Problematic Use of Nitrous Oxide by Young Moroccan–Dutch Adults
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experiences of Disengagement from Mental Health Services: an Interpretative Study
EXPERIENCES OF DISENGAGEMENT FROM MENTAL HEALTH SERVICES: AN INTERPRETATIVE STUDY by CHRISTOPHER WAGSTAFF A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Nursing, Health & Population Sciences College of Medical & Dental Sciences University of Birmingham 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Whilst there is evidence of a range of effective treatments available for people with severe mental health problems (SMHP), people frequently disengage from mental health services (MHS). This thesis investigates experiences of disengagement of people with SMHP and comprises two studies: 1) semi-structured interviews to elicit the experiences of people with SMHP and a history of disengagement from MHS; and 2) building on those findings, focus groups with staff from assertive outreach teams (specialising in providing care for people with SMHP and a history of disengagement). The participants were those perceived as the most disengaged from MHS yet they were willing to engage with the research. Interpretative phenomenological analysis was used to develop themes for individual participants and then across the participants. Disengagement from MHS was part of a wider experience of a limited connection to social structures, including an ambivalent and complex relationship with MHS. -
Hallucinogens - LSD, Peyote, Psilocybin, and PCP
Hallucinogens - LSD, Peyote, Psilocybin, and PCP Hallucinogenic compounds found in some • Psilocybin (4-phosphoryloxy-N,N- plants and mushrooms (or their extracts) dimethyltryptamine) is obtained from have been used—mostly during religious certain types of mushrooms that are rituals—for centuries. Almost all indigenous to tropical and subtropical hallucinogens contain nitrogen and are regions of South America, Mexico, and classified as alkaloids. Many hallucinogens the United States. These mushrooms have chemical structures similar to those of typically contain less than 0.5 percent natural neurotransmitters (e.g., psilocybin plus trace amounts of acetylcholine-, serotonin-, or catecholamine- psilocin, another hallucinogenic like). While the exact mechanisms by which substance. hallucinogens exert their effects remain • PCP (phencyclidine) was developed in unclear, research suggests that these drugs the 1950s as an intravenous anesthetic. work, at least partially, by temporarily Its use has since been discontinued due interfering with neurotransmitter action or to serious adverse effects. by binding to their receptor sites. This DrugFacts will discuss four common types of How Are Hallucinogens Abused? hallucinogens: The very same characteristics that led to • LSD (d-lysergic acid diethylamide) is the incorporation of hallucinogens into one of the most potent mood-changing ritualistic or spiritual traditions have also chemicals. It was discovered in 1938 led to their propagation as drugs of abuse. and is manufactured from lysergic acid, Importantly, and unlike most other drugs, which is found in ergot, a fungus that the effects of hallucinogens are highly grows on rye and other grains. variable and unreliable, producing different • Peyote is a small, spineless cactus in effects in different people at different times. -
Anaesthesia and Past Use Of
177 Correspondence were using LSD. It is more popular than other commonly Anaesthesia and past use of used hallucinogens whose quoted incidence of clients are: LSD ketamine 0.1% (super-K/vitamin K.I), psilocybin and psilocin 0.6% (the active alkaloids in the Mexican "magic To the Editor: mushroom"), and 3,4 methylenedioxymethamphetamine We report the case of a 43-yr-old lady who was admitted ~MDMA" 1% (ecstasy). The effects of the concurrent to the Day Surgery Unit for release of her carpal tunnel ingestion of LSD on anaesthesia are well described. 