True Random Number Generation Using Genetic Algorithms on High Performance Architectures

Total Page:16

File Type:pdf, Size:1020Kb

True Random Number Generation Using Genetic Algorithms on High Performance Architectures True Random Number Generation using Genetic Algorithms on High Performance Architectures by Jose Juan Mijares Chan A thesis submitted to The Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Electrical and Computer Engineering The University of Manitoba Winnipeg, Manitoba, Canada October 2016 © Copyright 2016 by Jose Juan Mijares Chan Thesis advisor Author Gabriel Thomas, Parimala Thulasiraman Jose Juan Mijares Chan True Random Number Generation using Genetic Algorithms on High Performance Architectures Abstract Many real-world applications use random numbers generated by pseudo-random number and true random number generators (TRNG). Unlike pseudo-random number generators which rely on an input seed to generate random numbers, a TRNG relies on a non-deterministic source to generate aperiodic random numbers. In this research, we develop a novel and generic software-based TRNG using a random source extracted from compute architectures of today. We show that the non-deterministic events such as race conditions between compute threads follow a near Gamma distribution, independent of the architecture, multi-cores or co-processors. Our design improves the distribution towards a uniform distribution ensuring the stationarity of the sequence of random variables. We improve the random numbers statistical deficiencies by using a post-processing stage based on a heuristic evolutionary algorithm. Our post-processing algorithm is composed of two phases: (i) Histogram Specification and (ii) Stationarity Enforcement. We propose two techniques for histogram equalization, Exact Histogram Equalization (EHE) and Adaptive EHE (AEHE) that maps the random numbers distribution to ii Abstract iii a user-specified distribution. EHE is an offline algorithm with O(NlogN). AEHE is an online algorithm that improves performance using a sliding window and achieves O(N). Both algorithms ensure a normalized entropy of (0:95; 1:0]. The stationarity enforcement phase uses genetic algorithms to mitigate the statis- tical deficiencies from the output of histogram equalization by permuting therandom numbers until wide-sense stationarity is achieved. By measuring the power spectral density standard deviation, we ensure that the quality of the numbers generated from the genetic algorithms are within the specified level of error defined by the user. We develop two algorithms, a naive algorithm with an expected exponential complexity of E[O(eN )], and an accelerated FFT-based algorithm with an expected quadratic complexity of E[O(N 2)]. The accelerated FFT-based algorithm exploits the paral- lelism found in genetic algorithms on a homogeneous multi-core cluster. We evaluate the effects of its scalability and data size on a standardized battery of tests, TestU01, finding the tuning parameters to ensure wide-sense stationarity on long runs. Contributions The goal of this thesis is to develop a novel TRNG using a random source extracted from random numbers permuted using evolutionary algorithms for improved solution quality. The following points summarize my contributions. • Extraction of generic random source: I observed that events involving race conditions between computer threads follow a near Gamma distribution, independently of the modern computer architecture (CPU & GPU) and the underlying process scheduler. This observation led me to propose the following below. • TRNG construction: Given that the Gamma distribution found above is of poor quality for an ideal random number generator, I designed a software- based TRNG that improves the distribution towards a uniform distribution and ensures the stationarity of the sequence of random variables. To the best of my knowledge no one has attempted this before. • The proposed TRNG is composed of two post-processing