

(Swerdlowetal.,2000)andamphetamine(PelegRaibstein,Sydekum,Russig,&

Feldon,2006)exhibitdisruptedPPI.However,asdiscussedbelow,the hyperactivityofdopaminergicneurons,byitself,cannotaccountfornegative symptomsandcognitivedysfunctioninschizophrenia(A.Carlsson,1988).

Negativesymptomsandcognitivedysfunctionarethoughttobederived fromhypoactivityofmesocorticaldopaminergicneuronsinprefrontalcortex

(PFC)(Dworkin&Opler,1992).Lateradvancesconfirmedthata hypodopaminergicstateincorticalregionsplaysacontributoryroletothe

3

pathophysiologyunderlyingschizophrenia.However,theseclaimswerebased onfrontallobeablationsandinjuriesinprimatesandhumans,respectively

(Davis,Kahn,Ko,&Davidson,1991).Moreover,administrationofamphetamine

(Danieletal.,1991)and(Daniel,Berman,&Weinberger,1989),a

DA,increaseprefrontalDAactivityandimprovenegativesymptomsand cognitivedysfunction(Danieletal.,1991)indicatingthathyperdopaminergia doesnotinduceallsymptomsassociatedwithschizophrenia.Thus, pharmacologicalmodelsofschizophreniabasedontheDAhypothesislack integrationofpositiveandnegativesymptomsandcognitivedysfunctioninorder toproduceasufficientmodelofschizophrenia.

The N-methyl-D-aspartate Hypothesis

TheNMDAhypothesisofschizophreniaproposesthatantagonismof

NMDAreceptorsmaybetheunderlyingcauseofsymptomsofthedisorder.

Hence,alteredglutamateneurotransmissioncausesbehavioraland neurochemicalchangesassociatedwithsymptomsofschizophrenia.More specifically,glutamatergichypofunctionincorticalareasinducesdopaminergic hyperfunctioninsubcorticalareas(A.Carlsson,Waters,&Carlsson,1999;M.

Carlsson&Svensson,1990;Olney&Farber,1995a).PCPandketamine,belong toagroupof(Ellison,1995),whichweredevelopedas inthelate1950s(Collins,Gorospe,&Rovenstine,1960) andhaveneurotoxiceffectsathighdoses(Olneyetal.,1991).Patientsbeganto exhibitadversesideeffectsafteradministrationofsubanestheticdosesofPCP andketamine,whichwerecharacterizedasresemblingpositiveandnegative

4

symptomsandcognitivedysfunctionofschizophrenia(Ellison,1995;Javitt,1987;

Javitt&Zukin,1991).Lubyandcolleaguesfirstproposedamodelof schizophreniabasedupontheeffectsofPCP(Luby,Gottlieb,

Cohen,Rosenbaum,&Domino,1962).Hence,researchersbeganusing noncompetitiveNMDAreceptorantagonistsasameanstomodelthe pathophysiologyofschizophreniamorecomprehensively.

NMDAreceptorantagonists,PCP,ketamine,and(MK801), induceapsychotomimeticstateresemblingschizophreniaincludingpositiveand negativesymptomsandcognitivedysfunction(Imre,Fokkema,DenBoer,&Ter

Horst,2006;Javitt&Zukin,1991;Jentsch,Tran,Le,Youngren,&Roth,1997;

Marcotte,Pearson,&Srivastava,2001;SamsDodd,1998).Continuousinfusion ofamphetaminealoneorPCPalonedosedependentlyinducesstereotyped behaviorandhyperactivityassociatedwithpositivesymptomsofschizophreniain rats,butonlyPCPinducessocialwithdrawalassociatedwithnegativesymptoms ofschizophreniainrats(SamsDodd,1998).PCPalsoimpairsperformancein learningandmemorytasksassociatedwithcognitivedysfunctionof schizophreniainrats(Campbelletal.,2004;Handelmann,Contreras,&

O'Donohue,1987;Kesner,Dakis,&Bolland,1993).Specifically,Jentschand colleaguesobservedimpairedperformanceinrodentsaftersubchronicPCP treatmentduringworkingmemorytasks(Jentsch,Tran,Le,Youngren,&Roth,

1997);whereas,amphetaminetreatmentimprovedcognitivedysfunction

(Rasmussen,Overgaard,HildebrandtEriksen,&Boysen,2006).Takentogether,

NMDAreceptorantagonistsinducepositiveandnegativesymptomsand

5

cognitivedysfunctionassociatedwithschizophreniainrats,butDAagonistscan onlyinducepositivesymptomsassociatedwithschizophreniainrats.Therefore, pharmacologicalmodelsofschizophreniabasedontheNMDAhypothesisare sufficienttoproducepositiveandnegativesymptomsandcognitivedysfunction ofschizophrenia.

Glutamatergic Facilitation of Dopaminergic Neurotransmission

Recently,integrationofthetwohypotheses,theDAhyperfunctionand

NMDAhypofunctionhypothesesofschizophreniahasbeenheavilyimplicatedin thepathophysiologyunderlyingschizophrenia.Carlssonandcolleagues proposedamodelinwhichcorticalglutamatergicprojectionsmodulateDA activityofmesolimbicandmesocorticalDApathways(A.Carlsson,Waters,&

Carlsson,1999)(Figure1).NMDAreceptorantagonistsbindprimarilytothePCP bindingsiteontheNMDAreceptor,whichinhibitsglutamateneurotransmission

(Javitt&Zukin,1991).BlockadeofNMDAreceptors,locatedonglutamatergic neurons,byNMDAreceptorantagonistsdecreasesDAreleasefrom mesocorticalDAneurons.ItalsohasdifferentialeffectsonmesolimbicDA neuronsasmesolimbicDAneuronsareinnervatedpolysynapticallyby glutamatergicandgammaaminobutyricacid(GABA)ergicinterneurons(A.

Carlsson,Waters,&Carlsson,1999).Thus,NMDAreceptorantagonistsinhibit

GABAergicinterneurons’inhibitorytoneonmesolimbicDAneurons,which increasesstimulantinducedDAreleaseinthestriatum(Balla,Koneru,Smiley,

Sershen,&Javitt,2001;Balla,Sershen,Serra,Koneru,&Javitt,2003;Javittet al.,2004).

6

Figure 1. CorticalSubcorticalNeurocircuitryTop.NormalNeurocircuitry:Cortical glutamatergicprojectionstosubcorticalDAneuronsfacilitateDAactivitydirectly viaMCDAneurons.AlsoDAactivityisfacilitatedviaindirectglutamatergic projectionstosubcorticalMLDAneuronsthroughthepedunculopontine tegmentum.CorticalglutamatergicprojectionstosubcorticalGABAinterneurons inhibitDAactivityinsubcorticalareas.Middle.DisruptedNeurocircuitry:NMDA receptorantagonistsblockglutamatetransmission,causingdysregulationofthe circuitsubcortically.DecreasedglutamatereleaseresultsinhypoactivityofMC DAneurons,anddecreasedinhibitorytoneofGABAinterneuronsonMLDA neurons,whichresultsinhyperactivityofMLDAneurons.Bottom.Schizophrenia Neurocircuitry:Dysregulationofcorticalandsubcorticalneurocircuitryresultsin decreasedDAreleaseincorticalareasviaMCDAneurons,andincreasedDA releaseinsubcorticalareasviaMLDAneurons.DA=Dopamine,GLU= Glutamate,GABA=γaminobutyricacid,VST=Ventralstriatum,VTA=Ventral tegmentalarea,PPT=Pedunculopontinetegmentum,MCDA=MesocorticalDA neurons,MLDA=MesolimbicDAneurons.Upsidedownandsidewaystriangles =Glutamateneurons,Rightsideuptriangles=DAneurons,diamonds=GABA interneurons,parallelograms=NMDAreceptors,4pointedstars=nicotinic acetylcholinereceptors(nAChRs).Adaptedfrom(A.Carlsson,Waters,& Carlsson,1999;Laruelle,Kegeles,&AbiDargham,2003).

7

CORTEX

+ DA +

G G L VST L DA + U U GLU

DA GABA + MLDA GABA + + MCDA VTA +

GLU PPT

CORTEX

+ DA +

G G L VST L DA + U U GLU

DA GABA + MLDA GABA + + MCDA VTA +

GLU PPT

CORTEX

D A + DA +

G G L VST L DA + U U GLU D DA GABA A + MLDA GABA + + MCDA VTA +

GLU PPT

8

Futhermore,anincreaseinDAreleaseinnucleusaccumbens(NAc)anda decreaseinDAreleaseinPFCresultsfromblockadeofglutamatergic transmissionfromventraltegmentalarea(VTA)(Takahata&Moghaddam,2000).

Takentogether,allofthesefindingssupportthemodelproposedbyCarlsson andcolleagues,whereblockadeofNMDAreceptorsinducesdecreasedDA releaseincorticalregionsandincreasedDAreleaseinsubcorticalregions(A.

Carlsson,Waters,&Carlsson,1999).

However,NMDAreceptorblockadeisalsosufficienttoaccountfor hyperactivityofdopaminergicneurotransmissioninPFCasitinducesastateof hyperresponsivityto(Balla,Koneru,Smiley,Sershen,&Javitt,2001;

Balla,Sershen,Serra,Koneru,&Javitt,2003;Javittetal.,2004).More specifically,anincreaseinDAreleaseinPFCmaybecausedbyaninitial increaseinendogenousexcitatoryaminoacidrelease,suchasglutamateand aspartate(Bustosetal.,1992;Liu&Moghaddam,1995),whichinturnincreases

DAreleasebystimulatingnonNMDAexcitatoryaminoacidreceptors(Jedema&

Moghddam,1996;Moghaddam,Adams,Verma,&Daly,1997).Ketamine injectedacutely,dosedependentlyincreasesDAandglutamatereleaseinPFC andstriatum(Moghaddam,Adams,Verma,&Daly,1997).Subchronicinjection ofketamineincreasesbasalDAlevelsinPFC;however,subsequentketamine challengetoanimalspretreatedsubchronicallywithketamineblocksketamine inducedextracellularDAreleasemeasuredbyinvivomicrodialysis(Lindefors,

Barati,&O'Connor,1997).Thisevidencecontradictsthemodelproposedby

CarlssonandcolleaguesasitsuggeststhathyperactivityofDAneuronsin

9

corticalandsubcorticalregionsinducesneurochemicalchangesunderlying schizophrenia(A.Carlsson,Waters,&Carlsson,1999).Thus,cortical glutamatergicneurotransmissionmodulatingcorticalandsubcortical dopaminergicactivityisimportantforunderstandingthepathophysiology underlyingschizophrenia.

Effects of NMDA Antagonists in Behavioral Experiments

AcuteandrepeatedadministrationsofPCPandketaminehavebeenused aspharmacologicalanimalmodelsofschizophrenia.Acuteadministrationof subanestheticdosesofPCPandketamineinducehyperlocomotion(Adams&

Moghaddam,1998;Imre,Fokkema,DenBoer,&TerHorst,2006;Irifune,

Shimizu,Nomoto,&Fukuda,1995;Mandryk,Fidecka,Poleszak,&Malec,2005;

McCullough&Salamone,1992;SamsDodd,1995;Wilsonetal.,2005)and stereotypy(Adams&Moghaddam,1998;SamsDodd,1995,,1996,,1997) associatedwithpositivesymptomsofschizophrenia.Socialwithdrawal associatedwithnegativesymptomsofschizophreniaisinducedbyacute administrationsofsubanestheticdosesofPCP(SamsDodd,1995,,1996,,

1997).PriorexposuretoPCPdecreasesrewardfunctionasmeasuredby voluntaryconsumptionassociatedwithnegativesymptomsof schizophrenia(Turgeon&Hoge,2003).Cognitivedeficitsassociatedwith cognitivedysfunctionofschizophreniaareinducedbyacuteadministrationof

PCPandketamine.AcuteadministrationofsubanestheticdosesofPCPand ketamineimpairsperformanceinworkingmemorytasksassessedbyspatial delayedalternationtasks(Adams&Moghaddam,1998;Imre,Fokkema,Den

10

Boer,&TerHorst,2006;Moghaddam,Adams,Verma,&Daly,1997)andby spatialreference/workingmemorytasks(Heetal.,2006).Acuteketamineand

PCPinjectionalsoproducessignificantlearningdeficitsasmeasuredby conditionedtasteaversion(CTA)andlatentinhibition(LI)tasks.Ketamineblocks

CTA(Aguado,delValle,&Perez,1997;Aguado,SanAntonio,Perez,delValle,

&Gomez,1994;Mickleyetal.,1998)anddisruptsLI(Gallo,Bielavska,Roldan,&

Bures,1998);however,PCPalsoenhancesLIwhenadministeredpriorto conditioningtrials(Klameretal.,2005;Palssonetal.,2005).Therefore,acute administrationofNMDAreceptorantagonistsissufficienttoinducebehavioral changesassociatedwithpositiveandnegativesymptomsandcognitive dysfunctionofschizophrenia;however,thesebehavioralchangesareshortlived astheyaremostlikelyinducedbydirecteffects(Jentsch,Taylor,&Roth,

1998).

Theeffectsofrepeatedexposurearegenerallymorepersistentand resemblethepsychopathologyofschizophreniamorecloselythantheeffectsof acuteexposure(Jentsch&Roth,1999).Theeffectsofrepeatedexposureare duetochangesintheneurocircuitryinducedbythedrugratherthandirectdrug effects(Jentsch,Taylor,&Roth,1998).Repeatedadministrationof subanestheticdosesofPCPandketamineinducehyperlocomotion(Leccese,

Marquis,Mattia,&Moreton,1986;SamsDodd,1995,,1998)andstereotypy

(Leccese,Marquis,Mattia,&Moreton,1986;SamsDodd,1995,,1998,,1999) associatedwithpositivesymptomsofschizophrenia.Subchronicadministration ofsubanestheticdosesofPCPenhancesamphetamineandstressinduced

11

hyperlocomotion(Balla,Koneru,Smiley,Sershen,&Javitt,2001;Balla,Sershen,

Serra,Koneru,&Javitt,2003;Jentsch,Taylor,&Roth,1998).Socialwithdrawal associatedwithnegativesymptomsofschizophreniaisinducedbyrepeated administrationofsubanestheticdosesofPCP(SamsDodd,1995,,1996,,1998,

,1999;Tanakaetal.,2003)andMK801(Tanakaetal.,2003).Cognitivedeficits associatedwithschizophreniaareinducedbyrepeatedadministrationof subanestheticdosesofPCPandketamine.Repeatedadministrationof subanestheticdosesofketamineimpairsperformanceinworkingmemorytasks assessedbyspatialdelayedalternationtasks(Jentsch,Tran,Le,Youngren,&

Roth,1997)andproduceslearningeffectsasmeasuredbyLI(Beckeretal.,

2003).TogetherthesefindingsshowthatsubanestheticdosesofNMDAreceptor antagonistsadministeredrepeatedlyinducechangesinbehaviorassociatedwith positiveandnegativesymptomsandcognitivedysfunctionofschizophrenia.

However,dosesofketamineelicitlittlepsychotomimeticeffects

(White,Ham,Way,&Trevor,1980;White,Way,&Trevor,1982)indicatingthat anestheticdosesofketaminearenotsufficienttoinducesymptomsassociated withschizophrenia.Pharmacologicalanimalmodelsofschizophreniawhichuse acuteandrepeatedadministrationofsubanestheticdosesofNMDAreceptor antagonistsproducesimilarbehavioralchangesassociatedwithpositiveand negativesymptomsandcognitivedysfunctionofschizophrenia.However, repeatedadministrationofsubanestheticdosesofNMDAreceptorantagonistsis amorevalidpharmacologicalanimalmodelofschizophreniathanacute administrationofsubanestheticdosesofNMDAreceptorantagonists.

12

Effects of NMDA Antagonists in Neurochemical Experiments

Positiveandnegativesymptomsandcognitivedysfunctionof schizophreniahavebeenassociatedwithchangesindopaminergicand glutamatergicneurotransmission.Amphetamine(Flagstadetal.,2004;Nishijima etal.,1996)andmethylphenidate(Volkow,Wang,Fowler,&Ding,2005;Volkow etal.,1999)increaseextracellularDAreleaseandproducepositivesymptoms associatedwithschizophrenia(Angrist&Gershon,1970;Morland,2000).Ithas beenpostulatedthatPFCdopaminergichyperactivityisanunderlyingcauseof thecognitivedysfunctionassociatedwithschizophrenia(Balla,Sershen,Serra,

Koneru,&Javitt,2003).AdministrationofsubanestheticdosesofNMDAreceptor antagonists,ketamineandMK801,increaseDAreleaseinPFCandtoalesser extentinstriatumafteracuteinjection(Verma&Moghaddam,1996).Injectionof subanestheticdosesofPCPandketaminealsoincreasesDAandglutamate effluxinPFC,NAcandstriatumasmeasuredbyinvivomicrodialysis(Adams&

Moghaddam,1998;Lindefors,Barati,&O'Connor,1997;Moghaddam,Adams,

Verma,&Daly,1997;Nishijimaetal.,1996).BlockadeofD 2DAreceptors potentiatesPCPinducedDAreleaseinstriatum(Yonezawa,Kuroki,Tashiro,

Hondo,&Uchimura,1995).SuperfusionofPCPinvitroincreases(>1M)and decreases(0.1M)DAreleaseinstriatalslices(Ohmori,Koyama,Nakamura,

Wang,&Yamashita,1992).However,neurochemicaleffectsofacute administrationofNMDAreceptorantagonistsmayreflectdirectdrugeffects

(Jentsch,Taylor,&Roth,1998).Thus,acuteadministrationofNMDAreceptor antagonistsinduceneurochemicalchangesassociatedwithpositiveandnegative

13

symptomsandcognitivedysfunctionofschizophrenia,butdoesnotproducea validpharmacologicalanimalmodelofschizophrenia.