2-4 retinaculum. During the preoperative visit, she reported The long-term effects of the past use of LSD are largely no intercurrent illnesses, drug therapy or allergies. She unknown. We wonder if the hallucinations experienced did say, however, that she was frightened of general anaes- by our patient during anaesthesia were due to her LSD thesia, since she had experienced terrifying dreams during intake many years before. We would be interested to surgery under general anaesthesia on three occasions dur- know if others have had experience anaesthetising patients ing the previous ten years. On further questioning, she who are past users of phencyclidine-derived drugs. admitted that she had used lysergic acid diethylamide (LSD) during the late 1960's, the last occasion being 1968 Geoffrey N. Morris MRCGPFRCA when she had experienced characterstic hallucinations. Patrick T. Magee MSe FRCA She had not experienced hallucinations in the ensuing Anaesthetic Department years, except on the surgical occasions mentioned. Royal United Hospital One of the three previous operations had been per- Combe Park formed at our hospital and the anaesthetic record was Bath BA1 3NG checked. -
Hallucinogens - LSD, Peyote, Psilocybin, and PCP
Information for Behavioral Health Providers in Primary Care Hallucinogens - LSD, Peyote, Psilocybin, and PCP What are Hallucinogens? Hallucinogenic compounds found in some plants and mushrooms (or their extracts) have been used— mostly during religious rituals—for centuries. Almost all hallucinogens contain nitrogen and are classified as alkaloids. Many hallucinogens have chemical structures similar to those of natural neurotransmitters (e.g., acetylcholine-, serotonin-, or catecholamine-like). While the exact mechanisms by which hallucinogens exert their effects remain unclear, research suggests that these drugs work, at least partially, by temporarily interfering with neurotransmitter action or by binding to their receptor sites. This InfoFacts will discuss four common types of hallucinogens: LSD (d-lysergic acid diethylamide) is one of the most potent mood-changing chemicals. It was discovered in 1938 and is manufactured from lysergic acid, which is found in ergot, a fungus that grows on rye and other grains. Peyote is a small, spineless cactus in which the principal active ingredient is mescaline. This plant has been used by natives in northern Mexico and the southwestern United States as a part of religious ceremonies. Mescaline can also be produced through chemical synthesis. Psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) is obtained from certain types of mushrooms that are indigenous to tropical and subtropical regions of South America, Mexico, and the United States. These mushrooms typically contain less than 0.5 percent psilocybin plus trace amounts of psilocin, another hallucinogenic substance. PCP (phencyclidine) was developed in the 1950s as an intravenous anesthetic. Its use has since been discontinued due to serious adverse effects. How Are Hallucinogens Abused? The very same characteristics that led to the incorporation of hallucinogens into ritualistic or spiritual traditions have also led to their propagation as drugs of abuse. -
American Civil Liberties Union
WASHINGTON LEGISLATIVE OFFICE March 19, 2012 Honorable Patti B. Saris, Chair United States Sentencing Commission One Columbus Circle, N.E. Suite 2-500, South Lobby Washington, D.C. 2002-8002 Re: ACLU Comments on Proposed Amendments to Sentencing Guidelines, Policy Statements, and Commentary due on March 19, 2012 AMERICAN CIVIL LIBERTIES UNION WASHINGTON Dear Judge Saris: LEGISLATIVE OFFICE 915 15th STREET, NW, 6 TH FL WASHINGTON, DC 20005 With this letter the American Civil Liberties Union (“ACLU”) provides T/202.544.1681 commentary on the Amendments to the U.S. Sentencing Guidelines F/202.546.0738 WWW.ACLU.ORG (“Guidelines”) proposed by the Commission on January 19, 2012. The American Civil Liberties Union is a non-partisan organization with more than LAURA W. MURPHY DIRECTOR half a million members, countless additional activists and supporters, and 53 NATIONAL OFFICE affiliates nationwide dedicated to the principles of liberty, equality, and justice 125 BROAD STREET, 18 TH FL. embodied in our Constitution and our civil rights laws. NEW YORK, NY 10004-2400 T/212.549.2500 These comments address four issues that the Commission has asked for OFFICERS AND DIRECTORS SUSAN N. HERMAN public comment on by March 19, 2012. First, the ACLU encourages the PRESIDENT Commission to reject the adoption of the 500:1 MDMA marijuana equivalency ANTHONY D. ROMERO ratio for N-Benzylpiperazine, also known as BZP, (BZP) and make substantial EXECUTIVE DIRECTOR downward revisions to the MDMA marijuana equivalency ratio. Also, we urge ROBERT REMAR the Commission to respect the principles of proportionality and due process in TREASURER deciding how and whether to amend the Guideline for unlawfully entering or remaining in the country. -