stages: Histogram Specification and Stationarity Enforcement. – Histogram Specification: I developed two techniques, Exact Histogram Equalization (offline algorithm) and Adaptive EHE (online algorithm) that maps the random numbers distribution to a uniform distribution. – Stationarity Enforcement: I used genetic algorithms to mitigate the statistical deficiencies from the histogram specification stage by permuting iv Contributions v the random numbers until wide-sense stationarity is achieved. I developed two algorithms to achieve this: a naive algorithm and an accelerated FFT- based algorithm. – Parallelization: The accelerated FFT-based algorithm using genetic al- gorithms is parallelized on an homogeneous multi-core cluster using Intel Ivy Bridge processors, using the MapReduce programming model to in- crease the performance. • Evaluation: I presented a group of evaluations that highlight the performance and the quality conditions of my algorithm. – Performance analysis: The results of the algorithm scalability and data size on the performance suggested that an expected quadratic com- plexity on the computation time can be achieved. – Quality analysis: Using the parallel version of the accelerated FFT- based algorithm with the genetic algorithms, I observed a relation between the window size and the quality of the results from a standardized battery of tests, TestU01. As well, I presented sub-optimal solutions with tuning parameters that ensure wide-sense stationarity on long runs. Contents Abstract ..................................... ii Contributions .................................. iv Table of Contents . viii List of Figures ................................. ix List of Tables .................................. xv Acknowledgments ................................ xvi Dedication . xvii Acronyms .................................... 1 List of symbols ................................. 4 1 Introduction 8 1.1 The history of random numbers ..................... 9 1.2 Random Numbers ............................. 16 1.3 Characteristics of random numbers ................... 19 1.3.1 The uniform distribution of random numbers . 19 1.3.2 The correlation of random numbers . 23 1.3.3 The spectral density of random numbers . 25 1.3.4 The stationarity of random numbers . 25 1.4 Types of random number generators . 29 2 The Extraction layer on True Random Number Generators 34 2.1 The computer architectures of today . 34 2.2 The idea behind a TRNG on today’s computer architectures . 39 2.2.1 Data hazards ........................... 39 2.2.2 Schedulers ............................. 40 2.2.3 Strategy for designing a TRNG using a compute architecture 43 2.3 Case study: TNRG design on GPUs . 46 2.3.1 Source of randomness found in GPUs . 50 The measurement of race conditions times . 52 The measurement of in-chip temperature calculation times . 52 2.3.2 Evaluation of TRNGs sources in GPUs ............. 53 vi Contents vii Phenomena observation. ..................... 53 Effects due to architectural changes. 53 Behaviour consistency over long runs. ............. 60 2.4 Case study: TRNGs in Modern microprocessors . 64 Effects due to architectural changes. 65 Behaviour consistency over long runs. ............. 68 Other TRNGs developed in hardware for CPUs. 70 2.5 Summary ................................. 71 3 Distribution shape enhancement on TRNGs 73 3.1 Modulus-based algorithms ........................ 74 3.1.1 Optimizing the random numbers representation format . 75 3.1.2 Modulus .............................. 76 3.2 Histogram-based algorithms ....................... 79 3.2.1 Histogram equalization ...................... 79 3.2.2 Exact Histogram Equalization . 83 3.2.3 Adaptive Exact Histogram Equalization . 83 3.3 Asymptotic analysis of algorithms .................... 88 3.4 Summary ................................. 91 4 Stationarity enforcement on True Random Number Generators 93 4.1 Naive approach of stationarity enforcement . 95 4.1.1 Evaluation methodology . 