Pharmacologicalanimalmodelsofschizophrenia,whichuserepeated exposure,producedifferentneurochemicaleffectscomparedtothosethatuse acuteexposure.Microdialysisproceduresmeasuringtheeffectsofsubanesthetic dosesofPCPadministeredsubchronicallyfoundnochangeinbasalstriatal,PFC andNAcDAlevels;however,amphetaminechallengeincreasesstriatal,PFC andNAcDAreleasemarkedly,whichsuggeststhatNMDAreceptorantagonists induceastateofhyperresponsivitytostimulants(Balla,Koneru,Smiley,

Sershen,&Javitt,2001;Balla,Sershen,Serra,Koneru,&Javitt,2003;Javittet

11 al.,2004).NMDAreceptorantagonistsdecreasestriatal Craclopride(D 2 dopaminereceptorselectiveradioligand)binding(Breieretal.,1998;Tsukadaet al.,2000),reflectingenhancedstriatalsynapticDAconcentrations(Breieretal.,

1998)and,incontrast,nosignificantchangesinDAconcentrationsinstriatal extracellularfluid(Tsukadaetal.,2000).However,animalspretreatedwith subanestheticdosesofketamineoncedailyfor7daysshowedincreasesin basalDAlevels,butattenuationofketamineinducedincreaseinextracellularDA releaseinPFCaftersubsequentketaminechallenge(Lindefors,Barati,&

O'Connor,1997).However,corticaldopaminergichypofunctionhasalsobeen proposedtocauseimpairmentsincognitivefunctionsandnegativesymptomsof schizophrenia(Davis,Kahn,Ko,&Davidson,1991;Weinberger,1987;Williams

&GoldmanRakic,1995).Animalsinjectedsubchronicallywithsubanesthetic dosesofPCPshowareductioninDAutilizationinPFC,butnotNAc3weeks

14

afterthefinalinjection,hence,reduceddopaminergicactivityofmesocorticalDA projections(Jentsch,Taylor,&Roth,1998).Moreover,studieswhere dopaminergicandglutamatergicdeficitsinneurotransmissionareobservedafter withdrawalfromNMDAreceptorantagonistsshowthatbehavioraland neurochemicaleffectsareduetodruginducedneurobiologicalchangesrather thandirectdrugeffects(Jentsch,Taylor,&Roth,1998).Repeatedadministration ofketamineorPCPantagonizesNMDAreceptors,whichblocksglutamate release(Javitt&Zukin,1991).NMDAreceptorhypofunctiondecreasesDA releasefrommesocorticalDAneurons.AreductionofmesocorticalDA functionincreasesDAreleasefrommesolimbicDAneurons(A.Carlsson,

Waters,&Carlsson,1999).ThisresultsinadecreaseinDAincorticalregions, whichisassociatedwithnegativesymptomsandcognitivedysfunctionof schizophrenia,andanincreaseinDAinsubcorticalregions,whichisassociated withpositivesymptomsofschizophrenia(Figure1).Itisimportanttonotethat subanestheticdosesofNMDAreceptorantagonistsarepreferredbecause anestheticdosesofketamineelicitlittlepsychotomimeticeffects(White,Ham,

Way,&Trevor,1980;White,Way,&Trevor,1982)indicatingthatanesthetic dosesofketaminearenotsufficienttoinducesymptomsassociatedwith schizophrenia.Takentogether,thesefindingsrevealcontroversyamong researchers,but,moreimportantly,provideevidencethatneurochemicaleffects afterwithdrawalfromrepeatedexposuretosubanestheticdosesofNMDA receptorantagonistsinduceneurobiologicalchanges.Thus,repeated

15

administrationofsubanestheticdosesofNMDAreceptorantagonistsprovidesa morevalidpharmacologicalanimalmodelofschizophrenia.

Nicotine and Schizophrenia

Nicotine,theactiveingredientin,inducesreleaseofmany in(i.e.,DA,GABA,glutamate,and acetylcholine)(Wonnacott,1997).Theprimarysiteofactionfornicotineis nicotinicacetylcholinereceptors(nAChRs),agatedionchannelcomposed offivesubunits(Sargent,1993).nAChRsarelocatedonterminalendsof dopaminergicneuronsandGABAergicinterneurons(Freedman,Wetmore,

Stromberg,Leonard,&Olson,1993;Wooltorton,Pidoplichko,Broide,&Dani,

2003)inbrain,primarilyhippocampus,basalgangliaandcortex(J.A.Court,

MartinRuiz,Graham,&Perry,2000).ThefunctionalpropertiesofnAChRsare definedbytheirsubunitcomposition.nAChRsareformedbyheteromericor homomericassemblyofαandβsubunits.Nicotineevoked[ 3H]DAreleasein striatumiswellestablished,morespecificallyinvolvingα3β2*andα3β4*nAChRs

(Miller,Sumithran,&Dwoskin,2002)andalsoamixtureofdifferentnAChR subtypescontainingα4,α5,α6,β2andβ3subunits(Champtiauxetal.,2003;

Salminenetal.,2004;Sharplesetal.,2000).NicotineevokesDAreleaseina concentrationdependentmanner(Cohen,Perrault,Voltz,Steinberg,&Soubrie,

2002;Grilli,Parodi,Raiteri,&Marchi,2005;Nisell,Nomikos,&Svensson,1994;

Rapier,Lunt,&Wonnacott,1988;Sacaan,Dunlop,&Lloyd,1995;Sharpleset al.,2000)viaadirectmechanismbybindingtonAChRsandopeningion channels.AnopennAChRchannelallowssodium,potassiumandions

16

tomoveacrossthecellmembrane(Mansvelder,vanAerde,Couey,&Brussaard,

2006),thuschangingtherestingmembranepotential,andstimulatingexocytosis ofvesiclescontainingDA.

Preliminaryexperimentsfromourlaboratorydeterminedthepotencyand ofnicotinetoevokeDAreleasefromratstriatalslices.Consistentwith previousfindings,nicotineevokedDAreleaseinaconcentrationdependent mannerfromratstriatalslices(unpublishedfindings)(Figure2).Thesuperfusion assayusedintheseexperimentsmeasures[3H]DAoverflowfromeachsample, whichrepresentstheamountofDAreleasedfromeachslice.Regardingtotal[ 3H] overflow,asignificantmaineffectofNicotineConcentration(P<0.05)wasfound.

Posthoctestsrevealedthattotal[ 3H]overflowwasgreaterinthepresenceof10

100Mnicotinethanintheabsenceofnicotine.Fractional[3H]DAreleaseis theamountof[3H]DAcollectedfromeachsample.Regardingfractional[ 3H]DA release,significantmaineffectsofNicotineConcentration(P<0.05)andTime

(P<0.05),andasignificantNicotineConcentrationxTimeinteraction(P<0.05) werefound(Figure2insert).Nicotineproducedatimeandconcentration

3 dependentincreaseinfractional[ H]DArelease.TheEC 50 valuewascalculated vianonlinearregression.EC 50 valuesindicatetheconcentrationthatevokes50% ofthemaximumDArelease.Hence,thenicotineconcentrationrequiredtoevoke

50%ofthemaximumDAreleasewas42.8M.

Nicotinemayalsoinfluencedopaminergictransmissionviaanindirect mechanism(i.e.,notactingdirectlyonnAChRslocatedonDAneurons).

Dopaminergicafferentsfromthemesencephalicareas,suchasVTA,synapse

17

17.5

15.0 6

Control 5 * 1 µM * 10 µM 12.5 4 * 100 µM 3 * * H]Dopamine Release H]Dopamine 10.0 3 * 2 * * * *

H]Overflow *

3 1 * 7.5 [ Fractional 0 0 5 10 15 20 25 30 35 40 45

Total [ Total Time (min) 5.0 *

2.5

0.0 CON 0.1 1 10 100 Nicotine Concentration ( µµµM) Figure 2. Nicotineproducedaconcentrationdependentincreaseintotal[ 3H] overflowfromratstriatalslicespreloadedwith[ 3H]DA.Dataareexpressedasthe mean(±S.E.M.)total[ 3H]overflowaftertheadditionofnicotinetobuffer.Inset showsthetimecourseofnicotineevoked[ 3H]DArelease.Dataareexpressedas themean(±S.E.M.)fractionalrelease.Asterisksdesignateasignificant(P<0.05) differencefromthecontrolcondition(superfusionintheabsenceofnicotine)and thearrowdesignatestheadditionofnicotinetobuffer. CON, control condition. (n =9rats) withtheGABAergicinterneuronsinPFC(Li,Park,Kim,&Kim,2004).Nicotine significantlyenhancesglutamateandGABAreleaseinhippocampus(Kannoet al.,2005)andstimulatesGABAergicsynaptictransmissioninNAcafter amphetaminesensitization(deRoveretal.,2004).Asstatedabove,increasesin

DAreleaseinPFCmaybecausedbyaninitialincreaseinendogenous excitatoryaminoacidrelease,suchasglutamateandaspartate,(Bustosetal.,

18

1992;Liu&Moghaddam,1995)whichinturnincreasesDAreleaseby stimulatingnonNMDAexcitatoryaminoacidreceptors(Jedema&Moghddam,

1996;Moghaddam,Adams,Verma,&Daly,1997).Thus,nicotinecausesDA releaseviaadirectand/orindirectmechanismincorticalandsubcorticalregions.

Peoplewhosufferfromschizophreniaaretwotofourtimesmorelikelyto smokethanpeoplewhodonothaveschizophrenia(Sacco,Bannon,&

George,2004).Peoplediagnosedwithschizophreniatypicallyusecigarettesas atherapeuticagentfornegativesymptomsandcognitivedysfunctionof schizophrenia(Kumari&Postma,2005;Leonardetal.,2001;Levin,2002).

Additionally,peoplewithschizophreniawhoalsosmokeextractmorenicotine fromcigarettesascomparedtosmokerswithoutschizophrenia(Olincy,Young,&

Freedman,1997).Asstatedabove,corticaldopaminergichypofunctionis postulatedtocausenegativesymptomsandcognitivedysfunctionof schizophrenia(Davis,Kahn,Ko,&Davidson,1991;Weinberger,1987;Williams

&GoldmanRakic,1995),andtheabilityofnicotinetoincreaseDAreleaseinthe

PFCmaytemporarilyimprovethesesymptoms(Dalack,Healy,&Meador

Woodruff,1998).Jentschandcolleaguesshowedthatsubchronicinjectionof

PCPdecreasedPFCDAutilizationandhadnoeffectonstriatalandNAcDA utilizationafter24hoursto3weekswithdrawal,whichsuggestsareductionof mesocorticalDAneuronactivity(Jentsch,Taylor,&Roth,1998;Jentsch,Tran,

Le,Youngren,&Roth,1997).OlneyandFarber(1995a,b)observedneurotoxic effectsinducedbyNMDAreceptorantagonistadministration(Olney&Farber,

1995a,,1995b),whichmaycauseareductioninglutamatergicandGABAergic

19

axonterminalsinthebrain(Mirnics,Middleton,Marquez,Lewis,&Levitt,2000), whichthenresultsinadecreaseinDArelease.Peoplediagnosedwith schizophreniahaveareductioninthenumberofhigh(α4β2)andlow(α7) affinitynAChRsthatareexpressedinthebrain(Breeseetal.,2000;J.Courtet al.,1999;Freedman,Hall,Adler,&Leonard,1995;Leonardetal.,2000;Mexalet al.,2005)andsmokerslackupregulationoftheirhighaffinitynAChRsas comparedtosmokerswithoutschizophrenia(Breeseetal.,2000),whichmay alsocontributetodecreasesinDArelease.Activationofα4β2*andα7*nAChRs occursatlow(100250nM)nicotineconcentrations,butα4β2*desensitizemore thanα7*nAChRs.Furthermore,athigher(250nM)nicotineconcentrations,

α4β2*nAChRsarecompletelydesensitizedwithinminutes,butα7*nAChRs remainavailableforactivation(Mansvelder&McGehee,2002;Wooltorton,

Pidoplichko,Broide,&Dani,2003).ThetargetingoflowaffinitynAChRscould explainwhypeoplewithschizophreniasmokemoreheavilyandextractmore nicotinefromcigarettes(Kumari&Postma,2005).Together,thesefindings indicatethatittakeshigherconcentrationsofnicotinetoproduceeffectsin peoplewhohaveschizophrenia.

ThemodelproposedbyCarlssonandcolleaguessuggeststhat mesocorticalDAneuronsinVTAaredirectlyinnervatedbycorticalglutamatergic neuronsandNMDAreceptorblockadeinhibitsglutamatefromfacilitatingDA releaseinPFCviamesocorticalDAneurons(A.Carlsson,Waters,&Carlsson,

1999)(Carlssonetal.,1999)(Figure1).Ketamine(IC 50 =2.8M)andMK801

(IC 50 =15M)inhibitnAChRmediatedcurrent(Buisson&Bertrand,1998;

20

Furuyaetal.,1999),whichsuggeststhatNMDAreceptorantagonistsarealso actingasnAChRantagonists(Kumari&Postma,2005;Pereiraetal.,2002).

However,theeffectofketaminetreatmentonnicotineevokedDAreleasehas notbeendetermined.Nicotineexposuremaybesufficienttoovercomethis inhibitioninordertoincreaseDAreleaseinPFCbytargetingnAChRslocatedon

DAneuronsastheymaybemoresensitivetonicotineafterexposureto ketamine.Thus,itisimportanttoidentifytheeffectofketamineexposureon nAChRsandnicotine.

Behavioralstudieshaveshownthatacuteandrepeatedadministrationof nicotineorselectivenicotinicagonistsimproveperformanceonworkingmemory tasksassessedbyradialarmmaze(Levin,2002;Levin,Bettegowda,Blosser,&

Gordon,1999;Levin&Christopher,2003;Levin,Kaplan,&Boardman,1997;

Levin,Rose,&Abood,1995).Whileacuteadministrationofnonspecificnicotinic antagonist,,intoVTA,substantianigra,andventralhippocampus impairsperformanceonworkingmemorytasksassessedbyradialarmmaze

(Kim&Levin,1996;Levin,Briggs,Christopher,&Auman,1994),whichindicates thattheeffectsofnicotineonmemoryaremediatedbynAChRs.Schizophrenic smokerswhoabstainfortenweeksshowgreaterworkingmemoryimpairments comparedtononcontrols(Georgeetal.,2002).Thus,nicotinemay improvecognitivedeficitsassociatedwithcognitivedysfunctionofschizophrenia byincreasingDAreleaseinthePFC.

21

Summary

Schizophreniaisacomplex,debilitatingdisorder,ofwhichwedonotfully understandthepathophysiologyunderlyingdevelopment,progression,and treatmentofthedisease.Initially,researchersformulatedtheDAhypothesisof schizophreniatoaccountforpositivesymptomsofschizophreniacausedbya hyperdopaminergicstateofthemesolimbicDAneurons.Subsequently,theDA hypothesiswasmodifiedtoincludecorticalhypodopaminergiaasitwasfoundto beassociatedwithnegativesymptomsandcognitivedysfunctionof schizophrenia.SubcorticalincreasesinDAreleaseareinducedbyDAagonists, butcorticaldecreasesinDAreleasecannotbeinducedbyDAagonists.

However,thedevelopmentoftheNMDAhypothesisofschizophreniahas revealeduniquemechanismsbywhichNMDAreceptorantagonistsinduce positiveandnegativesymptomsandcognitivedysfunctionofschizophrenia.

Furtherresearchhasintegratedthesetwohypothesesinordertoprovideamore adequateexplanationofthepathophysiologyandneurocircuitrydysregulation underlyingschizophrenia.Thus,theinteractionofglutamateandDA neurotransmissionisimportantforunderstandingtheunderlyingmechanismsof schizophrenia.

Pharmacologicalanimalmodelsofschizophreniaweredevelopedtostudy cause,progression,andtreatmentofthedisorderandarebasedon neurotransmittermanipulation.Asindicatedabove,pharmacologicalanimal modelsofschizophreniausingamphetamineorotherDAagonistadministration arelimitedtoinducingbehavioralandneurochemicalchangesassociatedwith

22

positivesymptomsofschizophrenia.However,pharmacologicalanimalmodelsof schizophreniausingketamineorotherNMDAantagonistsaremoreadequateas theyinducebehavioralandneurochemicalchangesassociatedwithpositiveand negativesymptomsandcognitivedysfunctionofschizophrenia.Thus,a pharmacologicalanimalmodelofschizophreniausingNMDAantagonist exposurewillbeusedtoinducebehavioralandneurochemicalchanges associatedwithpositiveandnegativesymptomsandcognitivedysfunctionof schizophreniainthisstudy.

smokingappearstobemuchhigheramongpeoplediagnosed withschizophreniathaninthegeneralpopulation.Thishighprevalenceof smokingamongpeoplewithschizophrenialeadsustobelievethatthereisa commonunderlyingneurobiologyasnicotinetemporarilyimprovesnegative symptomsandcognitivedysfunctionofschizophrenia.Theabilityofnicotineto induceneurotransmitterrelease,particularlyDA,hasbeenheavilyimplicatedas theunderlyingmechanismtoimprovesocialwithdrawal,decreasedreward function,learning,memory,andattention.Thus,itisimportanttodeterminethe roleofnAChRsandnicotinepharmacologyintheunderlyingmechanismsand treatmentofschizophrenia.

23

EXPERIMENTAL DESIGN AND PROPOSAL

Thepurposeofthisstudyistocompareacuteandsubchronic pharmacologicalanimalmodelsofschizophreniaandtodeterminetheeffectof nicotinepharmacology.Thelongtermobjectiveistodeterminetheroleof nAChRsandnicotinepharmacologyintheunderlyingmechanismandtreatment ofschizophrenia.

ThepurposeofExperiment1wastodeterminetheconcentration responseprofileforketamine,anoncompetitiveNMDAreceptorantagonist,to evokeDAreleasefromratstriatalandPFCslices.Asdiscussedabove,PCPand ketamineexposureinvivo(Adams&Moghaddam,1998;Lindefors,Barati,&

O'Connor,1997;Moghaddam,Adams,Verma,&Daly,1997;Nishijimaetal.,

1996;Verma&Moghaddam,1996)andinvitro(Dwoskin,Jewell,Buxton,&

Carney,1992;Ohmori,Koyama,Nakamura,Wang,&Yamashita,1992) increasesDAreleaseinstriatumandPFC.Thisisconsistentwiththehypothesis thathyperactivityofDAneuronsincorticalandsubcorticalregionsisan underlyingmechanismforpositiveandnegativesymptomsandcognitive dysfunctionofschizophrenia(AbiDarghametal.,1998;Balla,Sershen,Serra,

Koneru,&Javitt,2003;Laruelle,1998).However,thisisinconsistentwiththe hypothesisproposedbyCarlssonandcolleaguesinwhichcortical hypodopaminergiaandsubcorticalhyperdopaminergiaaretheunderlying mechanismsforpositiveandnegativesymptomsandcognitivedysfunctionof schizophrenia(A.Carlsson,Waters,&Carlsson,1999).Thus,itisimportantto

24

determineifketaminehasintrinsicactivityandatwhatconcentrationstoevoke

DAreleasefromratstriatalandPFCslices.

KetamineandPCPhavesimilarpharmacologicaleffectsonNMDA receptors(Ellison,1995),however,theydifferinpotency(Olney,Labruyere,&

Price,1989).PCPisamorepotentNMDAreceptorantagonistthanketamine.

AlthoughketaminemaybealesspotentNMDAreceptorantagonist,itdoesnot inducea“weaker”or“lesscomplete”modelofschizophrenia(Beckeretal.,

2003).Assuch,equimolarconcentrationsofketamine,ascomparedtoPCP, maynotincreaseDAreleaseinstriatumandPFC.However,highconcentrations ofketaminemaybesufficienttoincreaseDAreleaseinstriatumandPFC, althoughnotpharmacologicallyrelevant.Thus,thehypothesisisthatketamine willnothaveintrinsicactivitytoevoke[ 3H]overflowfromratstriatalandPFC slicesatpharmacologicallyrelevantconcentrations.

Inexperiment1,striataandPFCweredissectedfromratsandsliced.Rat striatalandPFCslicespreloadedwith[ 3H]DAweresuperfusedwithbufferfora baseline.Sliceswerethensuperfusedwitharangeofketamineconcentrations

(0.1300M).Anestheticdosesofketamineinterferewiththefunctionof dopaminesites(Nishimura&Sato,1999)causingincreasesinDAin thesynapse.Ketamineinhibitsthedopaminetransporter(DAT),asexpressedin humanembryonickidney(HEK)cells(Ki=66.8M)(Nishimura&Sato,1999).