Evidence for the Involvement of Spinal Cord 1 Adrenoceptors in Nitrous
Anesthesiology 2002; 97:1458–65 © 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Evidence for the Involvement of Spinal Cord ␣ 1 Adrenoceptors in Nitrous Oxide–induced Antinociceptive Effects in Fischer Rats Ryo Orii, M.D., D.M.Sc.,* Yoko Ohashi, M.D.,* Tianzhi Guo, M.D.,† Laura E. Nelson, B.A.,‡ Toshikazu Hashimoto, M.D.,* Mervyn Maze, M.B., Ch.B.,§ Masahiko Fujinaga, M.D.ʈ Background: In a previous study, the authors found that ni- opioid peptide release in the brain stem, leading to the trous oxide (N O) exposure induces c-Fos (an immunohisto- 2 activation of the descending noradrenergic inhibitory chemical marker of neuronal activation) in spinal cord ␥-ami- nobutyric acid–mediated (GABAergic) neurons in Fischer rats. neurons, which results in modulation of the pain–noci- 1 In this study, the authors sought evidence for the involvement ceptive processing in the spinal cord. Available evi- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/97/6/1458/337059/0000542-200212000-00018.pdf by guest on 01 October 2021 ␣ of 1 adrenoceptors in the antinociceptive effect of N2O and in dence suggests that at the level of the spinal cord, there activation of GABAergic neurons in the spinal cord. appear to be at least two neuronal systems that are Methods: Adult male Fischer rats were injected intraperitone- involved (fig. 1). In one of the pathways, activation of ally with ␣ adrenoceptor antagonist, ␣ adrenoceptor antago- 1 2 ␣ nist, opioid receptor antagonist, or serotonin receptor antago- the 2 adrenoceptors produces either direct presynaptic nist and, 15 min later, were exposed to either air (control) or inhibition of neurotransmitter release from primary af- 75% N2O. -
Drug and Alcohol Abuse Prevention Handbook FOREWARD
Drug and Alcohol Abuse Prevention Handbook FOREWARD Grayson College recognizes that the illicit use of drugs and/or the abuse of alcohol are a persistent health problem of major proportion affecting our society physically, mentally, and socially. Illicit drug use and /or alcohol abuse can adversely affect an individual’s personal life, safety, health, and mental and physical performance. It is the intent of GC to provide employees and students pertinent information related to illicit drug use and/or alcohol abuse in an effort to prevent such harm. GC is committed to promoting and maintaining a work and academic environment that is free from illegal alcohol and drug use and abuse, in accordance with all federal, state, and local laws. Students, employees, and visitors are prohibited from possessing, consuming, manufacturing, dispensing, or being under the influence of alcohol/illegal drugs or engaging in improper self- medication while on college property or college business. Any member of the college community who violates this policy is subject to both prosecution and punishment under federal, state, and local laws to disciplinary proceedings by the college. This alcohol/drug policy is not designed to punish people for seeking rehabilitation. All information about those individuals who voluntarily avail themselves of drug or alcohol counseling or rehabilitation will not be used as a basis for disciplinary action or be used against an individual in any way. College employees and students who violate the alcohol/drug policy shall be informed about and referred to services to assist them in determining whether they are abusing drugs and alcohol or are chemically dependent. -
Ecstasy Or Molly (MDMA) (Canadian Drug Summary)