104 4.1.2 Results .............................. 105 4.2 Stationarity enforcement accelerated by a FFT-based algorithm . 109 4.2.1 Correlation metrics . 110 Autocorrelation . 110 Power spectral density . 112 4.2.2 Evaluation criteria . 115 4.2.3 Enhancements on the stationary enforcement block . 116 4.2.4 Evaluation methodology . 122 Characteristics of a GA post-processing stage . 122 4.2.5 Results .............................. 123 Results from the Characteristics of a GA post-processing stage 123 4.3 Asymptotic analysis of algorithms . 128 4.4 Summary ................................. 131 5 Quality Evaluation in True Random Number Generators 132 5.1 Parallel scheme .............................. 133 5.2 SmallCrush evaluation . 134 5.3 Results ................................... 137 5.4 Discussion ................................. 140 viii Contents 5.5 Summary ................................. 142 6 Summary of work 144 7 Conclusions and Future work 146 7.1 Conclusions ................................ 146 7.2 Future Work ............................... 149 Bibliography 164 List of Figures 1.1 On the left, Pakua or Bāguà (八卦) representation, literally ”eight trigrams” by BenduKiwi, licensed under CC-AS 3.0, the 8 basic tria- grams are presented surrounding the Yin and Yang, the duality of all things in nature. On the right, the I Ching hexagrams are presented in ascending order, starting at 0 in the upper left corner, going left to right and up to down, to 63 in the lower right corner. 10 1.2 On the left, The Royal game of Ur from Mesopotamia by British Mu- seum licensed under CC-BY-3.0. On the right, an Egyptian dice (600- 800 Before Common Era (BCE)) by Swiss
Recommended publications
  • Reviewer's Guide
    Reviewer’s Guide NVIDIA® GeForce® GTX 280 GeForce® GTX 260 Graphics Processing Units TABLE OF CONTENTS NVIDIA GEFORCE GTX 200 GPUS.....................................................................3 Two Personalities, One GPU ........................................................................................................ 3 Beyond Gaming ............................................................................................................................. 3 GPU-Powered Video Transcoding............................................................................................... 3 GPU Powered Folding@Home..................................................................................................... 4 Industry wide support for CUDA.................................................................................................. 4 Gaming Beyond ............................................................................................................................. 5 Dynamic Realism.......................................................................................................................... 5 Introducing GeForce GTX 200 GPUs ........................................................................................... 9 Optimized PC and Heterogeneous Computing.......................................................................... 9 GeForce GTX 200 GPUs – Architectural Improvements.......................................................... 10 Power Management Enhancements.........................................................................................
    [Show full text]
  • 最新 7.3.X 6.0.0-6.02 6.0.3 6.0.4 6.0.5-6.09 6.0.2(RIQ)