Thisindicatesthattheeffectsofsubanestheticconcentrationsofketamineare notduetoDATblockade,butratherNMDAreceptorblockade(K i=3.1M)(Oye,

Paulsen,&Maurset,1992;Seeman,Ko,&Tallerico,2005).Additionally,

25

anestheticdosesofketamineelicitlittlepsychotomimeticeffects(White,Ham,

Way,&Trevor,1980;White,Way,&Trevor,1982)indicatingthatanesthetic dosesofketaminearenotsufficienttoinducesymptomsassociatedwith schizophrenia.Ratbrainconcentrationsofketamineduringare approximately100M(Livingston&Waterman,1978),soconcentrationsless than100Mareconsideredtobesubanesthetic.Subsequently,sliceswere superfusedwithbuffernotcontainingketamineforasecondbaseline.The concentrationresponseprofileforketaminewasdeterminedineveryrat.When collectionwascomplete,radioactivitywasmeasuredfromslicesandsuperfusate.

ThepurposeofExperiment2wastodeterminetheeffectofketamineon nicotinepharmacologyusinganacutepharmacologicalanimalmodelof schizophrenia.AcuteexposuretoNMDAreceptorantagonistshasbeen developedasapharmacologicalanimalmodelofschizophrenia.Asdiscussed above,acuteexposuretoketamineandPCPinduceschangesinbehavior associatedwithpositive(Adams&Moghaddam,1998;Imre,Fokkema,Den

Boer,&TerHorst,2006;SamsDodd,1995,,1996,,1997)andnegative(Sams

Dodd,1995,,1996,,1997)symptomsandcognitivedysfunction(Adams&

Moghaddam,1998;Imre,Fokkema,DenBoer,&TerHorst,2006;Moghaddam,

Adams,Verma,&Daly,1997)ofschizophrenia.Acuteexposuretoketamineand

PCPalsoinducesneurochemicalchangesassociatedwithpositiveandnegative symptomsandcognitivedysfunctionofschizophrenia(Adams&Moghaddam,

1998;Lindefors,Barati,&O'Connor,1997;Moghaddam,Adams,Verma,&Daly,

1997;Nishijimaetal.,1996;Verma&Moghaddam,1996).However,these

26

behavioralandneurochemicalchangesmaybeduetodirectdrugeffectsrather thandruginducedneurobiologicalchangesinneurocircuitry(Jentsch,Taylor,&

Roth,1998).Aspreviouslydiscussed,peoplediagnosedwithschizophreniaare morelikelytosmokecigarettes(Sacco,Bannon,&George,2004),andextract morenicotinefromcigarettesascomparedtononmentallyillsmokers(Olincy,

Young,&Freedman,1997).Schizophrenicsmokersusecigarettesasa therapeuticagentfornegativesymptomsandcognitivedysfunctionof schizophrenia(Kumari&Postma,2005;Leonardetal.,2001;Levin,2002)and theabilityofnicotinetoincreaseDAreleaseinthePFCmaytemporarilyimprove thesesymptoms(Dalack,Healy,&MeadorWoodruff,1998).Inthisstudy,we modeledschizophreniabyketaminesuperfusionthroughratbrainslices.Thisis amethodtomodelacuteketamineinjection.Subsequently,weaddednicotinein ordertodeterminetheroleofnAChRsandnicotinepharmacologyinanacute animalmodelofschizophrenia.TheeffectofNMDAreceptorblockade,by ketamine,onnicotineevokedDAreleasehasnotbeendetermined.The[ 3H] overflowassayisusedtoprobethenAChRsthatmediateDArelease.The hypothesisisthatNMDAreceptorblockade,byketamine,willaugmentnicotine evoked[ 3H]overflowinstriatalandPFCslices.

StriataandPFCweredissectedfromratsandsliced.RatstriatalandPFC slicespreloadedwith[ 3H]DAweresuperfusedwithbufferandketamine(0–10

M)forabaseline.Theseketamineconcentrationswereselectedbasedon resultsfromexperiment1.Subanestheticketamineconcentrations(0–10M) didnothaveintrinsicactivitytoevokeDAreleasefromratstriatalandPFCslices.

27

Theseconcentrationsarealsobelowratbrainconcentrationsofketamine(100

M)duringanesthesia(Livingston&Waterman,1978)andtheK ivalue(66.8M) atwhichketamineinhibitsDAT,asexpressedinHEKcells(Nishimura&Sato,

1999),indicatingthatketamineismostlikelyproducingitseffectsduetoNMDA receptorblockade(K i=3.1M)(Oye,Paulsen,&Maurset,1992;Seeman,Ko,&

Tallerico,2005).Sliceswerethensuperfusedwithnicotine(1100M).The nicotineconcentrationswerechosenbasedonstudiesinwhichnicotineinduced

DAreleasefromstriatalneuronsinaconcentrationdependentmanner(Rapier,

Lunt,&Wonnacott,1988;Sharplesetal.,2000)andareinhibitedbynAChR antagonists(Wilkins,Haubner,Ayers,Crooks,&Dwoskin,2002).Subsequently, slicesweresuperfusedwithbuffernotcontainingnicotineforasecondbaseline.

Theconcentrationresponseprofilefornicotinewasdeterminedineveryrat.

Whencollectionwascomplete,radioactivitywasmeasuredfromslicesand superfusate.

ThepurposeofExperiment3wastodeterminetheeffectofsubchronic ketamineexposureonnicotinepharmacologyusingapharmacologicalanimal modelofschizophrenia.MaleSpragueDawleyratswereinjected(IP)dailywith

30or50mg/kgofketaminefor30days.Thesedosesofketaminewerechosen becausetheyaresufficienttoinducebehavioralandneurochemicalchanges associatedwithpositiveandnegativesymptomsandcognitivedysfunctionof schizophreniainanimals(Beckeretal.,2003;Imre,Fokkema,DenBoer,&Ter

Horst,2006;Lannes,Micheletti,Warter,Kempf,&DiScala,1991;Leccese,

Marquis,Mattia,&Moreton,1986).Thedurationoftreatmentwasadaptedfrom

28

severalstudiesthatshowedketamineadministeredsubchronically(590days consecutively)(Beckeretal.,2003;Lannes,Micheletti,Warter,Kempf,&Di

Scala,1991;Leccese,Marquis,Mattia,&Moreton,1986;Nelson,Burk,Bruno,&

Sarter,2002)inducedbehavioralandneurochemicalchangesassociatedwith positiveandnegativesymptomsandcognitivedysfunctionofschizophreniain animals.Animalsrepresentingthecontrolgroupwereinjected(IP)withsalineat correspondingtimes.Behavioralchangesassociatedwithpositivesymptomsof schizophreniawereassessedbyalocomotoractivityassaythedayofand1day afterthefinalinjectionofketamineorsaline.

Ketamineexposurehasbeenusedasamodelofschizophreniaasit inducesbehavioralandneurochemicalchangesassociatedwithpositiveand negativesymptomsandcognitivedysfunctionofschizophrenia(Beckeretal.,

2003;Imre,Fokkema,DenBoer,&TerHorst,2006;Lannes,Micheletti,Warter,

Kempf,&DiScala,1991;Leccese,Marquis,Mattia,&Moreton,1986;Mandryk,

Fidecka,Poleszak,&Malec,2005;Miyamoto,Leipzig,Lieberman,&Duncan,

2000;Moghaddam,Adams,Verma,&Daly,1997;Nelson,Burk,Bruno,&Sarter,

2002).Theeffectofsubchronicketamineinjectiononlocomotoractivitywas examinedtoensurethatsubchronicketamineexposureinducedbehavioral changesassociatedwithpositivesymptomsofschizophrenia.NMDAreceptor antagonistshavebeenshowntoinducebehavioralchangesassociatedwith positivesymptomsofschizophreniainrodentsincludinghyperlocomotion

(Adams&Moghaddam,1998;Hunt,Kessal,&Garcia,2005;Imre,Fokkema,

DenBoer,&TerHorst,2006;Irifune,Shimizu,Nomoto,&Fukuda,1995;

29

Mandryk,Fidecka,Poleszak,&Malec,2005;McCullough&Salamone,1992;

SamsDodd,1998;Wilsonetal.,2005).Ratswereputintoanautomated locomotoractivitymonitorfor60mintodetermineifbehavioralchanges associatedwithpositivesymptomsofschizophreniahadbeeninduced.The hypothesisisthatsubchronicexposuretoketaminewillinducehyperlocomotion.

Experiment3alsodeterminedtheeffectofsubchronicketamineexposure onthepotencyandefficacyofnicotinetoevoke[ 3H]DAreleasefrompreloaded ratbrainslices.Asdiscussedabove,peoplediagnosedwithschizophreniaare morelikelytosmokecigarettes(Sacco,Bannon,&George,2004),andextract morenicotinefromcigarettesascomparedtononmentallyillsmokers(Olincy,

Young,&Freedman,1997).Schizophrenicsmokersusecigarettesasa therapeuticagentfornegativesymptomsandcognitivedysfunctionof schizophrenia(Kumari&Postma,2005;Leonardetal.,2001;Levin,2002)and theabilityofnicotinetoincreaseDAreleaseinPFCmaytemporarilyimprove thesesymptoms(Dalack,Healy,&MeadorWoodruff,1998).Inthisstudy,we modeledschizophreniabyrepeatedketamineinjections,whichblockedNMDA receptors.Thisisasubchronicanimalmodelofschizophrenia.Subsequently,we superfusednicotinethroughratbrainslicesinordertodeterminetheroleof nAChRsandnicotinepharmacologyinasubchronicanimalmodelof schizophrenia.Theeffectofsubchronicketaminetreatmentonnicotineevoked

DAreleasehasnotbeendetermined.The[ 3H]overflowassayisusedtoprobe thenAChRsthatmediateDArelease.Thehypothesisisthatsubchronic

30

ketamineadministrationwillaugmenttheeffectofnicotineevoked[ 3H]overflow instriatalandPFCslices.

Experiment3beganwith30daysof30or50mg/kgketamineorsaline injectionstoratsandlocomotoractivityassessmentthedayofand1dayafter thefinalketamineorsalineinjection.ADAreleaseassaywasusedinorderto determinetheeffectofsubchronicketamineexposureonthepotencyand efficacyofnicotinetoevoke[ 3H]DAreleasefrompreloadedratbrainslices.

StriataandPFCweredissectedandsliced.RatstriatalandPFCslicespreloaded with[ 3H]DAweresuperfusedwithbufferforabaselineandthensuperfusedwith nicotine.Subsequently,slicesweresuperfusedwithbuffernotcontainingnicotine forasecondbaseline.Theconcentrationresponseprofilefornicotinewas determinedineveryrat.Whencollectionwascomplete,radioactivitywas measuredfromslicesandsuperfusate.

31

EXPERIMENT 1: KETAMINE-EVOKED [ 3H] OVERFLOW

ThepurposeofExperiment1wastodeterminetheconcentration responseprofileforketamine,anoncompetitiveNMDAreceptorantagonist,to evokeDAreleasefromratstriatalandPFCslices.RatstriatalandPFCslices preloadedwith[ 3H]DAweresuperfusedwithbufferandthensuperfusedwith ketamine(0.1300M)todeterminetheintrinsiceffectofketaminetoevoke[ 3H] overflow.

Materials and Methods

Subjects. AllanimalprocedureswereapprovedbytheInstitutionalAnimal

CareandUseCommitteeoftheUniversityofMissouri.Thesubjectsweremale

SpragueDawleyrats(Harlan,Indianapolis,IN;175200guponarrivaltothe laboratory)thatwerehoused2percagewithadlibitumaccesstotapwaterand standardratchow.Thecolonywasmaintainedundera12hr/12hrlight/dark cycleandtheexperimentswereconductedduringthelightphaseofthecycle.

Procedure. Ratswereeuthanizedviarapiddecapitation.StriataandPFC weredissectedandsliced(750mand1000m,respectively)usingaStoelting

(WoodDaleIL)tissuechopper.Sliceswereincubatedinoxygenatedbuffer(in mM,108NaCl,25NaHCO 3,11.1,4.7KCl,1.3CaCl 2,1.2MgSO 4,1.0

Na 2HPO 4,0.11ascorbicacid,0.001EDTA)inametabolicshakerat37˚Cfor30 min.Slicesweretransferredtofreshbuffer,[ 3H]DA(0.1M)wasadded,and sliceswereincubatedforanadditional30min.Striatalslicesweretransferredto

6of12reactionchambersinanautomatedsuperfusionsystem(Suprafusion

32

2500,Brandel,GaithersburgMD).PFCslicesweretransferredtotheremaining6 of12reactionchambers.Eachreactionchamber(0.2ml)wasboundbyglass microfiberfilters(GF/B,Whatman,MadistoneEngland).(10M)was includedinbuffertoinhibitmonoamineoxidase(Westerink&Kikkert,1986), whichinhibitsdopaminemetabolization.Slicesweresuperfusedwithbufferata rateof0.75ml/min(Figure3).After60min,samplecollectioncommencedata rateof1sample/3min.Afterthecollectionof3baselinesamples,ketamine(0.1

300M)wasaddedtobuffer,andsuperfusioncontinuedfor6min(Figure3).

OnechamberwassuperfusedwithbufferaloneforbothstriatalandPFCslices andrepresentedacontrolcondition.Subsequently,allslicesweresuperfused withbufferthatdidnotcontainketaminefor15min(Figure3).Whencollection wascomplete,slicesandfilterswereremovedfromthereactionchambersand incubatedwithtissuesolubilizer(0.25ml/sample).Radioactivityinsuperfusate samplesandslices/filterswasmeasuredbyliquidscintillationspectroscopy(LS

6500Scintillationcounter,BeckmanCoulter,FullertonCA;countingefficiency≈

60%).

Equilibration Baseline Ketamine Baseline

60min 9min 6min 15min Figure 3.Experiment1[ 3H]OverflowAssay.Slicesweresuperfusedwithbuffer for60mininorderforthesystemtoequilibrateandadditional9mininorderto determineabaseline.Ketaminewasthenaddedtobufferandsuperfusion continuedfor6min.Subsequently,slicesweresuperfusedwithbufferfor15min inordertodetermineasecondbaseline.

33

Drugsandchemicals. Pargylinehydrochloride,(±)Ketamine,and ethylenediaminetetraaceticacid (EDTA)werepurchasedfromSigmaChemical

Company(St.LouisMO).AlphaD(+)glucose,NaH 2PO 4,andL(+)ascorbicacid werepurchasedfromAcrosOrganics(Geel,Belgium).Radiolabeleddopamine

(dihydroxyphenylethylamine3,4[73H],specificactivity=34.860.0Ci/mmol) waspurchasedfromPerkinElmerLifeSciences(BostonMA).Scintigesttissue solubilizerandalloftheotherchemicalswerepurchasedfromFisherScientific

(FairlawnNJ).

Dataanalysis. Fractionalreleasewascalculatedbydividingthe[ 3H] collectedineach3minsamplebythetotal[ 3H]presentinthetissueatthetime ofsamplecollection.Total[ 3H]overflowwascalculatedbysubtractingthe overflowinthepresenceofdrugfromaveragebasaloverflow.Total[ 3H]overflow datawereanalyzedvia1wayrepeatedmeasuresANOVA(RMANOVA)with

KetamineConcentrationasawithinsubjectfactor.Fractional[ 3H]releasewas analyzedvia2wayRMANOVAwithKetamineConcentrationandTimeas withinsubjectsfactors.Forallanalyses,asignificancelevelofP<0.05was establishedaprioriandpairedttestswereperformedasposthoccomparisons usingBonferroniadjustmentwhenappropriate.Alldataareexpressedasthe mean,plusorminusthestandarderrorofthemean.DatafromstriatalandPFC sliceswereanalyzedseparately.

Results

Ketaminedidnotevoke[ 3H]DAreleaseinstriatumorPFC. A concentrationresponseprofileforketamine(0.1300M)wasdeterminedin

34

Experiment1.Ketaminedidnotsignificantlyevoke[ 3H]overflowfromeither striatalorPFCslices(Table1).ThemaineffectofKetamineConcentrationwas notsignificantforthemeasureoftotal[ 3H]overflowfromstriatal[F(5,25)=2.20,

P=0.09]andPFC[F(5,25)=1.08,P=0.40]slices.

Regardingfractional[ 3H]DAreleasefromstriatalslices,themaineffectsof

KetamineConcentration[F(5,25)=1.28,P=0.30]andTime[F(9,45)=0.40,P=0.93] werenotsignificant.However,asignificantKetamineConcentrationxTime interaction[F(45,225)=2.77,P<0.05]wasfound.Posthocanalysesdidnotreveal anysignificantdifferencesinfractionalreleaseamongketamineconcentrations andcontrolgroups.

KetamineDoesNotEvoke[ 3H]Overflow KetamineConcentration(M) Control 0.1 1.0 10 100 300 0.35 0.82 1.39 0.59 0.74 3.18 Striatum ±0.31 ±0.52 ±0.91 ±0.34 ±0.49 ±2.0 Prefrontal 0.22 0.14 0.01 0.07 0.05 0.11 Cortex ±0.09 ±0.13 ±0.01 ±0.06 ±0.03 ±0.07 Table 1. Ketamine(0.1–300M)didnotsignificantlyevoke[ 3H]overflowfrom eitherstriatalorPFCslices.Datarepresentmean(±S.E.M.)total[ 3H]overflow. Controlvaluesrepresentsuperfusionintheabsenceofketamine.(n=6rats)

Regardingfractional[ 3H]DAreleasefromPFCslices,themaineffectsof

KetamineConcentration[F(5,25)=2.77,P<0.05]andTime[F(9,45)=7.48,P<0.05] weresignificant.However,theKetamineConcentrationxTimeinteraction

[F(45,225)=1.18,P=0.22]wasnotsignificant.Thus,ketaminedidnothave

35

intrinsicactivitytosignificantlyevoke[ 3H]overflowfromeitherstriatalorPFC slices.

Discussion

Ketaminedidnotsignificantlyevoke[ 3H]overflowfromeitherstriatalor

PFCslices.Thesubanestheticconcentrationsofketamine(0.1–10M) consistentlydidnotevokeDAreleasefromeitherstriatalorPFCslices(Table1).

However,therewasatrendfortheanestheticconcentrationsofketamine(100

300M)toevokeDAreleasefromstriatalandPFCslices(Table1).