www.ccsa.ca • www.ccdus.ca November 2017 Canadian Drug Summary Ecstasy or Molly (MDMA) Key Points Ecstasy and molly are street names for pills or tablets that are assumed to contain the active ingredient 3,4-methylenedioxy-N-methamphetamine (MDMA). Although most people consuming ecstasy or molly expect the main psychoactive ingredient to be MDMA, pills, capsules and powder sold as ecstasy or molly frequently contain other ingredients (such as synthetic cathinones or other adulterants) in addition to MDMA and sometimes contain no MDMA at all. The prevalence of Canadians aged 15 and older reporting past-year ecstasy use is less than 1%. 1 in 25 Canadian youth in grades 10–12 have reported using ecstasy in the past 12 months. Introduction Ecstasy and molly are street names for pills, capsules or powder assumed to contain MDMA (3,4- methylenedioxy-N-methamphetamine), a synthetically derived chemical that is used recreationally as a party drug. Pills are typically coloured and stamped with a logo. These drugs are made in illegal laboratories, often with a number of different chemicals, so they might not contain MDMA or contain MDMA in amounts that vary significantly from batch to batch. Other active ingredients found in tablets sold as ecstasy or molly in Canada in 2016–2017 include synthetic cathinones or “bath salts” such as ethylone, methylenedioxyamphetamine (MDA) and its precursor methylenedioxyphenylpropionamide (MMDPPA). Other adulterants reported were caffeine, procaine, methylsulfonylmethane (MSA)and methamphetamine.1 In 2011–2012, paramethoxymethamphetamine (PMMA) was present in pills sold as ecstasy in Canada. This adulteration resulted in the deaths of 27 individuals in Alberta and British Columbia over an 11-month period.2 Effects of Ecstasy Use The effects of ecstasy are directly linked to the active ingredients in the pill. -
5-HT2A and 5-HT2C/2B Receptor Subtypes Modulate
5-HT2A and 5-HT2C/2B Receptor Subtypes Modulate Dopamine Release Induced in Vivo by Amphetamine and Morphine in Both the Rat Nucleus Accumbens and Striatum Grégory Porras, M.S., Vincenzo Di Matteo, Ph.D., Claudia Fracasso, B.S., Guillaume Lucas, Ph.D., Philippe De Deurwaerdère, Ph.D., Silvio Caccia, Ph.D., Ennio Esposito, M.D., Ph.D., and Umberto Spampinato, M.D., Ph.D. In vivo microdialysis and single-cell extracellular neuron firing rate in both the ventral tegmental area and recordings were used to assess the involvement of the substantia nigra pars compacta was unaffected by SR serotonin2A (5-HT2A) and serotonin2C/2B (5-HT2C/2B) 46349B (0.1 mg/kg i.v.) but significantly potentiated by SB receptors in the effects induced by amphetamine and 206553 (0.1 mg/kg i.v.). These results show that 5-HT2A morphine on dopaminergic (DA) activity within the and 5-HT2C receptors regulate specifically the activation of mesoaccumbal and nigrostriatal pathways. The increase in midbrain DA neurons induced by amphetamine and DA release induced by amphetamine (2 mg/kg i.p.) in the morphine, respectively. This differential contribution may nucleus accumbens and striatum was significantly reduced be related to the specific mechanism of action of the drug by the selective 5-HT2A antagonist SR 46349B (0.5 mg/kg considered and to the neuronal circuitry involved in their s.c.), but not affected by the 5-HT2C/2B antagonist SB effect on DA neurons. Furthermore, these results suggest 206553 (5 mg/kg i.p.). In contrast, the enhancement of that 5-HT2C receptors selectively modulate the impulse accumbal and striatal DA output induced by morphine (2.5 flow–dependent release of DA. -
Kiwiherb Valerian Oral Liquid Valerian Root Extract
PATIENT INFORMATION LEAFLET: stress and to aid sleep, exclusively based on long standing use. 2. Before you take this product DO NOT TAKE this product if you are: • Allergic to Valerian or any other ingredients in this product (see section 6) • Under 18 years of age • Pregnant or breast feeding • Taking medicines known to interact with alcohol (e.g. metronidazole) • Already taking a medicine for sleep or Kiwiherb Valerian Oral Liquid anxiety Valerian Root Extract Taking other medicines Tell your healthcare professional, e.g. a doctor or pharmacist, if you are taking any other medicines Read all of this leaflet carefully because it contains including herbal medicines or medicines that did important information for you. not require a prescription. This medicine is available without prescription. Driving and using machines However you still need to use Kiwiherb Valerian carefully to get the best results from it. This product may cause drowsiness. If affected, do not drive or operate machinery Keep this leaflet. You may want to read it again. Take Special Care with this product Ask your healthcare professional, e.g. a doctor or pharmacist, if you need more information or This product contains alcohol (45% ethanol), i.e. advice. up to 2.25 ml per 5 ml dose, (equivalent to 45 ml beer or 18.8 ml wine), and may be harmful to If the condition worsens or symptoms do not those suffering from alcoholism. improve after 2 weeks, a qualified healthcare professional, e.g. a doctor or pharmacist, should be To be taken into account in pregnant or consulted. -