    2017/04/24現在 赤字は標準インストール外 最新 RedHawk Linux 6.0.x 6.3.x 6.5.x 7.0.x 7.2.x 7.3.x Version 6.0.0-6.02 6.0.3 6.0.4 6.0.5-6.09 6.0.2(RIQ) 6.3.1-6.3.2 6.3.3 6.3.4-6.3.6 6.3.7-6.3.11 6.5.0 6.5.1 6.5-6.5.8 7.0 7.01-7.03 7.2-7.2.5 7.3-7.3.1 Xorg-version 1.7.7(X11R7.4) 1.10.6(X11R7.4) 1.13.0(X11R7.4) 1.15.0(X11R7.7) 1.17.2-10(X11R7.7) 1.17.2-22(X11R7.7) X.Org ANSI C 0.4 0.4 0.4 0.4 0.4 0.4 Emulation X.Org Video Driver 6.0 10.0 13.1 19.0 19.0 15.0 X.Org Xinput driver 7.0 12.2 18.1 21.0 21.0 20.0 X.Org Server 2.0 5.0 7.0 9.0 9.0 8.0 Extention RandR Version 1.1 1.1 1.1 1.1/1.2 1.1/1.2/1.3/1.4 1.1/1.2 1.1/1.2/1.3 1.1/1.2/1.3 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 1.1/1.2/1.3/1.4 NVIDIA driver 340.76 275.09.07 295.20 295.40 304.54 331.20 304.37 304.54 310.32 319.49 331.67 337.25 340.32 346.35 346.59 352.79 367.57 375.51 version (Download) PTX ISA 2.3(CUDA4.0) 3.0(CUDA 4.1,4.2) 3.0(CUDA4.1,4.2) 3.1(CUDA5.0) 4.0(CUDA6.0) 3.1(CUDA5.0) 3.1(CUDA5.0) 3.1(CUDA5.0) 3.2(CUDA5.5) 4.0(CUDA6.0) 4.0(CUDA6.0) 4.1(CUDA6.5) 4.1(CUDA6.5) 4.3(CUDA7.5) 5.0(CUDA8.0) 5.0(CUDA8.0) Version(対応可能 4.2(CUDA7.0) 4.2(CUDA7.0) CUDAバージョン) Unified Memory N/A Yes N/A Yes kernel module last update Aug 17 2011 Mar 20 2012 May 16 2012 Nov 13 2012 Sep 27 2012 Nov 20 2012 Aug 16 2013 Jan 08 2014 Jun 30 2014 May 16 2014 Dec 10 2014 Jan 27 2015 Mar 24 2015 Apr 7 2015 Mar 09 2016 Dec 21 2016 Arp 5 2017 標準バンドル 4.0.1 4.1.28 4.1.28 4.2.9 5.5 5.0 5.0 5.0 5.5 5.5,6.0 5.5,6.0 5.5,6.0 7.5 7.5 8.0
    [Show full text]
  • Trabajo #1 De Computación Gráfica
    TRABAJO #1 DE COMPUTACIÓN GRÁFICA MONITORES 1.¿Cuántos tipos de monitores hay? Hay actualmente tres tipos principales de tecnologías: CRT, o tubos de rayos catódicos (los de siempre), LCD, o pantallas de cristal líquido (Liquid Crystal Display), y las pantallas de plasma. LCD: Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en pilas, dispositivos electrónicos, ya que utiliza cantidades muy pequeñas de energía eléctrica. CTR: El monitor esta basado en un elemento CRT (Tubo de rayos catódicos), los actuales monitores, controlados por un microprocesador para almacenar muy diferentes formatos, así como corregir las eventuales distorsiones, y con capacidad de presentar hasta 1600x1200 puntos en pantalla. Los monitores CRT emplean tubos cortos, pero con la particularidad de disponer de una pantalla completamente plana. PLASMA: Se basan en el principio de que haciendo pasar un alto voltaje por un gas a baja presión se genera luz. Estas pantallas usan fósforo como los CRT pero son emisivas como las LCD y frente a estas consiguen una gran mejora del color y un estupendo ángulo de visión. 2.Compara en una tabla similitudes y diferencias, ventajas y desventajas, entre CRT, LCD, PLASMA, TFT, HDA, y otras tecnologías Similitud Diferencia Ventajas Desventajas CRT Lo usan los -Permiten -Ocupan monitores de reproducir una más espacio plasma mayor variedad (cuanto mas cromática. fondo, mejor geometría). -Distintas resoluciones se -Los pueden ajustar modelos al monitor.
    [Show full text]
  • 750Ti Driver Download Geforce 335.23 Driver
    750ti driver download GeForce 335.23 Driver. This 335.23 Game Ready WHQL driver ensures you’ll have the best possible gaming experience for Titanfall. Performance Enhanced GPU clock offset options for GeForce GTX 750Ti / GTX 750 Diablo III – updated DX9 profile Bound by Flame – updated profile DOTA 2 – updated profile Need for Speed Rivals – updated DX11 profile Watch Dogs – updated profile Gaming Technology Supports GeForce ShadowPlay™ technology Supports GeForce ShadowPlay™ Twitch Streaming Supports NVIDIA GameStream™ technology Titanfall – rated “Good” Thief – rating now “Good” Call of Duty: Ghosts – in-depth laser sight added. GeForce GTX TITAN, GeForce GTX TITAN Black. GeForce 700 Series: GeForce GTX 780 Ti, GeForce GTX 780, GeForce GTX 770, GeForce GTX 760, GeForce GTX 760 Ti (OEM), GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 745. GeForce 600 Series: GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650, GeForce GTX 645, GeForce GT 645, GeForce GT 640, GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce 605. GeForce 500 Series: GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 560 Ti, GeForce GTX 560 SE, GeForce GTX 560, GeForce GTX 555, GeForce GTX 550 Ti, GeForce GT 545, GeForce GT 530, GeForce GT 520, GeForce 510. GeForce 400 Series: GeForce GTX 480, GeForce GTX 470, GeForce GTX 465, GeForce GTX 460 SE v2, GeForce GTX 460 SE, GeForce GTX 460, GeForce GTS 450, GeForce GT 440, GeForce GT 430, GeForce GT 420, GeForce 405.