ThereissignificantevidencetosuggestthatNMDAreceptorantagonists, likeketamineandPCP,increaseDAreleaseinstriatumandPFC(Lindefors,

Barati,&O'Connor,1997;Moghaddam,Adams,Verma,&Daly,1997;Verma&

Moghaddam,1996).However,thosestudiesweredoneinvivo,whichmeans thatthecorticalsubcorticalneurocircuitrywasintact.ItispossiblethatDA releasewasbeingfacilitatedbycorticalsubcorticalconnectivity.Incontrast,rats injectedwithasubanestheticdoseofketamine(15mg/kg)showednoalteration instriatalDAreleaseasmeasuredbyreversephasechromatography(Lannes,

Micheletti,Warter,Kempf,&DiScala,1991).However,ifthereisaneffectof ketamine,itismuchlesscomparedtoourpreliminaryfindingsonnicotine evokedDArelease(Figure2).KetamineisalsolesspotentthanPCPandMK

801(Olney,Labruyere,&Price,1989),soitwouldtakeahigherketamine concentrationtoevokeDAreleaseascomparedtoPCPorMK801.Inthe presentstudy,invitroslicesuperfusionassaywasused,whichmeansthat corticalsubcorticalneurocircuitrywasnotintact.Thiscouldbeonereasonthat

36

ourfindingsareinconsistentwithothers.Additionally,severalPET/SPECT studiesinmanhavereportednoeffectofsubanestheticdosesofketamineon

DAreleaseinstriatum(Aaltoetal.,2002;Kegelesetal.,2000).Furthermore,

NMDAreceptorblockadewithMK801reducestheabilityofD 1receptor stimulationtomodulatefiringratesofdopaminergiccellsinthesubstantianigra

(Huang,Bergstrom,Ruskin,&Walters,1998). ThisindicatesthatNMDA receptorblockadeleadstoDAreceptorhypoactivity,afindingthatisinlinewith theresultsofthepresentstudy.

KetaminehasalsobeenimplicatedasaDAagonist.Seemanand colleaguesreportedthatketaminehashigheraffinityforD 2DAreceptors(K i=55 nM)thanforNMDAreceptors(K i=3100nM)(Seeman,Ko,&Tallerico,2005).In

PFC,D 2DAreceptorsarelocalizedonGABAinterneuronsandstimulationof theseDAreceptorsresultsinGABAmediatedinhibitionofpyramidalcells

(Retaux,Besson,&PenitSoria,1991).Takentogether,thisindicatesthat activationofPFCDAreceptorsbyketaminefacilitatesinhibitionofpyramidal cellsbyGABAandresultsinoverallDAhypoactivity.

Theaimofthepresentstudywastodeterminetheconcentrationresponse profileforketaminetoevokeDAreleasefromratstriatalandPFCslices.The resultsindicatethatsubanestheticconcentrationsofketaminedonothave intrinsicactivitytoevokeDArelease;however,thereappearstobeatrendfor anestheticconcentrationsofketaminetoevokeDArelease(Table1).Thefact thatthistrendwasnotstatisticallysignificantismostlikelyaproductofusingan

ANOVA.Wemaybeabletodetectthistrendbyaddingmoreratstothestudyin

37

ordertoincreasethepower.TheeffectsofketamineonDAreleaseinstriatum andPFCiscontroversialintheliterature.Itwasimportanttodeterminethe effectsofketamineonDAreleaseinourassayinordertoinvestigatetheeffects ofsubanestheticketamineconcentrationsonnicotineevokedDAreleasein

Experiment2.

38

EXPERIMENT 2: EFFECT OF NMDA RECEPTOR BLOCKADE, BY

KETAMINE, ON NICOTINE-EVOKED [ 3H] OVERFLOW

ThepurposeofExperiment2wastodeterminetheeffectofNMDA receptorblockade,byketamine,onnicotinepharmacology.Ketamine superfusionthroughbrainslicesmodelsanacuteketamineinjection.Thisisan acuteanimalmodelofschizophrenia.RatstriatalandPFCslicespreloadedwith

[3H]DAweresuperfusedwithbuffercontainingketamine(0,1,or10M)and thennicotine(1100M)wasaddedtodeterminetheinteractionbetween ketamineandnicotineinthe[ 3H]overflowassay.

Materials and Methods

Subjects. Allanimalandcolonyproceduresandmaintenanceofthe animalsweresimilartothosedescribedforExperiment1.

Procedure. Ratbrainslicesandbufferwerepreparedasdescribedin

Experiment1withtheexceptionthatketamine(0,1,or10M)wasalsoincluded inbuffer.Slicesweresuperfusedwithbufferatarateof0.75ml/min(Figure4).

After60min,samplecollectioncommencedatarateof1sample/3min.Afterthe collectionof3baselinesamples,nicotine(1100M)wasaddedtobuffer,and superfusioncontinuedfor6min(Figure4).Thenicotineconcentrationswere selectedfrompreliminaryexperimentsinourlaboratorythatdeterminedthe concentrationresponseprofilefornicotine(Figure2).Theketamine concentrationswereselectedbasedonresultsfromexperiment1.Subanesthetic ketamineconcentrations(0–10M)didnothaveintrinsicactivitytoevokeDA

39

releasefromratstriatalandPFCslices.Furthermore,theseconcentrationsare alsobelowratbrainconcentrationsofketamine(100M)duringanesthesia

(Livingston&Waterman,1978),whichelicitslittlepsychotomimeticeffects

(White,Ham,Way,&Trevor,1980;White,Way,&Trevor,1982).Onechamber wassuperfusedwithbufferaloneforbothstriatalandPFCslicesand representedacontrolcondition.Subsequently,allslicesweresuperfusedwith bufferthatdidnotcontainnicotinefor15min(Figure4).Whencollectionwas complete,slicesandfilterswereremovedfromthereactionchambersand incubatedwithtissuesolubilizer(0.25ml/sample).

Equilibration Baseline Nicotine Baseline

60min 9min 6min 15min 0MKetamine 1MKetamine 10MKetamine Figure 4.Experiment2[ 3H]OverflowAssay.Slicesweresuperfusedwithbuffer for60mininorderforthesystemtoequilibrateandadditional9mininorderto determineabaseline.Nicotinewasthenaddedtobufferandsuperfusion continuedfor6min.Subsequently,slicesweresuperfusedwithbufferfor15min inordertodetermineasecondbaseline.

40

Drugsandchemicals. ()nicotineditartratewaspurchasedfromSigma

ChemicalCompany(St.LouisMO).Allotherdrugsandchemicalsacquiredas describedearlier.

Dataanalysis. Fractionalreleaseforeachsuperfusatesamplewas calculatedbydividingthe[ 3H]collectedineach3minsamplebythetotal[ 3H] presentinthetissueatthetimeofsamplecollection.Basal[ 3H]overflowwas calculatedfromtheaverageoffractionalreleaseinthethreesamplesjustbefore additionofnicotine.Forthe6minperiodofsuperfusionwithnicotinealone,the fractionalsamplesgreaterthanbaselineweresummedandbasal[ 3H]overflow wassubtractedtodeterminetotal[ 3H]overflow.Initially,thedataforeach ketamineconcentrationwereanalyzedseparatelybythefollowinganalyses.

Total[ 3H]overflowdatawereanalyzedvia1wayRMANOVAwithNicotine

Concentrationasawithinsubjectfactor.Fractional[ 3H]releasewasanalyzedvia

2wayRMANOVAwithNicotineConcentrationandTimeaswithinsubjects factors.Comparisonsamongketamineconcentrationswereanalyzedbythe followinganalyses.Total[ 3H]overflowdatawereanalyzedvia2wayRMANOVA withNicotineConcentrationasawithinsubjectfactorandKetamine

Concentrationasabetweensubjectsfactor.Fractional[ 3H]releasewas analyzedvia3wayRMANOVAwithNicotineConcentrationandTimeaswithin subjectsfactorsandKetamineConcentrationasabetweensubjectsfactor.For allanalyses,asignificancelevelofP<0.05wasestablishedaprioriandpairedt testswereperformedasposthoccomparisonsusingBonferroniadjustment whenappropriate.DatafromstriatalandPFCsliceswereanalyzedseparately.

41

EC 25 ,EC 50 ,andEC 75 valuesforstriatalandPFCsliceswerecalculatedvia nonlinearregressionforeachratandanalyzedviaKruskalWallistest.Kruskal

Wallisposthoctestswereperformedwhenappropriate.

Results

Nicotineevokes[ 3H]DAreleaseinstriatumandPFC. Nicotineevoked[ 3H] overflowinaconcentrationdependentmannerfrombothstriatalandPFCslices.

AsignificantmaineffectofNicotineConcentrationwasfoundforthemeasureof total[ 3H]overflowfromstriatal[F(4,28)=12.37,P<0.05]andPFC[F(4,28)=20.23,

P<0.05]slices.Posthocanalysesrevealedgreater[ 3H]overflowwith10100M nicotinethanforcontrol(0Mnicotine)fromstriatalslices(Figure5).The thresholdnicotineconcentrationwas10Minstriatum.Posthocanalysesalso revealedgreater[ 3H]overflowwith30–100Mnicotinethanforcontrolfrom

PFCslices(Figure6).Thethresholdnicotineconcentrationwas30MinPFC.

NicotineevokedDAreleaseinatimeandconcentrationdependent mannerfromstriatalslices.Regardingfractional[3H]DAreleasefromstriatal slices,themaineffectofNicotineConcentration[F(4,28)=9.53,P<0.05]andTime

[F(9,63)=3.63,P<0.05]wassignificant.AsignificantNicotineConcentrationx

Timeinteraction[F(36,252)=16.16,P<0.05]wasalsofound.Posthocanalyses revealedthatfractionalreleasewasgreaterfor100Mnicotinethanforcontrol

(0Mnicotine)atthe12,15,18,and21mintimepoints.Fractionalreleasewas greaterfor30Mnicotinethanforcontrolatthe15,18,and21mintimepoints.

Fractionalreleasewasgreaterfor10Mnicotinethanforcontrolatthe18and

42

21mintimepoints.Thus,nicotinehadintrinsicactivitytoevoke[ 3H]overflow fromstriatalslices.

ForPFCslices,nicotineevokedDAreleaseinatimeandconcentration dependentmanner.Regardingfractional[ 3H]DAreleasefromPFCslices,the maineffectsofNicotineConcentration[F(4,28)=3.69,P<0.05]andTime

[F(9,63)=5.56,P<0.05]weresignificant.AsignificantNicotineConcentrationx

Timeinteraction[F(36,252)=19.34,P<0.05]wasalsofound.Posthocanalyses revealedthatfractionalreleasewasgreaterfor100Mnicotinethanforcontrol

(0Mnicotine)atthe12,15,18,21,and24mintimepoints.Fractionalrelease wasgreaterfor10Mnicotinethanforcontrolatthe15mintimepoint.Thus, nicotinehadintrinsicactivitytoevoke[ 3H]overflowfromPFCslices.

Ketamineaugmentstheeffectofnicotinetoevoke[3H]DAreleasein striatumandPFC. Ketamine(1–10M)alterednicotineevoked[ 3H]overflow frombothstriatalandPFCslices.AsignificantmaineffectofNicotine

Concentrationwasfoundforthemeasureoftotal[ 3H]overflowfromstriatal

[F(4,80)=65.36,P<0.05]andPFC[F(4,80)=72.85,P<0.05]slices.Asignificant maineffectofKetamineConcentrationwasalsofoundforthemeasureoftotal

[3H]overflowfromstriatal[F(2,20)=4.93,P<0.05]andPFC[F(2,20)=5.90,

P<0.05]slices.AsignificantNicotineConcentrationxKetamineConcentration interactionwasfoundforthemeasureoftotal[ 3H]overflowfromstriatal

[F(8,80)=3.15,P<0.05]andPFC[F(8,80)=3.16,P<0.05]slices.Posthoc analysesrevealedgreatertotal[3H]overflowwith30100Mnicotineforthe1

Mketaminegroupthanforthe0Mketaminegroupfromstriatalslices(Figure

43

5).Posthocanalysesalsorevealedgreatertotal[3H]overflowwith100M nicotineforthe10Mketaminegroupthanforthe0Mketaminegroupfrom

PFCslices(Figure6).

KetamineincreasednicotineevokedDAreleaseinatimeand concentrationdependentmannerfromstriatalslices.Regardingfractional[ 3H]DA releasefromstriatalslices,themaineffectsofNicotineConcentration

[F(4,80)=45.34,P<0.05]andTime[F(9,180)=47.99,P<0.05]weresignificant.

However,themaineffectofKetamineConcentrationwasonlymarginally significant[F(2,20)=3.39,P=0.054].SignificantNicotineConcentrationx

KetamineConcentration[F(8,80)=2.26,P<0.05],TimexKetamineConcentration

[F(18,180)=3.40,P<0.05],andNicotineConcentrationxTime[F(36,720)=55.03,

P<0.05]interactionswerealsofound.AsignificantNicotineConcentrationxTime xKetamineConcentration[F(72,720)=3.22,P<0.05]interactionwasalsofound.

Posthocanalysesrevealedthatfractionalreleasewasgreaterwith100M nicotineforthe1Mketaminegroupthanforthe0Mketaminegroupatthe18,

21,24,and27mintimepoints(Figure7Top).Fractionalreleasewasgreater with30Mnicotineforthe1Mketaminegroupthanforthe0Mketamine groupatthe15,18,21,24,and27mintimepoints(Figure7Bottom).Fractional releasewasgreaterwith100Mnicotineforthe10Mketaminegroupthanfor the0Mketaminegroupatthe21,24,and27mintimepoints(Figure7Top).

Fractionalreleasewasgreaterwith10Mnicotineforthe10Mketaminegroup thanforthe0Mketaminegroupatthe24mintimepoint.Thus,ketamine(110

44

16

14 0 µMKetamine 1 µMKetamine + 12 10 µMKetamine *

10 +

8 H] Overflow H] 3

6 +

Total [ Total + 4 * + + + 2 + + + + 0 CON 1 3 10 30 100 Nicotine Concentration ( µµµM)

Figure 5.Ketamine(1–10M)augmentedtheeffectofnicotinetoincreasetotal [3H]overflowfromratstriatalslicespreloadedwith[ 3H]DAinaconcentration dependentmanner.Dataareexpressedasthemean(±S.E.M.)total[ 3H] overflowaftertheadditionofnicotinetobuffercontainingketamine(0,1,or10 M).Asterisksdesignateasignificant(P<0.05)differencefrom0MKetamine (superfusionintheabsenceofketamine). Plussignsdesignateasignificant (P<0.05)differencefromcontrolconditionwithineachketaminegroup. CON, control condition. (n=78rats/group)

45

16 0 µMKetamine 14 1 µMKetamine 10 µMKetamine 12

10

8 + H] Overflow H] * 3

6

Total [ Total + 4 + + 2 + + 0 + CON 1 3 10 30 100 Nicotine Concentration (µµµM)

Figure 6.Ketamine(1–10M)augmentedtheeffectofnicotinetoincreasetotal [3H]overflowfromratPFCslicespreloadedwith[ 3H]DAinaconcentration dependentmanner.Dataareexpressedasthemean(±S.E.M.)total[ 3H] overflowaftertheadditionofnicotinetobuffercontainingketamine(0,1,or10 M).Asterisksdesignateasignificant(P<0.05)differencefrom0MKetamine (superfusionintheabsenceofketamine).Plussignsdesignateasignificant (P<0.05)differencefromcontrolconditionwithineachketaminegroup. CON, control condition. (n=78rats/group)

46

M)augmentednicotineevoked[ 3H]overflowfromstriatalslicesrelativetothe0

Mketaminegroup.

ForPFCslices,ketamine(110M)increasednicotineevokedDA releaseinatimeandconcentrationdependentmanner.Regardingfractional

[3H]DAreleasefromPFCslices,themaineffectsofNicotineConcentration

[F(4,76)=30.59,P<0.05],KetamineConcentration[F(2,19)=4.44,P<0.05],and

Time[F(9,171)=28.96,P<0.05]weresignificant.SignificantTimexKetamine

Concentration[F(18,171)=3.15,P<0.05]andNicotineConcentrationxTime

[F(36,684)=42.67,P<0.05]interactionswerealsofound.However,theNicotine

ConcentrationxKetamineConcentrationinteraction[F(8,76)=1.61,P=0.136]was notsignificant.AsignificantNicotineConcentrationxTimexKetamine

Concentration[F(72,684)=3.01,P<0.05]interactionwasfound.Posthoc analysesrevealedthatfractionalreleasewasgreaterwith100Mnicotineforthe

1Mketaminegroupthanforthe0Mketaminegroupatthe24,27,and30min timepoints(Figure8Top).Fractionalreleasewasgreaterwith30Mnicotinefor the1Mketaminegroupthanforthe0Mketaminegroupatthe21,24,and27 mintimepoints(Figure8Bottom).Fractionalreleasewasgreaterwith100M nicotineforthe10Mketaminegroupthanforthe0Mketaminegroupatthe

18,21,24,27,and30mintimepoints(Figure8Top).Fractionalreleasewas greaterwith30Mnicotineforthe10Mketaminegroupthanforthe0M ketaminegroupatthe21and24mintimepoints(Figure8Bottom).Thus, ketamine(110M)augmentednicotineevoked[ 3H]overflowfromPFCslices relativetothe0Mketaminegroup.

47

5 0 µMKetam ine 1 µMKetam ine * 4 * 10 µMKetam ine * 3 * *

H]DA Release H]DA * 3 * 2 Fractional [ Fractional

1

0 0 3 6 9 12 15 18 21 24 27 30 T ime (min)

5

0 µMKetam ine

4 1 µMKetam ine 10 µMKetam ine

3 H]DA Release H]DA 3

2 * Fractional [ Fractional * * * 1 *

0 0 3 6 9 12 15 18 21 24 27 30 T ime (min)

Figure 7.Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease fractional[3H]DAreleasefromratstriatalslicespreloadedwith[ 3H]DAinatime andconcentrationdependentmanner.Top.Timecourseofnicotine(100M) evoked[3H]DArelease.Bottom.Timecourseofnicotine(30M)evoked[3H]DA release.Dataareexpressedasthemean(±S.E.M.)fractionalrelease.Asterisks designateasignificant(P<0.05)differencefrom0MKetamine(superfusionin theabsenceofketamine) andthearrowsdesignatetheadditionandremovalof nicotinetoketaminebuffer. CON, control condition. (n=78rats/group)

48

4.0

3.5 0 µMKetam ine 1 µMKetam ine 3.0 10 µMKetam ine * * 2.5 * H]DA Release H]DA

3 2.0 * * * 1.5

Fractional [ Fractional * 1.0 *

0.5

0.0 0 3 6 9 12 15 18 21 24 27 30 T ime (min)

4.0

3.5 0 µMKetam ine 1 µMKetam ine 3.0 10 µMKetam ine

2.5 H]DA Release H]DA

3 2.0 * 1.5 *

Fractional [ Fractional * 1.0 * *

0.5

0.0 0 3 6 9 12 15 18 21 24 27 30 T ime (min)

Figure 8.Ketamine(1–10M)augmentedtheeffectofnicotinetoincrease fractional[3H]DAreleasefromratPFCslicespreloadedwith[ 3H]DAinatime andconcentrationdependentmanner.Top.Timecourseofnicotine(100M) evoked[3H]DArelease.Bottom.Timecourseofnicotine(30M)evoked[3H]DA release.Dataareexpressedasthemean(±S.E.M.)fractionalrelease.Asterisks designateasignificant(P<0.05)differencefrom0MKetamine(superfusionin theabsenceofketamine) andthearrowsdesignatetheadditionandremovalof nicotinetoketaminebuffer. CON, control condition. (n=78rats/group)

49

Ketamine(110M)decreasedtheeffectivenicotineconcentrationto evokeDAreleaseinstriatumandPFC. EC 25 ,EC 50 ,andEC 75 valuesforstriatal andPFCsliceswerecalculatedforeachrat.Forstriatalslices,therewasa

2 significanteffectofKetamineConcentrationforEC25[Χ =14.71,df=2,P<0.05],

2 2 EC 50[Χ =15.40,df=2,P<0.05],andEC 75 [Χ =15.23,df=2,P<0.05]values(Figure

9).Posthocanalysesrevealedsignificantdifferencesbetween1–10M ketamineandcontrol(0Mketamine)forEC 25 ,EC 50,andEC 75 values.Ketamine

(1–10M)decreasedthenicotineconcentrationthatevokes25%,50%,and

75%DAreleasefromstriatalslices.ForPFCslices,therewasasignificanteffect

2 2 ofKetamineConcentrationforEC 25[Χ =15.90,df=2,P<0.05],EC 50[Χ =15.06,

2 df=2,P<0.05],andEC 75 [Χ =15.23,df=2,P<0.05]values(Figure10).Posthoc analysesrevealedsignificantdifferencesbetween1–10Mketamineand control(0Mketamine)forEC 25 ,EC 50 ,andEC 75 values.Ketamine(1–10M) decreasedthenicotineconcentrationthatevokes25%,50%,and75%DA releasefromPFCslices.Thisindicatesthatketamineaugmentednicotine evokedDAreleaseanddecreasedthenicotineconcentrationneededtoevoke

DAreleasefromstriatalandPFCslicesineachrat.