Neurological Complications of Nitrous Oxide Abuse
Katherine Shoults, MD Case report: Neurological complications of nitrous oxide abuse A patient who presented with limb paresthesia and B12 deficiency was eventually diagnosed with subacute combined degeneration neuropathy secondary to nitrous oxide abuse. Case data ABSTRACT: A 34-year-old female ary to nitrous oxide (“laughing gas”) A 34-year-old female presented with with a history of alcohol and crystal abuse that had affected B12 activa- a 2-week history of progressive bilat- methamphetamine abuse presented tion. The patient was continued on eral limb paresthesia and tenderness, to the emergency department with B12 therapy, neurology follow-up as well as an inability to balance. She limb paresthesia and difficulty walk- was arranged, and addiction coun- had been well previously, although ing. At a primary care visit a week seling services were recommended. she did have a history of alcohol and earlier her progressive neurological Unfortunately, the patient was lost crystal methamphetamine abuse. She compromise had been viewed in the to follow-up after discharge from the had abstained from crystal metham- context of anemia and she was start- hospital. Physicians should be aware phetamine for 5 years and from alco- ed on daily B12 injections. Further that nitrous oxide is easy to acquire hol for 2 months. She was working as a investigations in hospital revealed in the form of commercially available care aid and denied using illegal drugs diminished proprioception, hyperal- cartridges or whipped cream canis- currently, but reported she had been gesia with pinprick and temperature ters called “whippits” and abuse of inhaling nitrous oxide (“laughing tests, a wide-based high-steppage nitrous oxide is increasingly com- gas”) for 6 months, with an escalation gait, elevated levels of B12 and ho- mon. -
Synergistic Discriminative Effect of LSD and MDMA
European Journal of Pharmacology 341Ž. 1998 131±134 Short Communication `Candyflipping': Synergistic discriminative effect of LSD and MDMA Martin D. Schechter ) Department of Pharmacology, Northeastern Ohio UniÕersities College of Medicine, P.O. Box 95, Rootstown, OH 44272-0095, USA Received 27 October 1997; accepted 28 October 1997 Abstract The co-administration of D-lysergic acid diethylamideŽ. LSD; `Acid' and 3,4-methylenedioxymethamphetamine Ž MDMA; `Ecstasy'; `XTC'. , has reached a prevalence that has allowed for the street terminology `candyflipping' to describe the combination. Internet sites indicate a significant enhancement of central effects with their simultaneous use. In this preliminary observation, male Fawn-Hooded rats were trained to discriminate 1.5 mgrkg MDMA and were, subsequently, tested with doses of MDMAŽ.Ž 0.15 mgrkg or LSD 0.04 mgrkg. that each produced a saline-like response. Co-administration of these doses of MDMA and LSD synergized to produce a maximal MDMA-like response. The possible mechanism for synergistic action upon central serotonergic neurons is discussed to explain the observed effect. q 1998 Elsevier Science B.V. Keywords: Drug discrimination; MDMA; LSD Ž.D-lysergic acid diethylamide ; Candyflipping; Synergism; Ž. Rat 1. Introduction will be citedŽ. http:rrwww sites . This information may be seen to be of suspicious scientific merit yet this source `Candyflipping' is the `street' term for the co-adminis- may allow for extensive subjective and unsolicited infor- tration of D-lysergic acid diethylamideŽ. LSD and 3,4- mation to permit insights into the popular trends in the methylenedioxymethamphetamineŽ. MDMA . The scien- drug culture. Having stated these caveats, the co-adminis- tific literature on the effects of using these two Drug tration of MDMA with LSD has been suggested to ``go Enforcement AgencyŽ.