    [Show full text]
  • Intel Vpro Jebol Menurut Blog Resmi Windows 7, Dimanfaatkan Untuk Penyerangan
    POWERED BY Indonesia’s Greatest Computer Newspaper Edisi 02/2009 • 22 Januari-04 Februari 2009 PLUS CD! Freeware, Patch, Calendar Tools, PCMAV 1.91 + Build3, Rp10.000 (Jawa-Bali-Lampung) • Rp11.000 (Luar Jawa-Bali-Lampung) Anti-virus + Defi nition KKuisuis TTTSTS bberhaerhaddiahiah 3 UUnitnit MMP3P3 PPlayerlayer ZZotacotac BBombaomba 110000 225656 MMBB uuntukntuk 3 oorangrang ppemenangemenang Sponsored by: Asiaraya Computronics Verbatim Quad Interface Desktop HHADIRKANADIRKAN Harddisk Eksternal dengan Empat Pilihan interface KKEMBALIEMBALI HP Mini 1000 GGAMEAME NNINTENDOINTENDO DDII KKOMPUTEROMPUTER Netbook dengan Keyboard Berukuran Lebih Besar WhoCrashed Gigabyte GA-EP45-UD3P Mendukung teknologi Ultra-Durable terbaru Freeware Penganalisa Crash Ubuntu 8.10 Palit Radeon HD 4850 Sonic Desain keseluruhan yang berbeda dengan reference Instalasi AVG Free Edition CCover.inddover.indd 1 113/01/20093/01/2009 118:02:008:02:00 AktualRedaksional Editorial/Surat Pembaca Selamat Datang...Welcome...Huãnyíng Guãnglín...Yõkoso...Hwangyong-hamnida! PEMIMPIN REDAKSI Anton R. Pardede Pembaca, masih ingatkah Anda dengan konsol video game keluaran Nintendo? Mungkin SIDANG REDAKSI buat Anda yang duduk di bangku SD sekitar akhir 80-an, sempat mencoba atau memiliki Rully Novrianto (Koord.), Alexander P.H. Jularso, konsol dari Nintendo tersebut. Sekarang setelah zamannya PlayStation, Xbox, dan PC, konsol Denie Kristiadi, Sasongko R.A. Prabowo, Suherman, tersebut sepertinya sudah dilupakan. Sebagai menu utama kali ini, PC Mild ingin mengajak Anda Supriyanto, Wawa Sundawa, Yanuar Ferdian bernostalgia sebentar dengan konsol-konsol keluaran Nintendo yang sempat booming di masa lalu. Bagaimana caranya? Tentu dengan menggunakan emulator yang tersedia secara gratis di Internet. REDAKTUR SENIOR Silakan baca halaman 26 untuk mengetahuinya lebih lanjut. Effendy Kho, Rusmanto Maryanto Kembali ke masa kini, tahun 2009 atau tahun kerbau, menurut kepercayaan etnis Tionghoa, sudah kita masuki.
    [Show full text]
  • NVIDIA's Fermi: the First Complete GPU Computing Architecture
    NVIDIA’s Fermi: The First Complete GPU Computing Architecture A white paper by Peter N. Glaskowsky Prepared under contract with NVIDIA Corporation Copyright © September 2009, Peter N. Glaskowsky Peter N. Glaskowsky is a consulting computer architect, technology analyst, and professional blogger in Silicon Valley. Glaskowsky was the principal system architect of chip startup Montalvo Systems. Earlier, he was Editor in Chief of the award-winning industry newsletter Microprocessor Report. Glaskowsky writes the Speeds and Feeds blog for the CNET Blog Network: http://www.speedsnfeeds.com/ This document is licensed under the Creative Commons Attribution ShareAlike 3.0 License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license identical to this one. http://creativecommons.org/licenses/by-sa/3.0/ Company and product names may be trademarks of the respective companies with which they are associated. 2 Executive Summary After 38 years of rapid progress, conventional microprocessor technology is beginning to see diminishing returns. The pace of improvement in clock speeds and architectural sophistication is slowing, and while single-threaded performance continues to improve, the focus has shifted to multicore designs. These too are reaching practical limits for personal computing; a quad-core CPU isn’t worth twice the price of a dual-core, and chips with even higher core counts aren’t likely to be a major driver of value in future PCs. CPUs will never go away, but GPUs are assuming a more prominent role in PC system architecture.