Discussion Ketamine(1–10M)significantlyincreasednicotineevoked[ 3H]overflow fromratstriatalandPFCslicespreloadedwith[ 3H]DA.Theresultsfromthe presentstudyindicatethatnicotineevokes[ 3H]DAreleaseinatimeand concentrationdependentmannerfromratPFCandstriatalslices,whichis consistentwithpreviousresearch(Cohen,Perrault,Voltz,Steinberg,&Soubrie,

50

2002;Grilli,Parodi,Raiteri,&Marchi,2005;Nisell,Nomikos,&Svensson,1994;

Rapier,Lunt,&Wonnacott,1988).Furthermore,ketamineincreasednicotine evokedDAreleasefromratstriatalandPFCslices.Ourfindingisconsistentwith thefindingthatRo256981,anNR2BselectiveNMDAreceptorantagonist, administeredaloneincreasednicotineinducedlocomotorhyperactivityand nicotineevokedDAreleaseinNAc(Kosowski&Liljequist,2004).Kosowskiand

Liljequist’sfindingsindicatethatblockadeofNMDAreceptorsincreasedthe reinforcingandstimulanteffectsofnicotine.However,thisisinconsistentwith previousreportsthatrepeatedMK801treatmentinhibitednicotineinducedDA releaseinNAc.Intheseexperiments,MK801andnicotinewereadministered simultaneously(Shoaib,Benwell,Akbar,Stolerman,&Balfour,1994).Shoaib’s findingsindicatethatrepeatedcoadministrationofMK801andnicotineblocked sensitization.Incontrast,pretreatmentwithMK801aloneenhancedlocomotor activityinresponsetoasubsequentacuteadministrationofnicotine(Shoaib,

Benwell,Akbar,Stolerman,&Balfour,1994).Shoaib’slatterfindingsuggeststhat

MK801pretreatmentmayinducenAChRsensitizationcausingnAChRstobe easilyactivatedbythesubsequentadministrationofnicotine.Since subanestheticketamineconcentrationsdidnotevokeDAreleaseintrinsicallyin

Experiment1,wecanconcludethattheaugmentationofnicotineevokedDA releaseobservedisnotfromketamineinducedDArelease.Thus,inouracute animalmodelofschizophrenia,ratbrainslicesaremoresensitivetonicotine, whichsuggeststhatketaminemayhaveinducednAChRsensitization.

51

1 0 0 M) µ µ µ µ 1 0 value ( value 25 EC 1

0 . 1 0 1 10 K etam ine C oncentration ( µµµ M ) G roup

1 0 0 M) µ µ µ µ 1 0 value ( value 50 EC 1

0 . 1 0 1 10 K etam ine C oncentration ( µµµ M ) G rou p

1 0 0 M) µ µ µ µ 1 0 value ( value 75 EC 1

0 . 1 0 1 10 K etam ine C oncentration ( µµµ M ) G roup

Figure 9.EC 25 ,EC 50 ,andEC 75valuesforstriatalslices.Ketamine(110M) augmentednicotineevokedDAreleasefromeachratstriatalslice.Top.EC 25 valuesMiddle.EC 50 valuesBottom.EC 75values.(n=78rats/group)

52

3 0 0 M) µ µ µ µ 1 0 0 value ( value 25

EC 3 0

1 0 0 1 10 K etam ine C oncentration ( µµµ M ) G roup

3 0 0 M) µ µ µ µ 1 0 0 value ( value 50

EC 3 0

1 0 0 1 10 K etam ine C oncentration ( µµµ M ) G roup

3 0 0 M) µ µ µ µ 1 0 0 value ( value 75

EC 3 0

1 0 0 1 10 K etam ine C oncentration ( µµµ M ) G roup Figure 10.EC 25 ,EC 50,andEC 75valuesforPFCslices.Ketamine(110M) augmentednicotineevokedDAreleasefromeachratPFCslice.Top.EC 25 valuesMiddle.EC 50 valuesBottom.EC 75values.(n=78rats/group)

53

Ketamineisthoughttoproduceitsactionsprimarilythroughinhibitionof

NMDAreceptorsbybindingtothePCPbindingsite.However,recentlyits selectivityforNMDAreceptorshasbeenquestioned.Ketaminemaybe increasingnicotineevokedDAreleasebyactivationofDAneurons.Some researchgroupshavereportedthatPCPandketamineareDAagonists(Ohmori,

Koyama,Nakamura,Wang,&Yamashita,1992),morespecifically,activatingD 2

DAreceptors(Seeman,Ko,&Tallerico,2005).Seemanandcolleaguesreported thatketaminehashigheraffinityforD 2DAreceptors(K i=55nM)thanforNMDA receptors(K i=3100nM)(Seeman,Ko,&Tallerico,2005).Thissuggeststhat ketaminecouldbeaugmentingnicotineevokedDAreleasebyactivatingDA receptors.However,wedidnotobserveDAreleasefromstriatalandPFCslices inExperiment1,whichmeansthatitisunlikelythatketaminewasworkingasa

DAagonist.

ThereisalsoevidencetosuggestthatketamineisaDATinhibitor

(Nishimura&Sato,1999),whichwouldcauseanincreaseinextracellularDA levels.However,wedonotbelievethattheabilityofketaminetoincrease nicotineevokedDAreleaseisduetoitseffectsonDATastheK ivalueis66.8

M(Nishimura&Sato,1999),andourketamineconcentrationsaremuchlower.

IthasbeenwidelyreportedthatketamineisapotentnAChRantagonist

(Coates&Flood,2001;Flood&Krasowski,2000)withIC 50 =2.8M(Furuyaet al.,1999),however,thisisnotinlinewithourfindings.Wewouldexpect ketaminetoattenuatenicotineevokedDAreleaseifitwereworkingasanAChR

54

antagonist.InsteadketaminemayhaveinducedsensitizationofnAChRsallowing themtobecomeeasilyactivatedbytheadditionofnicotine.

Ketaminehasalsobeenreportedtoinhibitvoltagegatedcalcium channelsinratPC12cells(Wong&Martin,1993).Itisunlikelythattheabilityof ketaminetoaugmentnicotineevokedDAreleaseisduetoitseffectsonvoltage gatedcalciumchannelsasthereportedK ivalueis33M(Wong&Martin,1993).

Also,wewouldexpectadecreaseinDAreleaseifketaminewereblocking calciuminflux.

Ketamineproducesisactionsviaamyriadofreceptorsitesandthe mechanismofactionbywhichketamineincreasednicotineevokedDAreleaseis unclear.However,ketamineismostlikelynotactingasaDAagonist,DAT inhibitor,nAChRantagonist,orcalciumchannelblockerinthisstudy.Ketamine mayhaveinducednAChRsensitizationasitalteredthefunctionofnAChRsthat mediateDAreleaseinstriatumandPFC.

Thisaimofthisstudywastoinvestigatetheinteractionofketamineand nicotineonDAreleasefromstriatalandPFCslices.Nicotineinducedtimeand concentrationdependentincreasesinDAreleasefromratstriatalandPFCslices asmeasuredbya[ 3H]overflowassay.Ketamineaugmentedtheeffectof nicotinetoincreaseDAreleaseinaconcentrationdependentmannerfromrat striatalandPFCslices.Theeffectofnicotinetoevoke[ 3H]DAreleasehasbeen wellcharacterized(Cohen,Perrault,Voltz,Steinberg,&Soubrie,2002;Grilli,

Parodi,Raiteri,&Marchi,2005;Nisell,Nomikos,&Svensson,1994;Rapier,

Lunt,&Wonnacott,1988),however,theinteractionofketamineandnicotineon

55

DAreleaseislesswellcharacterized.Additionally,theeffectsofketamineonDA releaseinstriatumandPFCiscontroversialintheliterature.Researchers suggestthatketamineincreases(Lindefors,Barati,&O'Connor,1997;

Moghaddam,Adams,Verma,&Daly,1997;Verma&Moghaddam,1996)and decreases(A.Carlsson,Waters,&Carlsson,1999;Javitt&Zukin,1991)DA releaseinstriatumandPFC.FewstudieshaveinvestigatedtheeffectofNMDA receptorantagonistsonnicotineevokedDAreleaseandtheresultsofthese studiesarecontradictoryaswell(Kosowski&Liljequist,2004;Shoaib,Benwell,

Akbar,Stolerman,&Balfour,1994).Takentogether,thesefindingsmakeit difficulttointerprettheinteractionofketamineandnicotineonDArelease.

However,afterconsideringpossibletargetsofketamine,ourresultsindicatethat ketaminealteredthefunctionofnAChRsthatmediateDAreleaseinstriatumand

PFC,perhapsbyinducingnAChRsensitization.

Thisstudywasdesignedtoinvestigatetheroleofnicotinepharmacology inanacutepharmacologicalanimalmodelofschizophreniaviaaslice superfusionassayinwhichsubanestheticketamineconcentrationswereusedto induceneurochemicalchangesassociatedwithschizophrenia.Ketamine augmentedtheeffectofnicotinetoevokeDAreleaseinstriatumandPFC.This indicatesthatitrequireslessnicotinetoactivatenAChRsinordertoincreaseDA releaseinthepresenceofketaminethanintheabsence.Takentogether,these findingssupportanoverallroleofnAChRsastargetsforschizophrenia treatments.Furthermore,ourfindingssupporttheresearchsuggestingthat

56

schizophrenicsmokersusenicotinemorefrequentlyinordertoalleviatenegative symptomsandcognitivedysfunctionassociatedwithschizophrenia.

57

EXPERIMENT 3: EFFECT OF SUBCHRONIC KETAMINE EXPOSURE ON

NICOTINE-EVOKED [ 3H] OVERFLOW

ThepurposeofExperiment3wastodeterminetheeffectsofsubchronic ketamineexposureonnicotinepharmacologyasapharmacologicalanimal modelofschizophrenia.RatstriatalandPFCslicespreloadedwith[ 3H]DAwere superfusedwithbufferandthennicotine(1100M)wasadded.

Materials and Methods

Animalsandpretreatmentexposureregimen. Priortothestartofthe experiments,27maleSpragueDawleyrats(Harlan,Indianapolis,IN;175200g uponarrivaltothelaboratory)wereweighedandassignedrandomlytooneof threeketamineexposuregroups(0mg/kgketamine(n=9),30mg/kgketamine

(n=10),and50mg/kgketamine(n=8)).Allotheranimalandcolonyprocedures andmaintenanceweresimilartothoseasdescribedabove.

OnDay1,thepretreatmentexposureregimenbegan.Ratswereinjected

(IP)witheither30or50mg/kgofketamineorsalineoncedailyfor30days(Days

1–30)duringthelightphaseofthecycle.OnDays30&31,behavioralchanges associatedwithpositivesymptomsofschizophreniawereassessedusinga locomotoractivityassay.Ratsweretransferredfromtheirhomecageandplaced inthelocomotoractivitymonitorfor60minafterdrugorvehicleinjection(Figure

11).

Apparatus. LocomotoractivitywasmonitoredautomaticallyusingMed

Associates’(GeorgiaVT)OpenFieldTestEnvironments(ENV515),comprised

58

ofa16×16horizontalgridofinfraredsensorsandabankof16verticalsensors.

Eachmonitorsurroundedanacryliccage(43.2×43.2×30.5cm),andeach monitorandcagewashousedinalargesoundresistantcubicle(ENV017M).

Locomotoractivitydatawascollectedin5minintervalsusingMedAssociates’

OpenFieldActivitySoftware(SOF811)thatrecordsthenumberofsensor breaksthroughoutthemonitorandcomputesthesedataasmeasuresofdistance traveled(cm).

Procedure. Afterthelocomotoractivityassessment,ratswerenot administeredanyinjectionsortestsandcontinuedtoreceiveadlibitumaccessto waterandstandardratchowforDays3236.OnDay37,oneweekafterthe finalketamineorsalineinjection,ratbrainslicesandbufferwerepreparedas describedinExperiment1.Slicesweresuperfusedwithbufferatarateof0.75 ml/min.After60min,samplecollectioncommencedatarateof1sample/3min.

Afterthecollectionof3baselinesamples,nicotine(1100M)wasaddedto buffer,andsuperfusioncontinuedfor6min.Thenicotineconcentrationswere selectedfrompreliminaryexperimentsinourlabthatdeterminedthe concentrationresponseprofilefornicotine(Figure2).Onechamberwas superfusedwithbufferaloneforbothstriatalandPFCslicesandrepresenteda controlcondition.Subsequently,allslicesweresuperfusedwithbufferthatdid notcontainnicotinefor15min.Whencollectionwascomplete,slicesandfilters wereremovedfromthereactionchambersandincubatedwithtissuesolubilizer

(0.25ml/sample).

59

Drugsandchemicals. (±)Ketaminehydrochloride(Ketasthesia)was purchasedfromButlerAnimalHealthSupply(ChicagoIL).Allotherdrugsand chemicalsacquiredasdescribedabove.

Forpretreatmentexposureregimen,ketaminewasdilutedin0.9%saline vehicle.Injectionvolumewas1.0mlsolution/kgbodyweight.

Dataanalysis. Forthelocomotoractivityprobe,distancetraveleddata wereanalyzedvia2wayRMANOVAwithKetamineDoseasabetween subjectsfactorandTimeasawithinsubjectsfactor.Fractional[ 3H]DArelease andtotal[ 3H]overflowwerecalculatedasdescribedabove.Initially,thedatafor eachketaminedosewereanalyzedseparatelybythefollowinganalyses.Total

DAILYIP LOCOMOTOR [3H] WITHDRAWAL INJECTIONS ACTIVITY OVERFLOW

DAYS1 30 DAY31 DAYS32 36 DAY37

Figure 11.Experiment3Timeline.Ratsreceiveinjectionsdailyfor30days.On Day30&31,locomotoractivityisassessed.OnDays32–36,nobehavioral testingorinjectionsaregiven.OnDay37,[ 3H]overflowassayisperformed.

60

[3H]overflowdatawereanalyzedvia1wayRMANOVAwithNicotine

Concentrationasawithinsubjectfactor.Fractional[ 3H]releasewasanalyzedvia

2wayRMANOVAwithNicotineConcentrationandTimeaswithinsubjects factors.Comparisonsamongketamineconcentrationswereanalyzedbythe followinganalyses.Total[ 3H]overflowdatawereanalyzedvia2wayRMANOVA withNicotineConcentrationasawithinsubjectfactorandKetamineDoseasa betweensubjectsfactor.Fractional[ 3H]releasewasanalyzedvia3wayRM

ANOVAwithNicotineConcentrationandTimeaswithinsubjectsfactorsand

KetamineDoseasabetweensubjectsfactor.Forallanalyses,asignificance levelofP<0.05wasestablishedaprioriandpairedttestswereperformedas posthoccomparisonsusingBonferroniadjustmentwhenappropriate.Datafrom striatalandPFCsliceswereanalyzedseparately.

Results

Ketamine(30–50mg/kg)inducedhyperactivity. Thepresenceof behavioralchangesassociatedwithpositivesymptomsofschizophreniaby repeatedexposuretoketamine(0,30,or50mg/kg)wasassessedusinga locomotoractivityassay.Ketamineinducedhypoandhyperactivityinrats.

AnalysisoftotaldistancetraveledrevealedasignificantmaineffectofKetamine

Dose[F(2,24)=51.61,P<0.05].Regardingthetimecourse,asignificantmain effectofTimewasfound[F(11,264)=13.15,P<0.05]andtheKetamineDosex

Timeinteractionwasalsosignificant[F(22,264)=6.37,P<0.05].Ratsinthe ketaminetreatedgroups(30or50mg/kg)weremoreactivethanratsinthe salinetreatedgroup,indicatingthatketamineinducedhyperactivityfollowingthe

61

lastinjection(Figure12Top).Additionally,ketamineappearedtoinducemodest hypoandhyperactivityinrats1dayafterthelastinjection.Themaineffectof

KetamineDose[F(2,24)=0.31,P=0.74]wasnotsignificant.Regardingthetime course,asignificantmaineffectofTimewasfound[F(11,264)=116.68,P<0.05] andtheKetamineDosexTimewasalsosignificant[F(22,264)=2.16,P<0.05].

Onedayafterthelastinjection,ketamineappearedtoinducemodesthypoand hyperactivityasratsintheketaminetreatedgroupsshowedsignificant differencesinactivityfromtheratsinthesalinetreatedgroup(Figure12Bottom).

