Metallurgical Grade Silicon (MG-Si), Via Carbothermic Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Metallurgical Grade Silicon (MG-Si), Via Carbothermic Reduction Engineering Impurity Behavior on the Micron-Scale in Metallurgical-Grade Silicon Production By Sarah Bernardis B.S./M.S. Physics Università degli Studi di Padova, 2005 M.S. Materials Science and Engineering Massachusetts Institute of Technology, 2008 Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering at the Massachusetts Institute of Technology February 2012 © 2012 Massachusetts Institute of Technology. All rights reserved. Signature of Author:_____________________________________________________________ Department of Materials Science and Engineering Certified by:___________________________________________________________________ Kenneth C. Russell Professor Emeritus of Metallurgy and Nuclear Engineering Thesis Supervisor Accepted by: __________________________________________________________________ Christopher Schuh Chair, Departmental Committee on Graduate Students - 2 - Engineering Impurity Behavior on the Micron-Scale in Metallurgical-Grade Silicon Production By Sarah Bernardis Submitted to the Department of Materials Science and Engineering on October 15th, 2012 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering Abstract Impurities are detrimental to silicon-based solar cells. A deeper understanding of their evolution, microscopic distributions, and oxidation states throughout the refining processes may enable the discovery of novel refining techniques. Using synchrotron-based microprobe techniques and bulk chemical analyses, we investigate Fe, Ti, and Ca starting from silicon- and carbon bearing raw feedstock materials to metallurgical grade silicon (MG-Si), via carbothermic reduction. Before reduction, impurities are present in distinct micron- or sub-micron-sized minerals, frequently located at structural defects in Si-bearing compounds. Chemical states vary, they are generally oxidized (e.g., Fe2+, Fe3+). Impurity concentrations are directly correlated to the geological type of quartz: pegmatitic and hydrothermal quartz have fewer impurities than quartzite. Particles containing Cr, Mn, Fe, Ni, Cu, K, and/or Zn are also detected. In carbon- bearing compounds, Ca typically follows wood veins. In wood, Fe and Ti are diffused uniformly. In contrast, charcoal samples can contain particles of Fe, Ti, and/or Ca. The overall impurity content in the pine charcoal sample is higher than in the pine woodchip, suggesting that the charcoalization process introduces unintentional contamination. During reduction, silica evolution is analyzed in parallel to Fe. Fe is predominantly clustered in minerals which influence its oxidation state. Here, Fe is embedded in muscovite with predominance of Fe3+. Initially, Fe is affected by the decomposition of muscovite and it is found as Fe2+; as muscovite disappears, Fe diffuses in the molten silica, segregating towards interfaces. Contrary to thermodynamic expectation, Fe is oxidized until late in the reduction process as the silica melt protects it from gases present in the furnace, hence minimizing its reduction, only partially measured at high temperatures. After reduction, the initial low- to sub- ppmw concentrations measured in the precursor quartz increase drastically in the MG-Si. The refining process is responsible for the increased contamination. Yet, most impurities are clustered at grain boundaries and a leaching process could remove them. - 3 - Electrical fragmentation and a leaching treatment are tested as a method to expose grain boundaries of “dirty” quartzite and to remove impurities. The selective fragmentation proves to be a very important step in removing impurities via leaching. Thesis Supervisor: Kenneth C. Russell Title: Professor Emeritus of Metallurgy and Nuclear Engineering - 4 - Acknowledgments I crossed the finish line thanks to a handful of professors I had the luck to meet and to collaborate with throughout the last years. In chronological order: Sam Allen made me discover the beauty of the world of kinetics as well as dedicated his time to improve my graduate student experience. Ken Russell inspired me by always pointing out the most important scientific aspects and by providing broader perspectives. Tonio Buonassisi suggested and motivated this research; his contributions and scientific insights were invaluable. Marisa Di Sabatino drastically changed my life by inviting me to perform experiments with her. This thesis would have been very different without her long term vision, passion, and persistence. Merete Tangstad was always available to discuss anything from furnace thermodynamics to possible funding miracles. Her perspective both on life and the PhD experience should be written for the next generations of students. Rune Larsen, my quartz guru, without his expertise, quartz would have been a cryptic feedstock material rather than an amazing mineral. I feel deeply indebted to Dean Blance Staton. She has been extremely supportive and always suggested brilliant solutions to colorful situations. Her wisdom and experience were irreplaceable. To the MIT Glass Lab and to my close friends, their humor and support, infinite chats, and the many evenings spent together, Martina Poletti, Riccardo