    [Show full text]
  • HP Z400 Workstation Overview
    QuickSpecs HP Z400 Workstation Overview HP recommends Windows Vista® Business 1. 3 External 5.25" Bays 2. Power Button 3. Front I/O: 2 USB 2.0, 1 IEEE 1394a (optional card required), Headphone, Microphone DA - 13276 North America — Version 4 — April 17, 2009 Page 1 QuickSpecs HP Z400 Workstation Overview 4. 3 External 5.25” Bays 9. Rear I/O: 6 USB 2.0, PS/2 keyboard/mouse 1 RJ-45 to Integrated Gigabit LAN 5. 4 DIMM Slots for DDR3 ECC Memory 1 Audio Line In, 1 Audio Line Out, 1 Microphone In 6. 2 Internal 3.5” Bays 10. 2 PCIe x16 Gen2 Slots 7. 475W, 85% efficient Power Supply 11.. 1 PCIe x4 Gen2, 1 PCIe x4 Gen1, 2 PCI Slots 8. Dual/Quad Core Intel 3500 Series Processors 12 4 Internal USB 2.0 ports Form Factor Convertible Minitower Compatible Operating Genuine Windows Vista® Business 32-bit* Systems Genuine Windows Vista® Business 64-bit* Genuine Windows Vista® Business 32-bit with downgrade to Windows® XP Professional 32-bit custom installed** (expected available until August 2009) Genuine Windows Vista® Business 64-bit with downgrade to Windows® XP Professional x64 custom installed** (expected available until August 2009) HP Linux Installer Kit for Linux (includes drivers for both 32-bit & 64-bit OS versions of Red Hat Enterprise Linux WS4 and WS5 - see: http://www.hp.com/workstations/software/linux) Novell Suse SLED 11 (expected availability May 2009) *Certain Windows Vista product features require advanced or additional hardware. See http://www.microsoft.com/windowsvista/getready/hardwarereqs.mspx and http://www.microsoft.com/windowsvista/getready/capable.mspx for details.
    [Show full text]
  • Parallel Nsight 1.5 + CUDA Toolkit 3.2 + Ecosytem Update As of Sept 2010
    High Performance Computing with CUDA™ Supercomputing 2010 Tutorial Cyril Zeller, NVIDIA Corporation Welcome! Goal: A detailed introduction to high performance computing with CUDA CUDA = NVIDIA’s architecture for GPU computing Outline: Motivation and introduction GPU programming basics Code analysis and optimization Lessons learned from production codes GPUs are Fast! 8x Higher Linpack Performance Performance / $ Performance / watt Gflops Gflops / $K Gflops / kwatt 750 656.1 70 60 800 600 60 656 50 600 450 40 400 300 30 20 150 11 200 146 80.1 10 0 0 0 CPU Server GPU-CPU CPU Server GPU-CPU CPU Server GPU-CPU Server Server Server CPU 1U Server: 2x Intel Xeon X5550 (Nehalem) 2.66 GHz, 48 GB memory, $7K, 0.55 kw GPU-CPU 1U Server: 2x Tesla C2050 + 2x Intel Xeon X5550, 48 GB memory, $11K, 1.0 kw Increasing Number of CUDA Applications 2010 Already Available Q2 Q3 Q4 CULA CUDA C/C++, Nsight Visual Allinea TotalView PGI Accelerator Tools & LAPACK Library PGI Fortran Studio IDE Debugger Debugger Enhancements Libraries Thrust: C++ Jacket: NPP Performance Platform Cluster Bright Cluster CAPS HMPP Mathworks Mathematica Template Lib MATLAB Plugin Primitives (NPP) Management Management Enhancements MATLAB Seismic Analysis: Seismic Analysis: Seismic City, Seismic Reservoir Reservoir Oil & Gas ffA, HeadWave Geostar Acceleware Interpretation Simulation 1 Simulation 2 Bio- AMBER, GROMACS, GROMOS, BigDFT, ABINIT, Quantum Chem Other Popular Quantum Chemistry HOOMD, LAMMPS, NAMD, VMD TeraChem Code 1 MD code Chem Code 2 Bio- Hex Protein CUDA-BLASTP, GPU-HMMER,