Nicotineevokes[ 3H]DAreleaseinstriatumandPFC. Nicotineevoked[ 3H] overflowinaconcentrationdependentmannerfrombothstriatalandPFCslices fromsalinetreatedanimals.AsignificantmaineffectofNicotineConcentration wasfoundforthemeasureoftotal[ 3H]overflowfromstriatal[F(5,35)=13.79,

P<0.05]andPFC[F(5,35)=18.98,P<0.05]slices.Posthocanalysesrevealed greater[ 3H]overflowfor10100Mnicotinethanforcontrol(0Mnicotine)from striatalslices(Figure13).Posthocanalysesalsorevealedgreater[ 3H]overflow for30–100MnicotinethanforcontrolfromPFCslices(Figure14).Regarding fractional[ 3H]DAreleasefromstriatalslices,themaineffectsofNicotine

Concentration[F(5,35)=7.34,P<0.05]andTime[F(9,63)=24.56,P<0.05]were significant.AsignificantNicotineConcentrationxTimeinteraction

[F(45,315)=12.61,P<0.05]wasalsofound.Regardingfractional[ 3H]DArelease fromPFCslices,themaineffectsofNicotineConcentration[F(5,35)=23.54,

P<0.05]andTime[F(9,63)=16.49,P<0.05]weresignificant.Asignificant

62

7000

S aline 6000 30mg/kgKetamine * 50mg/kgKetamine * * 5000 * * 4000 * * * * * * * * * 3000 * * * * *

Distance Traveled (cm) Traveled Distance * 2000 * * 1000

0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 T ime (min)

2250

2000 S aline + 30mg/kgKetamine 1750 50mg/kgKetamine

1500 * 1250

1000

750 Distance Traveled (cm) Traveled Distance 500 * 250

0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 T ime (min)

Figure 12.LocomotorActivityonDay30&31.Top.Ketamine(30–50mg/kg) inducedhyperactivityfollowingthelastinjection.Ratsweregiveninjectionand putintolocomotoractivitymonitorfor60min.Bottom.Ketamine(30–50mg/kg) inducedmodesthyperactivity1dayafterthelastinjection.Ratswereputinto locomotoractivitymonitorfor60min.Asterisksdesignatesignificant(P<0.05) differencefromSalinetreatedgroupandplussignsdesignatesignificant (P<0.05)differencebetweenKetaminetreatedgroups.Noteordinatescale differences.(n=810rats/group)

63

NicotineConcentrationxTimeinteraction[F(45,315)=19.48,P<0.05]wasalso found.Thus,nicotineevoked[ 3H]overflowfrombothstriatalandPFCslicesfrom salinetreatedanimals,additionally,thethresholdnicotineconcentrationfor striatalandPFCsliceswas10Mand30M,respectively.

Effectofketamine(30–50mg/kg)onnicotineevoked[ 3H]DAreleasein striatumandPFC. Ketamine(30–50mg/kg)didnotalternicotineevoked[ 3H] overflowfrombothstriatal(Figure13)andPFC(Figure14)slices.Asignificant maineffectofNicotineConcentrationwasfoundforthemeasureoftotal[ 3H] overflowfromstriatal[F(5,115)=48.82,P<0.05]andPFC[F(5,110)=82.07,

P<0.05]slices.However,themaineffectofKetamineConcentrationwasnot significantforthemeasureoftotal[ 3H]overflowfromstriatal[F(2,23)=1.42,

P=0.26]andPFC[F(2,22)=0.37,P=0.69]slices.AlsotheNicotineConcentration xKetamineConcentrationinteractionwasnotsignificantforthemeasureoftotal

[3H]overflowfromstriatal[F(10,115)=1.17,P=0.32]andPFC[F(10,110)=0.20,

P=0.99]slices.Thus,therewerenosignificantdifferencesfornicotineevokedDA releaseamongketaminetreatedgroups.Subsequentanalyseswereperformed tofurtherinvestigatethedata.

Ketamine(50mg/kg)loweredthethresholdnicotineconcentration.

Nicotineevoked[ 3H]overflowinaconcentrationdependentmannerfromboth striatalandPFCslicesofketamine(50mg/kg)treatedanimals.Asignificantmain effectofNicotineConcentrationwasfoundforthemeasureoftotal[ 3H]overflow fromstriatal[F(5,35)=79.69,P<0.05]andPFC[F(5,35)=56.67,P<0.05]slices.

Posthocanalysesrevealedgreater[ 3H]overflowwith1100Mnicotinethan

64

15.0

Saline 12.5 30mg/kgKetamine + 50mg/kgKetamine 10.0 +

7.5 H] Overflow H]

3 +

Total [ Total 5.0 +

+ + 2.5 + + + + 0.0 + CON 1 3 10 30 100 Nicotine Concentration ( µµµM)

Figure 13.Ketamine(30–50mg/kg)alteredtheeffectofnicotineontotal[ 3H] overflowfromratstriatalslicespreloadedwith[ 3H]DA.Dataareexpressedasthe mean(±S.E.M.)total[ 3H]overflowaftertheadditionofnicotinetoketamine buffer.Plussignsdesignateasignificant(P<0.05)differencefromcontrol conditionwithineachketaminegroup. CON, control condition. (n=810 rats/group)

65

15.0

Saline 12.5 30mg/kgKetamine 50mg/kgKetamine 10.0

+ 7.5 + H] Overflow H] 3 +

Total [ Total 5.0

2.5 + + + 0.0 CON 1 3 10 30 100 Nicotine Concentration ( µµµM)

Figure 14.Ketamine(30–50mg/kg)alteredtheeffectofnicotineontotal[ 3H] overflowfromratPFCslicespreloadedwith[ 3H]DA.Dataareexpressedasthe mean(±S.E.M.)total[ 3H]overflowaftertheadditionofnicotinetoketamine buffer.Plussignsdesignateasignificant(P<0.05)differencefromcontrol conditionwithineachketaminegroup. CON, control condition. (n=810 rats/group)

66

forcontrol(50mg/kgketamine/0Mnicotine)fromstriatalslices(Figure13).The thresholdnicotineconcentrationfor50mg/kgketaminegroupwas1Mandthe thresholdnicotineconcentrationforcontrol(0mg/kgketamine)was10Min striatum.Posthocanalysesalsorevealedgreater[3H]overflowwith30–100M nicotinethanforcontrol(50mg/kgketamine/0Mnicotine)fromPFCslices

(Figure14).Thethresholdnicotineconcentrationfor50mg/kgketaminegroup was30Mandthethresholdnicotineconcentrationforcontrol(0mg/kg ketamine)was30MinPFC.Thus;ketamine(50mg/kg)loweredthethreshold nicotineconcentrationinstriatumascomparedtocontrol(0mg/kgketamine).

NicotineevokedDAreleaseinatimeandconcentrationdependent mannerfromstriatalslicesofketamine(50mg/kg)treatedrats.Regarding fractional[ 3H]DAreleasefromstriatalslices,themaineffectsofNicotine

Concentration[F(5,35)=10.03,P<0.05]andTime[F(9,63)=44.47,P<0.05]were significant.AsignificantNicotineConcentrationxTimeinteraction

[F(45,315)=31.12,P<0.05]wasalsofound.Posthocanalysesrevealedthat fractionalreleasewasgreaterfor100Mnicotinethanforcontrol(50mg/kg ketamine/0Mnicotine)atthe12,15,18,21,24,27,and30mintimepoints.

Fractionalreleasewasgreaterfor30Mnicotinethanforcontrolatthe18,21,

24,and27mintimepoints.Fractionalreleasewasgreaterfor10Mnicotine thanforcontrolatthe18,21,and24mintimepoints.Thus,nicotineevokedDA releaseinatimeandconcentrationdependentmannerfromstriatalslicesof ketaminetreatedrats.

67

ForPFCslices,nicotineevokedDAreleaseinatimeandconcentration dependentmannerofketamine(50mg/kg)treatedrats.Regardingfractional

[3H]DAreleasefromPFCslices,themaineffectsofNicotineConcentration

[F(5,35)=23.61,P<0.05]andTime[F(9,63)=32.41,P<0.05]weresignificant.A significantNicotineConcentrationxTimeinteraction[F(45,315)=26.57,P<0.05] wasalsofound.Posthocanalysesrevealedthatfractionalreleasewasgreater for100Mnicotinethanforcontrol(50mg/kgketamine/0Mnicotine)atthe12,

15,18,21,24,27,and30mintimepoints.Fractionalreleasewasgreaterfor30

Mnicotinethanforcontrolatthe15,18,21,24,and27mintimepoints.Thus, nicotineevokedDAreleaseinatimeandconcentrationdependentmannerfrom

PFCslicesofketaminetreatedrats.

Ketamine(30mg/kg)didnotlowerthethresholdnicotineconcentration.

Nicotineevoked[ 3H]overflowinaconcentrationdependentmannerfromboth striatalandPFCslicesofketamine(30mg/kg)treatedanimals.Asignificantmain effectofNicotineConcentrationwasfoundforthemeasureoftotal[ 3H]overflow fromstriatal[F(5,45)=17.56,P<0.05]andPFC[F(5,40)=24.53,P<0.05]slices.

Posthocanalysesrevealedgreater[ 3H]overflowfor10100Mnicotinethan forcontrol(30mg/kgketamine/0Mnicotine)fromstriatalslices(Figure13).The thresholdnicotineconcentrationfor30mg/kgketaminegroupwas10Mandthe thresholdnicotineconcentrationforcontrol(0mg/kgketamine)wasalso10Min striatum.Posthocanalysesalsorevealedgreater[3H]overflowwith30–100M nicotinethanforcontrol(30mg/kgketamine/0Mnicotine)inPFCslices(Figure

14).Thethresholdnicotineconcentrationfor30mg/kgketaminegroupwas30

68

Mandthethresholdnicotineconcentrationforcontrol(0mg/kgketamine)was also30MinPFC.Thus,nicotineevokedDAreleaseinstriatumandPFCof ketamine(30mg/kg)treatedrats.However,thethresholdnicotineconcentration wasnotdifferentfromsalinetreatedrats.

Discussion

Theresultsofthepresentstudyindicatethatketamine(30–50mg/kg) significantlyalteredlocomotoractivity.Ketaminetreatedratswerehyperactive comparedtosalinetreatedratsonDay30and31.Ketaminesignificantlyaltered nicotineevoked[ 3H]overflow,whenadministeredsubchronically,fromratstriatal andPFCslices.Subchronicketamine(50mg/kg)exposuredecreasedthe thresholdnicotineconcentrationinstriatumcomparedtothesalinetreatedrats.

Theeffectofsubchronicketamineadministrationonlocomotoractivitywas determinedinordertomakesurethatexposuretoketamineinducesbehavioral changesassociatedwithpositivesymptomsofschizophrenia.Subchronic administrationofsubanestheticdosesofketamineandPCPinducedpositive symptomsassociatedwithschizophreniasuchashyperactivity(Leccese,

Marquis,Mattia,&Moreton,1986;SamsDodd,1995,,1996)inanimals.The productionofpositivesymptomsassociatedwithschizophreniaiscausedby hyperactivityofDAneuronsinmesolimbicandnigrostriatalpathways(A.

Carlsson,1995;Seeman,1987).Inthepresentstudy,ketamineinducedhypo andhyperactivityfollowingthelastinjection;however,thisismostlikelycaused byadirectdrugeffect.Thehypoactivitywasobservedatthe10mintimepointin both3050mg/kgketaminetreatedrats.Throughcrudeobservations,thiscan

69

beexplainedbydruginducedstereotypy.Additionally,modesthypoand hyperactivitywereobservedafter24hrketaminewithdrawal,whichismostlikely duetoneuroadaptivechangesinducedbyrepeatedketamineexposure.

Hypoactivitywasobservedinthe50mg/kgketaminetreatedratsatthe5min timepoint.Additionally,hypoactivitywasobservedinbothketaminetreated groupscomparedtothepreviousday;whereas,thesalinetreatedratsshowed nodifferencesinlocomotoractivityacrossDays30&31.Thehypoactivity observedonDay31supportsoursuggestionthatketamineinducedhyperactivity onDay30isduetodirectdrugeffects.Hence,subchronicketamineexposure wassufficienttoinducebehavioralchangesassociatedwithpositivesymptoms ofschizophrenia,whichisconsistentwiththemodelproposedbyCarlssonand colleagues(A.Carlsson,Waters,&Carlsson,1999).

Theeffectofsubchronicketamineadministrationontheabilityofnicotine toevokeDAreleasewasalsodetermined.Theabilityofnicotinetoimprove symptomsofschizophrenia(Levin,2002;Levin,Bettegowda,Blosser,&Gordon,

1999;Levin&Christopher,2003;Levin,Kaplan,&Boardman,1997;Levin,Rose,

&Abood,1995)leadsustobelievethatthereisacommonunderlying neurobiologybetweenschizophreniaandnicotine.Theabilityof nicotinetoincreaseDAreleasehasbeenimplicatedashavingpotentialto improvesymptomsofschizophrenia(Dalack,Healy,&MeadorWoodruff,1998).

Inthepresentstudy,subchronicketamine(50mg/kg)exposuredecreasedthe thresholdnicotineconcentrationascomparedtothesalinetreatedrats(Figure

13).Thissuggeststhatketamineinducedneurobiologicalchangesincortical

70

subcorticalneurocircuitryastheeffectofnicotinetoevokeDAreleasewas intensified.Thus,subchronicketamineexposureinducedneuroadaptivechanges whichincreasedthebrain’ssensitivitytonicotine.

OurfindingsappeartosupportthemodelproposedbyCarlssonand colleaguesinwhichcorticalglutamatergicprojectionsmodulateDAactivityof mesolimbicandmesocorticalDApathways(Figure1).Accordingtothismodel,

NMDAreceptorblockade,byketamine,inhibitsglutamateneurotransmission.A decreaseinglutamateinhibitsmesocorticalDAneuronswhichresultsin decreasedDAreleaseincorticalregions.Inhibitionofglutamate neurotransmissionalsoaccountsforhyperactivityofmesolimbicDAneuronsvia decreasedinhibitorytoneofGABAergicinterneurons.Thisresultsinasubcortical increaseinDArelease(A.Carlsson,Waters,&Carlsson,1999).Theadditionof nicotineafterthisdysregulationofcorticalsubcorticalneurocircuitrywould increaseDAreleaseincorticalandsubcorticalregionswithDAreleasebeing greaterinsubcorticalregions.OurresultssupportthisnotionasDAreleasewas greaterinstriatumascomparedtoPFC(CompareFigures13&14).Thus,this suggeststhatsubchronicketamineadministrationalteredthecorticalsubcortical neurocircuitryandtheeffectofnicotinetoevokeDArelease.

Interestingly,subchronicketamine(3050mg/kg)exposuredidnot significantlyaugmentnicotineevokedDAreleaseinPFC.However;therewasa trendofthelowdoseofketaminetowardaugmentationofnicotineevokedDA release.Nevertheless,neurotoxiceffectsinducedbyNMDAreceptorantagonist administrationhavebeenobserved(Olney&Farber,1995a,,1995b),which

71

causeareductioninglutamatergicandGABAergicaxonterminalsinthebrain

(Mirnics,Middleton,Marquez,Lewis,&Levitt,2000).Thus,adeficitin glutamatergicandGABAergicaxonterminalswouldresultindecreasedDA release.

Theaimofthepresentstudywastodeterminetheeffectofsubchronic ketamineonlocomotoractivityandtheinteractionofsubchronicketamineand nicotineonDArelease.Ketamine(30–50mg/kg)increasedlocomotoractivityin ratscomparedtosalinetreatedrats.Thisindicatesthatketamineinduced behavioralchangesassociatedwithpositivesymptomsofschizophrenia,whichis consistentwithpreviousresearch(Leccese,Marquis,Mattia,&Moreton,1986).

SubchronicketamineexposurealterednicotineevokedDAreleaseinratstriatal andPFCslices.Thehighdoseofketaminedecreasedthethresholdnicotine concentrationinstriatumandthelowdoseofketamineproducedatrendtoward augmentednicotineevokedDArelease.Theeffectofnicotinetoevoke[ 3H]DA releasehasbeenwellcharacterized(Cohen,Perrault,Voltz,Steinberg,&

Soubrie,2002;Grilli,Parodi,Raiteri,&Marchi,2005;Nisell,Nomikos,&

Svensson,1994;Rapier,Lunt,&Wonnacott,1988),however,theinteractionof subchronicketamineandnicotineonDAreleaseislesswellcharacterized.To thisauthor’sknowledge,theeffectofketamineadministeredsubchronicallyin vivoonnicotineevokedDAreleasehasnotbeeninvestigated.Severalstudies indicatethatketamineisapotentnAChRantagonist(Furuyaetal.,1999;

Yamakura,ChavezNoriega,&Harris,2000);however,thisisnotinlinewiththe resultsfromthepresentlowdoseofketamine.Furthermore,thesestudieswere

72

doneinvitro.Schizophreniainvolvesdysregulationofmultipleneurotransmitter systemsandcorticalsubcorticalneurocircuitry,andketamineproducesits actionsviaamyriadofreceptorsites.Therefore,ourmodelprovidesa comprehensivesystemtoinvestigatebehavioralandneurochemicalchanges associatedwithschizophrenia.FewstudieshaveinvestigatedtheeffectofNMDA receptorantagonistsonnicotineevokedDAreleaseandtheresultsofthese studiesarecontradictory(Kosowski&Liljequist,2004;Shoaib,Benwell,Akbar,

Stolerman,&Balfour,1994).RepeatedcoadministrationofMK801andnicotine decreasedlocomotoractivityandDAreleaseinNAcindicatingthatMK801 preventedsensitizationtonicotineinrats(Shoaib,Benwell,Akbar,Stolerman,&

Balfour,1994).However,repeatedadministrationofMK801aloneincreased locomotoractivityinresponsetoasubsequentnicotineinjectionindicatingthat pretreatmentwithMK801producednAChRsensitization(Shoaib,Benwell,

Akbar,Stolerman,&Balfour,1994).Additionally,Ro256981administeredalone increasesnicotineinducedlocomotorhyperactivityandnicotineevokedDA releaseinNAc(Kosowski&Liljequist,2004).Thisindicatesthatblockadeof

NMDAreceptorsincreasesthereinforcingandstimulanteffectsofnicotine.Thus, thissupportsourresultsandindicatesthatsubchronicketamineexposuremay haveinducednAChRsensitizationwhichcausedanincreaseinDArelease.

73

SUMMARY AND CONCLUSION

Ketamine,atpharmacologicallyrelevantconcentrations,didnothave intrinsicactivitytoevokeDAreleasefromstriatalandPFCslices.Inanacute pharmacologicalanimalmodelofschizophrenia,ketamineaugmentednicotine evokedDAreleasefromstriatalandPFCslices.Inasubchronicpharmacological animalmodelofschizophrenia,ketaminealterednicotineevokedDArelease fromstriatalandPFCslices.Overall,thesedataindicatethatnAChRfunctionis alteredinthismodelofschizophrenia,andsupportarolefornAChRsin schizophreniatreatment.

Acuteandrepeatedpharmacologicalanimalmodelsofschizophrenia weredevelopedtostudycause,progression,andtreatmentofthisdisorder.

Administrationofketamineinducedbehavioralandneurochemicalchanges associatedwithsymptomsofschizophrenia.Acutepharmacologicalanimal modelsofschizophreniaaresufficienttoinducebehavioralandneurochemical changesassociatedwithsymptomsofschizophrenia,butdonotproduceavalid modelofschizophreniaasthesechangesarenotlonglastingandaremostlikely duetodirectdrugeffects(Jentsch,Taylor,&Roth,1998).However,wecanstill observevaluableinteractions.Generally,researchershaveobservedsimilar behavioralchangesassociatedwithsymptomsofschizophreniainrepeated animalmodelsofschizophrenia,butresearchersmustbecarefulwhen comparingacuteandrepeatedmodelsastheneurochemicalchangesremain controversialintheliterature.Repeatedpharmacologicalanimalmodelsof

74

schizophreniaaregenerallypreferredoveracutemodelsastheyinduce behavioralandneurochemicalchangesassociatedwithsymptomsof schizophreniathatarepersistentandtherefore,provideamorevalidmodelof schizophrenia.Thesubsequentadditionofnicotinetoanimalstreatedwith ketamine,acutelyandsubchronically,revealedanimportantroleofnicotinein theunderlyingmechanismandtreatmentofschizophrenia.Inthepresentstudy, ketamineinducedhyperactivity,abehavioralchangeassociatedwithpositive symptomsofschizophrenia.Thissuggeststhatketaminealteredthefunctionof thenigrostriatalpathwayastheproductionofpositivesymptomsofschizophrenia iscausedbyhyperactivityofnigrostriatalDAneurons(A.Carlsson,1995;

Seeman,1987).Subanestheticconcentrations/dosesofketaminealtered nicotineevokedDAreleaseinbothanacuteandasubchronicanimalmodelof schizophrenia.ThisindicatesthatNMDAreceptorblockadebyketaminealtered thefunctionofnAChRsandsubchronicketamineexposureinduced dysregulationofcorticalsubcorticalneurocircuitry.Together,theseexperiments providesupportforuseofketamineinpharmacologicalanimalmodelsof schizophrenia,andtheroleofnAChRsinmechanismsunderlyingschizophrenia.