    [Show full text]
  • Nvidia Driver Download Geforce 560 Ti Nvidia Driver Download Geforce 560 Ti
    nvidia driver download geforce 560 ti Nvidia driver download geforce 560 ti. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. Cloudflare Ray ID: 669bff327df0c41a • Your IP : 188.246.226.140 • Performance & security by Cloudflare. Nvidia GeForce Graphics Driver 397.93 for Windows 10. Provides the optimal gaming experience for the latest new titles and updates. Download. What's New. Specs. Related Drivers 10. Desktop 64-bit Desktop 32-bit Notebook 64-bit Notebook 32-bit. Game Ready Drivers provide the best possible gaming experience for all major new releases, including Virtual Reality games. Prior to a new title launching, our driver team is working up until the last minute to ensure every performance tweak and bug fix is included for the best gameplay on day-1. Before downloading this driver: It is recommended that you backup your current system configuration. Click here for instructions. What's New: Provides the optimal gaming experience for The Crew 2 Closed Beta and State of Decay 2.
    [Show full text]
  • Download Nvidia Geforce Experince Window 10 Geforce Windows 10 Driver
    download nvidia geforce experince window 10 GeForce Windows 10 Driver. GeForce GTX 295, GeForce GTX 285, GeForce GTX 280, GeForce GTX 275, GeForce GTX 260, GeForce GTS 250, GeForce GTS 240, GeForce GT 230, GeForce GT 240, GeForce GT 220, GeForce G210, GeForce 210, GeForce 205. GeForce 100 Series: GeForce GT 140, GeForce GT 130, GeForce GT 120, GeForce G100. GeForce 9 Series: GeForce 9800 GX2, GeForce 9800 GTX/GTX+, GeForce 9800 GT, GeForce 9600 GT, GeForce 9600 GSO, GeForce 9600 GSO 512, GeForce 9600 GS, GeForce 9500 GT, GeForce 9500 GS, GeForce 9400 GT, GeForce 9400, GeForce 9300 GS, GeForce 9300 GE, GeForce 9300 SE, GeForce 9300, GeForce 9200, GeForce 9100. GeForce 8 Series: GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS 512, GeForce 8800 GTS, GeForce 8800 GT, GeForce 8800 GS, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8600 GS, GeForce 8500 GT, GeForce 8400 GS, GeForce 8400 SE, GeForce 8400, GeForce 8300 GS, GeForce 8300, GeForce 8200, GeForce 8200 /nForce 730a, GeForce 8100 /nForce 720a. Geforce experience for windows 32bit. Most people looking for Geforce experience for windows 32bit downloaded: NVIDIA GeForce Experience. NVIDIA GeForce Experience helps you keep your GeForce drivers up to date and enhance your video gaming experience. Similar choice. Programs for query ″geforce experience for windows 32bit″ NVIDIA PhysX System Software. This Nvidia driver supports NVIDIA PhysX acceleration on all GeForce 400-series, to 900-series GPUs with a minimum of 256MB dedicated graphics memory. requirements. Experience GPU PhysX . on GeForce for . and Windows Vista and Windows XP . AGEIA PhysX. •Includes the latest PhysX runtime builds to support all released PhysX content.
    [Show full text]
  • Download Drivers for Windows 8 32 Bit Geforce 302.80 Driver
    download drivers for windows 8 32 bit GeForce 302.80 Driver. This driver offers full support for the new Windows 8 display driver model WDDM 1.2 . GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GT 645, GeForce GT 640, GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce 605. GeForce 500 Series: GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 560 Ti, GeForce GTX 560 SE, GeForce GTX 560, GeForce GTX 550 Ti, GeForce GT 545, GeForce GT 530, GeForce GT 520, GeForce 510. GeForce 400 Series: GeForce GTX 480, GeForce GTX 470, GeForce GTX 465, GeForce GTX 460 SE v2, GeForce GTX 460 SE, GeForce GTX 460, GeForce GTS 450, GeForce GT 440, GeForce GT 430, GeForce GT 420, GeForce 405. GeForce 300 Series: GeForce GT 340, GeForce GT 330, GeForce GT 320, GeForce 315, GeForce 310. GeForce 200 Series: GeForce GTX 295, GeForce GTX 285, GeForce GTX 280, GeForce GTX 275, GeForce GTX 260, GeForce GTS 250, GeForce GTS 240, GeForce GT 230, GeForce GT 240, GeForce GT 220, GeForce G210, GeForce 210, GeForce 205. GeForce 100 Series: GeForce GT 140, GeForce GT 130, GeForce GT 120, GeForce G100. GeForce 9 Series: GeForce 9800 GX2, GeForce 9800 GTX/GTX+, GeForce 9800 GT, GeForce 9600 GT, GeForce 9600 GSO, GeForce 9600 GSO 512, GeForce 9600 GS, GeForce 9500 GT, GeForce 9500 GS, GeForce 9400 GT, GeForce 9400, GeForce 9300 GS, GeForce 9300 GE, GeForce 9300 SE, GeForce 9300, GeForce 9200, GeForce 9100. GeForce 8 Series: GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS 512, GeForce 8800 GTS, GeForce 8800 GT, GeForce 8800 GS, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8600 GS, GeForce 8500 GT, GeForce 8400 GS, GeForce 8400 SE, GeForce 8400, GeForce 8300 GS, GeForce 8300, GeForce 8200, GeForce 8200 /nForce 730a, GeForce 8100 /nForce 720a.
    [Show full text]
  • Accelerating Convolutional Neural Network by Exploiting Sparsity on Gpus Weizhi Xu, Shengyu Fan, Hui Yu and Xin Fu, Member, IEEE
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 1 Accelerating convolutional neural network by exploiting sparsity on GPUs Weizhi Xu, Shengyu Fan, Hui Yu and Xin Fu, Member, IEEE, Abstract—Convolutional neural network (CNN) is an impor- series of algorithmic optimization techniques were developed, tant deep learning method. The convolution operation takes a such as im2col-based method [12], [13], FFT-based method large proportion of the total execution time for CNN. Feature [14], and Winograd-based method [15]. The above acceleration maps for convolution operation are usually sparse. Multiplica- tions and additions for zero values in the feature map are useless methods have been integrated into cuDNN library, which is a for convolution result. In addition, convolution layer and pooling state-of-the-art library for deep learning on GPU [16]. layer are computed separately in traditional methods, which leads The convolution operation in CNN refers to the process to frequent data transfer between CPU and GPU. Based on these in which the convolution kernel samples on the feature map. observations, we propose two new methods to accelerate CNN In the sampling process, the convolution kernel carries out a on GPUs. The first method focuses on accelerating convolution operation, and reducing calculation of zero values. The second weighted summation operation on the sampling area, and the method combines the operations of one convolution layer with entire feature map is sampled according to the stride size. The the following pooling layer to effectively reduce traffic between process of convolution contains a lot of multiplications and CPU and GPU.
    [Show full text]