Insummary,ketamineinducesavalidpharmacologicalanimalmodelof schizophrenia.Ketaminealteredneuronalcircuitsinthebrainwhichresultedin anaugmentedresponseofnicotineevokedDArelease.Thissupportsarolefor nAChRsasapotentialtherapeutictargetforschizophrenia.

75

Future Studies

Inthefuture,itwouldbebeneficialtofurtherinvestigatetheroleof nAChRsinanacuteandasubchronicpharmacologicalanimalmodelof schizophreniainfreelymovingrats.Intheacutepharmacologicalanimalmodel ofschizophrenia,inthisexperiment,ketaminewasadministeredtoratsinvitro.

Incontrast,inthesubchronicpharmacologicalanimalmodelofschizophrenia, ketaminewasadministeredtoratsinvivo.InfusionofNMDAreceptor antagonists,acutelyandsubchronically,followedbynicotinedirectlyintospecific brainregionswouldincreasevalidityofthemodelanddecreasevariability.

Additionally,measuringotherneurotransmitters,likeglutamate,GABA,and serotonin,wouldgiveusanoverallpictureofthemechanismsunderlying schizophrenia.Microdialysiswouldalsoallowustodetectdecreasesin neurotransmitterrelease.AlsotargetingspecificnAChRsubtypeswith radioligandswillaidindeterminingwhichnAChRsareimportantinschizophrenia andcouldassistindevelopingnewtreatmentsforsymptomsofschizophrenia.

Theuseofotherbehavioralassays,likeradialarmmaze,Morriswatermaze, andoperantconditioning,wouldallowustoinvestigateothersymptomsof schizophrenia.

76

REFERENCES

Aalto,S.,Hirvonen,J.,Kajander,J.,Scheinin,H.,Nagren,K.,Vilkman,H.,etal. (2002).KetaminedoesnotdecreasestriataldopamineD2receptor bindinginman. (Berl), 164 (4),401406.

AbiDargham,A.,Gil,R.,Krystal,J.,Baldwin,R.M.,Seibyl,J.P.,Bowers,M.,et al.(1998).Increasedstriataldopaminetransmissioninschizophrenia: confirmationinasecondcohort. Am J Psychiatry, 155 (6),761767.

Adams,B.,&Moghaddam,B.(1998).Corticolimbicdopamineneurotransmission istemporallydissociatedfromthecognitiveandlocomotoreffectsof phencyclidine. J Neurosci, 18 (14),55455554.

Aguado,L.,delValle,R.,&Perez,L.(1997).TheNMDAreceptorantagonist ketamineasanunconditionedstimulusintasteaversionlearning. Neurobiol Learn Mem, 68 (2),189196.

Aguado,L.,SanAntonio,A.,Perez,L.,delValle,R.,&Gomez,J.(1994).Effects oftheNMDAreceptorantagonistketamineonflavormemory:conditioned aversion,latentinhibition,andhabituationofneophobia. Behav Neural Biol, 61 (3),271281.

Angrist,B.M.,&Gershon,S.(1970).Thephenomenologyofexperimentally inducedamphetaminepreliminaryobservations. Biol Psychiatry, 2 (2),95107.

Balla,A.,Koneru,R.,Smiley,J.,Sershen,H.,&Javitt,D.C.(2001).Continuous phencyclidinetreatmentinducesschizophrenialikehyperreactivityof striataldopaminerelease. Neuropsychopharmacology, 25 (2),157164.

Balla,A.,Sershen,H.,Serra,M.,Koneru,R.,&Javitt,D.C.(2003).Subchronic continuousphencyclidineadministrationpotentiatesamphetamine inducedfrontalcortexdopaminerelease. Neuropsychopharmacology, 28 (1),3444.

Becker,A.,Peters,B.,Schroeder,H.,Mann,T.,Huether,G.,&Grecksch,G. (2003).Ketamineinducedchangesinratbehaviour:Apossibleanimal

77

modelofschizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 27 (4),687700.

Braff,D.L.,&Geyer,M.A.(1990).Sensorimotorgatingandschizophrenia. Humanandanimalmodelstudies. Arch Gen Psychiatry, 47 (2),181188.

Breese,C.R.,Lee,M.J.,Adams,C.E.,Sullivan,B.,Logel,J.,Gillen,K.M.,et al.(2000).Abnormalregulationofhighaffinitynicotinicreceptorsin subjectswithschizophrenia. Neuropsychopharmacology, 23 (4),351364.

Breier,A.,Adler,C.M.,Weisenfeld,N.,Su,T.P.,Elman,I.,Picken,L.,etal. (1998).EffectsofNMDAantagonismonstriataldopaminereleasein healthysubjects:applicationofanovelPETapproach. Synapse, 29 (2), 142147.

Buisson,B.,&Bertrand,D.(1998).Openchannelblockersatthehuman alpha4beta2neuronalnicotinicacetylcholinereceptor. Mol Pharmacol, 53 (3),555563.

Bustos,G.,Abarca,J.,Forray,M.I.,Gysling,K.,Bradberry,C.W.,&Roth,R.H. (1992).RegulationofexcitatoryaminoacidreleasebyNmethylD aspartatereceptorsinratstriatum:invivomicrodialysisstudies. Brain Res, 585 (12),105115.

Campbell,U.C.,Lalwani,K.,Hernandez,L.,Kinney,G.G.,Conn,P.J.,& Bristow,L.J.(2004).ThemGluR5antagonist2methyl6(phenylethynyl) (MPEP)potentiatesPCPinducedcognitivedeficitsinrats. Psychopharmacology (Berl), 175 (3),310318.

Carlsson,A.(1988).Thecurrentstatusofthedopaminehypothesisof schizophrenia. Neuropsychopharmacology, 1 (3),179186.

Carlsson,A.(1995).Neurocircuitriesandneurotransmitterinteractionsin schizophrenia. Int Clin Psychopharmacol, 10 Suppl 3 ,2128.

Carlsson,A.,Waters,N.,&Carlsson,M.L.(1999).Neurotransmitterinteractions inschizophreniatherapeuticimplications. Biol Psychiatry, 46 (10),1388 1395.

78

Carlsson,M.,&Svensson,A.(1990).Interferingwithglutamatergic neurotransmissionbymeansofNMDAantagonistadministrationdiscloses thelocomotorstimulatorypotentialofothertransmittersystems. Pharmacol Biochem Behav, 36 (1),4550.

Caster,J.M.,Walker,Q.D.,&Kuhn,C.M.(2005).Enhancedbehavioral responsetorepeateddosecocaineinadolescentrats. Psychopharmacology (Berl), 183 (2),218225.

Champtiaux,N.,Gotti,C.,CorderoErausquin,M.,David,D.J.,Przybylski,C., Lena,C.,etal.(2003).Subunitcompositionoffunctionalnicotinic receptorsindopaminergicneuronsinvestigatedwithknockoutmice. J Neurosci, 23 (21),78207829.

Coates,K.M.,&Flood,P.(2001).Ketamineanditspreservative,benzethonium chloride,bothinhibithumanrecombinantalpha7andalpha4beta2 neuronalnicotinicacetylcholinereceptorsinXenopusoocytes. Br J Pharmacol, 134 (4),871879.

Cohen,C.,Perrault,G.,Voltz,C.,Steinberg,R.,&Soubrie,P.(2002). SR141716,acentral(CB(1))receptorantagonist,blocksthe motivationalanddopaminereleasingeffectsofnicotineinrats. Behav Pharmacol, 13 (56),451463.

Collins,V.J.,Gorospe,C.A.,&Rovenstine,E.A.(1960).Intravenous nonbarbiturate,nonnarcotic:preliminarystudies.1. Cyclohexylamines. Anesth Analg, 39 ,302306.

Court,J.,Spurden,D.,Lloyd,S.,McKeith,I.,Ballard,C.,Cairns,N.,etal.(1999). NeuronalnicotinicreceptorsinwithLewybodiesand schizophrenia:alphaandnicotinebindinginthethalamus. J Neurochem, 73 (4),15901597.

Court,J.A.,MartinRuiz,C.,Graham,A.,&Perry,E.(2000).Nicotinicreceptors inhumanbrain:topographyandpathology. J Chem Neuroanat, 20 (34), 281298.

Dalack,G.W.,Healy,D.J.,&MeadorWoodruff,J.H.(1998).Nicotine dependenceinschizophrenia:clinicalphenomenaandlaboratoryfindings. Am J Psychiatry, 155 (11),14901501.

79

Daniel,D.G.,Berman,K.F.,&Weinberger,D.R.(1989).Theeffectof apomorphineonregionalcerebralflowinschizophrenia. J Neuropsychiatry Clin Neurosci, 1 (4),377384.

Daniel,D.G.,Weinberger,D.R.,Jones,D.W.,Zigun,J.R.,Coppola,R., Handel,S.,etal.(1991).Theeffectofamphetamineonregionalcerebral bloodflowduringcognitiveactivationinschizophrenia. J Neurosci, 11 (7), 19071917.

Davis,K.L.,Kahn,R.S.,Ko,G.,&Davidson,M.(1991).Dopaminein schizophrenia:areviewandreconceptualization. Am J Psychiatry, 148 (11),14741486. deRover,M.,Mansvelder,H.D.,Lodder,J.C.,Wardeh,G.,Schoffelmeer,A.N., &Brussaard,A.B.(2004).LonglastingnicotinicmodulationofGABAergic synaptictransmissionintheratnucleusaccumbensassociatedwith behaviouralsensitizationtoamphetamine. Eur J Neurosci, 19 (10),2859 2870.

Dworkin,R.H.,&Opler,L.A.(1992).Simpleschizophrenia,negativesymptoms, andprefrontalhypodopaminergia. Am J Psychiatry, 149 (9),12841285.

Dwoskin,L.P.,Jewell,A.L.,Buxton,S.T.,&Carney,J.M.(1992). Phencyclidineinduceddesensitizationofstriataldopaminerelease. Neuropharmacology, 31 (10),10331039.

Ellison,G.(1995).TheNmethylDaspartateantagonistsphencyclidine, ketamineanddizocilpineasbothbehavioralandanatomicalmodelsofthe . Brain Res Brain Res Rev, 20 (2),250267.

Flagstad,P.,Mork,A.,Glenthoj,B.Y.,vanBeek,J.,MichaelTitus,A.T.,& Didriksen,M.(2004).Disruptionofneurogenesisongestationalday17in theratcausesbehavioralchangesrelevanttopositiveandnegative schizophreniasymptomsandaltersamphetamineinduceddopamine releaseinnucleusaccumbens. Neuropsychopharmacology, 29 (11),2052 2064.

Flood,P.,&Krasowski,M.D.(2000).Intravenousanestheticsdifferentially modulateligandgatedionchannels. Anesthesiology, 92 (5),14181425.

80

Freedman,R.,Hall,M.,Adler,L.E.,&Leonard,S.(1995).Evidencein postmortembraintissuefordecreasednumbersofhippocampalnicotinic receptorsinschizophrenia. Biol Psychiatry, 38 (1),2233.

Freedman,R.,Wetmore,C.,Stromberg,I.,Leonard,S.,&Olson,L.(1993). Alphabungarotoxinbindingtohippocampalinterneurons: immunocytochemicalcharacterizationandeffectsongrowthfactor expression. J Neurosci, 13 (5),19651975.

Furuya,R.,Oka,K.,Watanabe,I.,Kamiya,Y.,Itoh,H.,&Andoh,T.(1999).The effectsofketamineandpropofolonneuronalnicotinicacetylcholine receptorsandP2xpurinoceptorsinPC12cells. Anesth Analg, 88 (1),174 180.

Gallo,M.,Bielavska,E.,Roldan,G.,&Bures,J.(1998).Tetrodotoxininactivation ofthegustatorycortexdisruptstheeffectoftheNmethylDaspartate antagonistketamineonlatentinhibitionofconditionedtasteaversionin rats. Neurosci Lett, 240 (2),6164.

George,T.P.,Vessicchio,J.C.,Termine,A.,Sahady,D.M.,Head,C.A., Pepper,W.T.,etal.(2002).Effectsofsmokingabstinenceonvisuospatial workingmemoryfunctioninschizophrenia. Neuropsychopharmacology, 26 (1),7585.

Grilli,M.,Parodi,M.,Raiteri,M.,&Marchi,M.(2005).Chronicnicotine differentiallyaffectsthefunctionofnicotinicreceptorsubtypesregulating neurotransmitterrelease. J Neurochem, 93 (5),13531360.

Handelmann,G.E.,Contreras,P.C.,&O'Donohue,T.L.(1987).Selective memoryimpairmentbyphencyclidineinrats. Eur J Pharmacol, 140 (1),69 73.

He,J.,Xu,H.,Yang,Y.,Rajakumar,D.,Li,X.,&Li,X.M.(2006).Theeffectsof chronicadministrationofonthephencyclidineinduced referencememoryimpairmentanddecreaseofBclXL/Baxratiointhe posteriorcingulatecortexinrats. Behav Brain Res, 168 (2),236242.

Huang,K.X.,Bergstrom,D.A.,Ruskin,D.N.,&Walters,J.R.(1998).Nmethyl DaspartatereceptorblockadeattenuatesD1dopaminereceptor modulationofneuronalactivityinratsubstantianigra. Synapse, 30 (1),18 29.

81

Hunt,M.J.,Kessal,K.,&Garcia,R.(2005).Ketamineinducesdopamine dependentofevokedhippocampalactivityinthenucleus accumbensinfreelymovingrats. J Neurosci, 25 (2),524531.

Imre,G.,Fokkema,D.S.,DenBoer,J.A.,&TerHorst,G.J.(2006).Dose responsecharacteristicsofketamineeffectonlocomotion,cognitive functionandcentralneuronalactivity. Brain Res Bull, 69 (3),338345.

Irifune,M.,Shimizu,T.,Nomoto,M.,&Fukuda,T.(1995).InvolvementofN methylDaspartate(NMDA)receptorsinnoncompetitiveNMDAreceptor antagonistinducedhyperlocomotioninmice. Pharmacol Biochem Behav, 51 (23),291296.

Javitt,D.C.(1987).NegativeschizophrenicsymptomatologyandthePCP (phencyclidine)modelofschizophrenia. Hillside J Clin Psychiatry, 9 (1), 1235.

Javitt,D.C.,Balla,A.,Burch,S.,Suckow,R.,Xie,S.,&Sershen,H.(2004). ReversalofphencyclidineinduceddopaminergicdysregulationbyN methylDaspartatereceptor/siteagonists. Neuropsychopharmacology, 29 (2),300307.

Javitt,D.C.,&Zukin,S.R.(1991).Recentadvancesinthephencyclidinemodel ofschizophrenia. Am J Psychiatry, 148 (10),13011308.

Jedema,H.P.,&Moghddam,B.(1996).Characterizationofexcitatoryamino acidmodulationofdopaminereleaseintheprefrontalcortexofconscious rats. J Neurochem, 66 (4),14481453.

Jentsch,J.D.,&Roth,R.H.(1999).Theneuropsychopharmacologyof phencyclidine:fromNMDAreceptorhypofunctiontothedopamine hypothesisofschizophrenia. Neuropsychopharmacology, 20 (3),201225.

Jentsch,J.D.,Taylor,J.R.,&Roth,R.H.(1998).Subchronicphencyclidine administrationincreasesmesolimbicdopaminergicsystemresponsivity andaugmentsstressandpsychostimulantinducedhyperlocomotion. Neuropsychopharmacology, 19 (2),105113.

Jentsch,J.D.,Tran,A.,Le,D.,Youngren,K.D.,&Roth,R.H.(1997). Subchronicphencyclidineadministrationreducesmesoprefrontal

82

dopamineutilizationandimpairsprefrontalcorticaldependentcognitionin therat. Neuropsychopharmacology, 17 (2),9299.

Kanno,T.,Yaguchi,T.,Yamamoto,S.,Nagata,T.,Yamamoto,H.,Fujikawa,H., etal.(2005).BidirectionalregulationsforglutamateandGABAreleasein thehippocampusbyalpha7andnonalpha7AChreceptors. Biochem Biophys Res Commun, 338 (2),742747.

Kegeles,L.S.,AbiDargham,A.,ZeaPonce,Y.,RodenhiserHill,J.,Mann,J.J., VanHeertum,R.L.,etal.(2000).Modulationofamphetamineinduced striataldopaminereleasebyketamineinhumans:implicationsfor schizophrenia. Biol Psychiatry, 48 (7),627640.

Kesner,R.P.,Dakis,M.,&Bolland,B.L.(1993).Phencyclidinedisruptslongbut notshorttermmemorywithinaspatiallearningtask. Psychopharmacology (Berl), 111 (1),8590.

Kim,J.S.,&Levin,E.D.(1996).Nicotinic,muscarinicanddopaminergicactions intheventralhippocampusandthenucleusaccumbens:effectsonspatial workingmemoryinrats. Brain Res, 725 (2),231240.

Klamer,D.,Palsson,E.,Wass,C.,Archer,T.,Engel,J.A.,&Svensson,L. (2005).Antagonismofthenitricoxidesynthaseinhibitor,LNAME,ofthe effectsofphencyclidineonlatentinhibitionintasteaversionconditioning. Behav Brain Res, 161 (1),6068.

Kosowski,A.R.,&Liljequist,S.(2004).TheNR2BselectiveNmethylD aspartatereceptorantagonistRo256981[(+/)(R*,S*)alpha(4 hydroxyphenyl)betamethyl4(phenylmethyl)1piperidinepropanol] potentiatestheeffectofnicotineonlocomotoractivityanddopamine releaseinthenucleusaccumbens. J Pharmacol Exp Ther, 311 (2),560 567.

Kumari,V.,&Postma,P.(2005).Nicotineuseinschizophrenia:theself hypotheses. Neurosci Biobehav Rev, 29 (6),10211034.

Lannes,B.,Micheletti,G.,Warter,J.M.,Kempf,E.,&DiScala,G.(1991). Behavioural,pharmacologicalandbiochemicaleffectsofacuteand chronicadministrationofketamineintherat. Neurosci Lett, 128 (2),177 181.

83

Laruelle,M.(1998).Imagingdopaminetransmissioninschizophrenia.Areview andmetaanalysis. Q J Nucl Med, 42 (3),211221.

Laruelle,M.,Kegeles,L.S.,&AbiDargham,A.(2003).Glutamate,dopamine, andschizophrenia:frompathophysiologytotreatment. Ann N Y Acad Sci, 1003 ,138158.

Leccese,A.P.,Marquis,K.L.,Mattia,A.,&Moreton,J.E.(1986).The andbehavioraleffectsofphencyclidineandketamine followingchronictreatmentinrats. Behav Brain Res, 22 (3),257264.

Leonard,S.,Adler,L.E.,Benhammou,K.,Berger,R.,Breese,C.R.,Drebing,C., etal.(2001).Smokingandmentalillness. Pharmacol Biochem Behav, 70 (4),561570.

Leonard,S.,Breese,C.,Adams,C.,Benhammou,K.,Gault,J.,Stevens,K.,et al.(2000).Smokingandschizophrenia:abnormalnicotinicreceptor expression. Eur J Pharmacol, 393 (13),237242.

Levin,E.D.(2002).Nicotinicreceptorsubtypesandcognitivefunction. J Neurobiol, 53 (4),633640.

Levin,E.D.,Bettegowda,C.,Blosser,J.,&Gordon,J.(1999).ARR17779,and alpha7nicotinicagonist,improveslearningandmemoryinrats. Behav Pharmacol, 10 (67),675680.

Levin,E.D.,Briggs,S.J.,Christopher,N.C.,&Auman,J.T.(1994).Working memoryperformanceandeffectsintheventraltegmentalarea andsubstantianigra. Brain Res, 657 (12),165170.

Levin,E.D.,&Christopher,C.N.(2003).inducedlearningimprovement ofratsintheradialarmmaze. Pharmacol Biochem Behav, 76 (1),133 139.

Levin,E.D.,Kaplan,S.,&Boardman,A.(1997).Acutenicotineinteractionswith nicotinicandmuscarinicantagonists:workingandreferencememory effectsinthe16armradialmaze. Behav Pharmacol, 8 (23),236242.

84

Levin,E.D.,Rose,J.E.,&Abood,L.(1995).Effectsofnicotinic dimethylaminoethylestersonworkingmemoryperformanceofratsinthe radialarmmaze. Pharmacol Biochem Behav, 51 (23),369373.

Li,S.P.,Park,M.S.,Kim,J.H.,&Kim,M.O.(2004).Chronicnicotineand smoketreatmentmodulatedopaminergicactivitiesinventraltegmental areaandnucleusaccumbensandthegammaaminobutyricacidtypeB receptorexpressionoftheratprefrontalcortex. J Neurosci Res, 78 (6), 868879.

Lindefors,N.,Barati,S.,&O'Connor,W.T.(1997).Differentialeffectsofsingle andrepeatedketamineadministrationondopamine,serotoninandGABA transmissioninratmedialprefrontalcortex. Brain Res, 759 (2),205212.

Liu,J.,&Moghaddam,B.(1995).Regulationofglutamateeffluxbyexcitatory aminoacidreceptors:evidencefortonicinhibitoryandphasicexcitatory regulation. J Pharmacol Exp Ther, 274 (3),12091215.

Livingston,A.,&Waterman,A.(1978).Theeffectsofcholinergicand drugsonketamineanaesthesiainrats[proceedings]. J Physiol, 277 ,56P.

Luby,E.D.,Gottlieb,J.S.,Cohen,B.D.,Rosenbaum,G.,&Domino,E.F. (1962).Modelpsychosesandschizophrenia. Am J Psychiatry, 119 ,6167.

Mandryk,M.,Fidecka,S.,Poleszak,E.,&Malec,D.(2005).Participationof adenosinesystemintheketamineinducedmotoractivityinmice. Pharmacol Rep, 57 (1),5560.

Mansvelder,H.D.,&McGehee,D.S.(2002).Cellularandsynapticmechanisms ofnicotineaddiction. J Neurobiol, 53 (4),606617.

Mansvelder,H.D.,vanAerde,K.I.,Couey,J.J.,&Brussaard,A.B.(2006). Nicotinicmodulationofneuronalnetworks:fromreceptorstocognition. Psychopharmacology (Berl), 184 (34),292305.

Marcotte,E.R.,Pearson,D.M.,&Srivastava,L.K.(2001).Animalmodelsof schizophrenia:acriticalreview. J Psychiatry Neurosci, 26 (5),395410.

85

McCullough,L.D.,&Salamone,J.D.(1992).Increasesinextracellular dopaminelevelsandlocomotoractivityafterdirectinfusionof phencyclidineintothenucleusaccumbens. Brain Res, 577 (1),19.

Mexal,S.,Frank,M.,Berger,R.,Adams,C.E.,Ross,R.G.,Freedman,R.,etal. (2005).DifferentialmodulationofgeneexpressionintheNMDA postsynapticdensityofschizophrenicandcontrolsmokers. Brain Res Mol Brain Res, 139 (2),317332.

Mickley,G.A.,Schaldach,M.A.,Snyder,K.J.,Balogh,S.A.,Len,T.,Neimanis, K.,etal.(1998).Ketamineblocksaconditionedtasteaversion(CTA)in neonatalrats. Physiol Behav, 64 (3),381390.

Miller,D.K.,Sumithran,S.P.,&Dwoskin,L.P.(2002).inhibits nicotineevoked[(3)H]overflowfromratstriatalslicespreloadedwith [(3)H]dopamineandfromrathippocampalslicespreloadedwith [(3)H]. J Pharmacol Exp Ther, 302 (3),11131122.

Mirnics,K.,Middleton,F.A.,Marquez,A.,Lewis,D.A.,&Levitt,P.(2000). Molecularcharacterizationofschizophreniaviewedbymicroarrayanalysis ofgeneexpressioninprefrontalcortex. Neuron, 28 (1),5367.

Miyamoto,S.,Leipzig,J.N.,Lieberman,J.A.,&Duncan,G.E.(2000).Effectsof ketamine,MK801,andamphetamineonregionalbrain2deoxyglucose uptakeinfreelymovingmice. Neuropsychopharmacology, 22 (4),400412.

Moghaddam,B.,Adams,B.,Verma,A.,&Daly,D.(1997).Activationof glutamatergicneurotransmissionbyketamine:anovelstepinthepathway fromNMDAreceptorblockadetodopaminergicandcognitivedisruptions associatedwiththeprefrontalcortex. J Neurosci, 17 (8),29212927.

Morland,J.(2000).ofdrugabuseamphetaminedesignerdrugs (ecstasy):mentaleffectsandconsequencesofsingledoseuse. Toxicol Lett, 112-113 ,147152.

Nelson,C.L.,Burk,J.A.,Bruno,J.P.,&Sarter,M.(2002).Effectsofacuteand repeatedsystemicadministrationofketamineonprefrontalacetylcholine releaseandsustainedattentionperformanceinrats. Psychopharmacology (Berl), 161 (2),168179.

86

Nisell,M.,Nomikos,G.G.,&Svensson,T.H.(1994).Systemicnicotineinduced dopaminereleaseintheratnucleusaccumbensisregulatedbynicotinic receptorsintheventraltegmentalarea. Synapse, 16 (1),3644.

Nishijima,K.,Kashiwa,A.,Hashimoto,A.,Iwama,H.,Umino,A.,&Nishikawa,T. (1996).Differentialeffectsofphencyclidineandon dopamineinratfrontalcortexandstriatumasrevealedbyin vivodialysis. Synapse, 22 (4),304312.

Nishimura,M.,&Sato,K.(1999).Ketaminestereoselectivelyinhibitsrat dopaminetransporter. Neurosci Lett, 274 (2),131134.

Ohmori,T.,Koyama,T.,Nakamura,F.,Wang,P.,&Yamashita,I.(1992).Effect ofphencyclidineonspontaneousandNmethylDaspartate(NMDA) inducedeffluxofdopaminefromsuperfusedslicesofratstriatum. Neuropharmacology, 31 (5),461467.

Olincy,A.,Young,D.A.,&Freedman,R.(1997).Increasedlevelsofthenicotine metaboliteinschizophrenicsmokerscomparedtoothersmokers. Biol Psychiatry, 42 (1),15.

Olney,J.W.,&Farber,N.B.(1995a).Glutamatereceptordysfunctionand schizophrenia. Arch Gen Psychiatry, 52 (12),9981007.

Olney,J.W.,&Farber,N.B.(1995b).NMDAantagonistsasneurotherapeutic drugs,psychotogens,neurotoxins,andresearchtoolsforstudying schizophrenia. Neuropsychopharmacology, 13 (4),335345.

Olney,J.W.,Labruyere,J.,&Price,M.T.(1989).Pathologicalchangesinduced incerebrocorticalneuronsbyphencyclidineandrelateddrugs. Science, 244 (4910),13601362.

Olney,J.W.,Labruyere,J.,Wang,G.,Wozniak,D.F.,Price,M.T.,&Sesma,M. A.(1991).NMDAantagonist:mechanismandprevention. Science, 254 (5037),15151518.

Oye,I.,Paulsen,O.,&Maurset,A.(1992).Effectsofketamineonsensory perception:evidenceforaroleofNmethylDaspartatereceptors. J Pharmacol Exp Ther, 260 (3),12091213.

87

Palsson,E.,Klamer,D.,Wass,C.,Archer,T.,Engel,J.A.,&Svensson,L. (2005).Theeffectsofphencyclidineonlatentinhibitionintasteaversion conditioning:differentialeffectsofpreexposureandconditioning. Behav Brain Res, 157 (1),139146.

PelegRaibstein,D.,Sydekum,E.,Russig,H.,&Feldon,J.(2006).Withdrawal fromrepeatedamphetamineadministrationleadstodisruptionofprepulse inhibitionbutnottodisruptionoflatentinhibition. J Neural Transm, 113 (9), 13231336.

Pereira,E.F.,Hilmas,C.,Santos,M.D.,Alkondon,M.,Maelicke,A.,& Albuquerque,E.X.(2002).Unconventionalligandsandmodulatorsof nicotinicreceptors. J Neurobiol, 53 (4),479500.

Rapier,C.,Lunt,G.G.,&Wonnacott,S.(1988).Stereoselectivenicotineinduced releaseofdopaminefromstriatalsynaptosomes:concentration dependenceandrepetitivestimulation. J Neurochem, 50 (4),11231130.

Rasmussen,R.S.,Overgaard,K.,HildebrandtEriksen,E.S.,&Boysen,G. (2006).Damphetamineimprovescognitivedeficitsandphysicaltherapy promotesfinemotorrehabilitationinaratembolicmodel. Acta Neurol Scand, 113 (3),189198.

Retaux,S.,Besson,M.J.,&PenitSoria,J.(1991).SynergismbetweenD1and D2dopaminereceptorsintheinhibitionoftheevokedreleaseof [3H]GABAintheratprefrontalcortex. Neuroscience, 43 (23),323329.

Sacaan,A.I.,Dunlop,J.L.,&Lloyd,G.K.(1995).Pharmacological characterizationofneuronalacetylcholinegatedionchannelreceptor mediatedhippocampalnorepinephrineandstriataldopaminereleasefrom ratbrainslices. J Pharmacol Exp Ther, 274 (1),224230.

Sacco,K.A.,Bannon,K.L.,&George,T.P.(2004).Nicotinicreceptor mechanismsandcognitioninnormalstatesandneuropsychiatric disorders. J Psychopharmacol, 18 (4),457474.

Salminen,O.,Murphy,K.L.,McIntosh,J.M.,Drago,J.,Marks,M.J.,Collins,A. C.,etal.(2004).Subunitcompositionandpharmacologyoftwoclassesof striatalpresynapticnicotinicacetylcholinereceptorsmediatingdopamine releaseinmice. Mol Pharmacol, 65 (6),15261535.

88

SamsDodd,F.(1995).Distincteffectsofdamphetamineandphencyclidineon thesocialbehaviourofrats. Behav Pharmacol, 6 (1),5565.

SamsDodd,F.(1996).Phencyclidineinducedstereotypedbehaviourandsocial isolationinrats:apossibleanimalmodelofschizophrenia. Behav Pharmacol, 7 (1),323.

SamsDodd,F.(1997).Effectofnovelantipsychoticdrugsonphencyclidine inducedstereotypedbehaviourandsocialisolationintheratsocial interactiontest. Behav Pharmacol, 8 (23),196215.

SamsDodd,F.(1998).EffectsofcontinuousDamphetamineandphencyclidine administrationonsocialbehaviour,stereotypedbehaviour,andlocomotor activityinrats. Neuropsychopharmacology, 19 (1),1825.

SamsDodd,F.(1999).Phencyclidineinthesocialinteractiontest:ananimal modelofschizophreniawithfaceandpredictivevalidity. Rev Neurosci, 10 (1),5990.

Sargent,P.B.(1993).Thediversityofneuronalnicotinicacetylcholinereceptors. Annu Rev Neurosci, 16 ,403443.

Schizophrenia.(2006).from http://www.nimh.nih.gov/publicat/schizoph.cfm

Seeman,P.(1987).Dopaminereceptorsandthedopaminehypothesisof schizophrenia. Synapse, 1 (2),133152.

Seeman,P.,Ko,F.,&Tallerico,T.(2005).Dopaminereceptorcontributiontothe actionofPCP,LSDandketaminepsychotomimetics. Mol Psychiatry, 10 (9),877883.

Segal,D.S.,&Kuczenski,R.(1997).Anescalatingdose"binge"modelof amphetaminepsychosis:behavioralandneurochemicalcharacteristics. J Neurosci, 17 (7),25512566.

Sharples,C.G.,Kaiser,S.,Soliakov,L.,Marks,M.J.,Collins,A.C.,Washburn, M.,etal.(2000).UB165:anovelnicotinicagonistwithsubtypeselectivity implicatesthealpha4beta2*subtypeinthemodulationofdopamine releasefromratstriatalsynaptosomes. J Neurosci, 20 (8),27832791.

89

Shoaib,M.,Benwell,M.E.,Akbar,M.T.,Stolerman,I.P.,&Balfour,D.J.(1994). Behaviouralandneurochemicaladaptationstonicotineinrats:influenceof NMDAantagonists. Br J Pharmacol, 111 (4),10731080.

Swerdlow,N.R.,Martinez,Z.A.,Hanlon,F.M.,Platten,A.,Farid,M.,Auerbach, P.,etal.(2000).Towardunderstandingthebiologyofacomplex phenotype:ratstrainandsubstraindifferencesinthesensorimotorgating disruptiveeffectsofdopamineagonists. J Neurosci, 20 (11),43254336.

Takahata,R.,&Moghaddam,B.(2000).Targetspecificglutamatergicregulation ofdopamineneuronsintheventraltegmentalarea.J Neurochem, 75 (4), 17751778.

Tanaka,K.,Suzuki,M.,Sumiyoshi,T.,Murata,M.,Tsunoda,M.,&Kurachi,M. (2003).Subchronicphencyclidineadministrationalterscentralvasopressin receptorbindingandsocialinteractionintherat. Brain Res, 992 (2),239 245.

Tsai,G.,&Coyle,J.T.(2002).Glutamatergicmechanismsinschizophrenia. Annu Rev Pharmacol Toxicol, 42 ,165179.

Tsukada,H.,Harada,N.,Nishiyama,S.,Ohba,H.,Sato,K.,Fukumoto,D.,etal. (2000).Ketaminedecreasedstriatal[(11)C]raclopridebindingwithno alterationsinstaticdopamineconcentrationsinthestriatalextracellular fluidinthemonkeybrain:multiparametricPETstudiescombinedwith microdialysisanalysis. Synapse, 37 (2),95103.

Turgeon,S.M.,&Hoge,S.G.(2003).Priorexposuretophencyclidinedecreases voluntarysucroseconsumptionandoperantperformanceforfoodreward. Pharmacol Biochem Behav, 76 (34),393400.

Verma,A.,&Moghaddam,B.(1996).NMDAreceptorantagonistsimpair prefrontalcortexfunctionasassessedviaspatialdelayedalternation performanceinrats:modulationbydopamine. J Neurosci, 16 (1),373379.

Volkow,N.D.,Wang,G.J.,Fowler,J.S.,&Ding,Y.S.(2005).Imagingthe effectsofmethylphenidateonbraindopamine:newmodelonits therapeuticactionsforattentiondeficit/hyperactivitydisorder. Biol Psychiatry, 57 (11),14101415.

90

Volkow,N.D.,Wang,G.J.,Fowler,J.S.,Logan,J.,Gatley,S.J.,Wong,C.,et al.(1999).Reinforcingeffectsofpsychostimulantsinhumansare associatedwithincreasesinbraindopamineandoccupancyofD(2) receptors. J Pharmacol Exp Ther, 291 (1),409415.

Weinberger,D.R.(1987).Implicationsofnormalbraindevelopmentforthe pathogenesisofschizophrenia. Arch Gen Psychiatry, 44 (7),660669.

White,P.F.,Ham,J.,Way,W.L.,&Trevor,A.J.(1980).Pharmacologyof ketamineisomersinsurgicalpatients. Anesthesiology, 52 (3),231239.

White,P.F.,Way,W.L.,&Trevor,A.J.(1982).Ketamineitspharmacologyand therapeuticuses. Anesthesiology, 56 (2),119136.

Wilkins,L.H.,Jr.,Haubner,A.,Ayers,J.T.,Crooks,P.A.,&Dwoskin,L.P. (2002).Nnalkylnicotiniumanalogs,anovelclassofnicotinicreceptor antagonist:inhibitionofS()nicotineevoked[(3)H]dopamineoverflowfrom superfusedratstriatalslices. J Pharmacol Exp Ther, 301 (3),10881096.

Williams,G.V.,&GoldmanRakic,P.S.(1995).Modulationofmemoryfieldsby dopamineD1receptorsinprefrontalcortex. Nature, 376 (6541),572575.

Wilson,C.,Cone,K.,Kercher,M.,Hibbitts,J.,Fischer,J.,VanLake,A.,etal. (2005).increasesketamineinducedhyperactivityintheopen fieldinfemalerats. Pharmacol Biochem Behav, 81 (3),530534.

Wong,B.S.,&Martin,C.D.(1993).Ketamineinhibitionofcytoplasmiccalcium signallinginrat(PC12)cells. Life Sci, 53 (22),PL359 364.

Wonnacott,S.(1997).PresynapticnicotinicAChreceptors. Trends Neurosci, 20 (2),9298.

Wooltorton,J.R.,Pidoplichko,V.I.,Broide,R.S.,&Dani,J.A.(2003). Differentialdesensitizationanddistributionofnicotinicacetylcholine receptorsubtypesinmidbraindopamineareas. J Neurosci, 23 (8),3176 3185.

91

Yamakura,T.,ChavezNoriega,L.E.,&Harris,R.A.(2000).Subunitdependent inhibitionofhumanneuronalnicotinicacetylcholinereceptorsandother ligandgatedionchannelsbydissociativeanestheticsketamineand dizocilpine. Anesthesiology, 92 (4),11441153.

Yonezawa,Y.,Kuroki,T.,Tashiro,N.,Hondo,H.,&Uchimura,H.(1995). Potentiationofphencyclidineinduceddopaminereleaseintheratstriatum bytheblockadeofdopamineD2receptor. Eur J Pharmacol, 285 (3),305 308.

92