Pedersini, Anna Custo, Gabriele & Miriam Vanoni, Andrea Allais, Linda Valeri, Jon Gibbs, Mike Tarkanian, and Dana Shemuly. A special thank you to my sister Elena, always present and supportive. You know I really mean it. To all of you, my everlasting gratitude. - 5 - - 6 - Contents Abstract ....................................................................................................................................... - 3 - Acknowledgments....................................................................................................................... - 5 - Contents ...................................................................................................................................... - 7 - List of Figures ........................................................................................................................... - 11 - List of Tables ............................................................................................................................ - 14 - 1. Introduction ....................................................................................................................... - 15 - 1.1. Motivation .................................................................................................................. - 15 - 1.1.1. Selected Impurities: Fe, Ti, and Ca ..................................................................... - 17 - 1.2. Carbothermic Reduction ............................................................................................ - 18 - 1.3. Silica and Trace Elements during Carbothermic Reduction ...................................... - 19 - 1.3.1. Before Carbothermic Reduction ......................................................................... - 20 - 1.3.2. During Carbothermic Reduction ......................................................................... - 22 - 1.3.3. After Carbothermic Reduction ............................................................................ - 26 - 1.4. Scope and Structure of this Thesis ............................................................................. - 26 - 1.4.1. Process Description ............................................................................................. - 27 - 1.4.2. Process Development .......................................................................................... - 27 - 2. Characterization Methods .................................................................................................. - 29 - 2.1. Quartz Section Preparation ......................................................................................... - 29 - 2.2. Microscopy ................................................................................................................. - 30 - 2.2.1. Optical Microscopy ............................................................................................. - 30 - 2.2.2. Scanning Electron Microscopy ........................................................................... - 30 - 2.2.3. Electron Probe Micro-Analyzer .......................................................................... - 31 - 2.2.4. Synchrotron Based X-ray Fluorescence.............................................................. - 31 - 2.3. Spectroscopy .............................................................................................................. - 34 - 2.3.1. X-Ray Near Edge Absorption Structure ............................................................. - 34 - 2.3.2. Fourier Transform Infrared Spectroscopy .......................................................... - 35 - - 7 - 2.4. X-ray Diffraction ........................................................................................................ - 35 - 2.5. Bulk Concentration Analysis ..................................................................................... - 36 - 2.5.1. Inductively Coupled Plasma Mass Spectrometry ............................................... - 36 - 2.5.2. Glow Discharge Mass Spectrometry .................................................................. - 37 - 3. Before Carbothermic Reduction: Raw Feedstock Materials ............................................. - 39 - 3.1. Raw Feedstock Materials
Recommended publications
  • United States Patent [151 3,659,831 Reber Et Al
    United States Patent [151 3,659,831 Reber et al. [451 May 2, 1972 [54] INTEGRAL QUENCH FURNACE AND 2,681,136 6/1954 lpsen .................................... ..266/4 R TRANSFER MECHANISM 2,747,855 5/1956 lpsen . ..266/4 R [72] Inventors: Russell H. Reber, Orange; Harold E. 2,965,369 12/1960 Acker et al .......... ..266/4 R Mescher, Pico Rivera, both of Calif. 3,381,947 5/1968 Beggs . ..266/4 R 3,410,547 11/1968 Bielefeldt... .....266/5 R [73] Assignee: Paci?c Scientific Company, City of Com 3,441,452 4/1969 Westeren ............................. ..266/4 R merce, Calif. FOREIGN PATENTS OR APPLICATIONS [22] Filed: Aug. 25, 1969 987,910 8/1951 France ................................. ..266/4 R [21] Appl.N0.: 852,671 Primary Examiner—-Gerald A. Dost Atrorney—-Fowler, Knobbe & Martens [52] U.S.Cl. ........................... ..266/4A,148/153,214/18R, 214/26 [57] ABSTRACT [51] im. Cl. .................................................. ..C21d1/66 [58] Field ofSearch ........... ..148/153, 155; 214/18 R, 23-26, An integral quench furnace system and transfer mechanism 214/32; 266/4 R, 4 A, 4 B, 6 R for removing a heat treated charge from the furnace chamber into the quench media and onto an unloading platform. The [56] References Cited transfer mechanism includes a forked loading cart mounted on the quench chamber A-frame for movement into the fur UNITED STATES PATENTS nace and onto the unloading platform through a hydraulic motor driven chain and sprocket arrangement, 1,840,327 1/1932 Paulsen ................... ............ ..214/26 1,848,898 3/1932 McFarland ............................ ..2l4/26 22 Claims, 13 Drawing Figures Patented May 2, 1972 3,659,831 i0 Sheets-Sheet l INVENTORS.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • Design and Implementation of Energy Saving Control and Regulation System for Metallurgical Furnace
    Design and Implementation of Energy Saving Control and Regulation System for Metallurgical Furnace ShuWen Chen, YongShen Chen, and WeiWei Guo { [email protected]} School of materials and metallurgy University of Science and Technology Liaoning Anshan 114051, China Abstract. This paper from the perspective of saving fuel gas, reasonable design of temperature control system. The thermostat is designed S7-200 series PLC adoption. The communication method of the computer and programmable controller (PLC) temperature control system is described. Software part of the application of the PLC principle to achieve system control. Hardware part of the temperature sensing element thermocouple temperature field, flow meter, fuel flow regulation, adjusting the thermocouple output electrical signal supply line for comparison with the given values, if there is a difference, the difference through the operational amplifier and issued a directive to the actuator, the actuator to perform the task. The simulation interface of the application configuration, virtual reality condition, the master-slave real-time monitoring system composed of computer and PLC to give full play to the their respective advantages in the industrial control, realize the decentralized control and centralized monitoring and other new features. Write part of the program, to research on energy efficient and reasonable utilization as the theme, combined with typical furnace, energy for metallurgical furnace the huge energy consumption equipment rational utilization and effective control method is put forward to improve the reasonable design of the program, resulting in applications get effective implementation, for enterprises to save energy, create economic benefits to contribute. Keywords: PLC; control; computer; configuration technology. 1 Introduction So far the majority of domestic metallurgical furnace is built in the last century, the control system configuration has been outdated.
    [Show full text]
  • Synthesis of Li2s-Carbon Cathode Materials Via Carbothermic Reduction of Li2so4
    ORIGINAL RESEARCH published: 04 June 2019 doi: 10.3389/fenrg.2019.00053 Synthesis of Li2S-Carbon Cathode Materials via Carbothermic Reduction of Li2SO4 Jiayan Shi 1, Jian Zhang 2, Yifan Zhao 2, Zheng Yan 1, Noam Hart 1 and Juchen Guo 1,2* 1 Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States, 2 Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, United States Pre-lithiated sulfur materials are promising cathode for lithium-sulfur batteries. The synthesis of lithium sulfide-carbon (Li2S-C) composite by carbothermic reduction of lithium sulfate (Li2SO4) is investigated in this study. The relationship between reaction temperature and the consumption of carbon in the carbothermic reduction of Li2SO4 is first investigated to precisely control the carbon content in the resultant Li2S-C composites. To understand the relationship between the material structure and the electrochemical properties, Li2S-C composites with the same carbon content are subsequently synthesized by controlling the mass ratio of Li2SO4/carbon and the reaction temperature. Systematic electrochemical analyses and microscopic characterizations Edited by: demonstrate that the size of the Li S particles dispersed in the carbon matrix is the key Wen Liu, 2 Beijing University of Chemical parameter determining the electrochemical performance. A reversible capacity of 600 Technology, China −1 mAh g is achieved under lean electrolyte condition with high Li2S areal loading.
    [Show full text]
  • Method for the Transport of Sponge Iron Verfahren Zum Transportieren Von Eisenschwamm Procede De Transport D'eponge De Fer
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 515 744 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C21B 13/00, B65G 53/06 of the grant of the patent: 29.04.1998 Bulletin 1998/18 (21) Application number: 91304911.0 (22) Date of filing: 30.05.1991 (54) Method for the transport of sponge iron Verfahren zum Transportieren von Eisenschwamm Procede de transport d'eponge de fer (84) Designated Contracting States: • Flores-Verdugo, Marco Aurelio AT DE ES FR IT SE Monterrey, Nuevo Leon (MX) • Garza- Ondarza, Jose Javier (43) Date of publication of application: San Nicolas de los Garza, Nuevo Leon (MX) 02.12.1992 Bulletin 1992/49 (74) Representative: Garratt, Peter Douglas et al (73) Proprietor: HYLSA, S.A. de C.V. Mathys & Squire Monterrey Nuevo Leon (MX) 100 Grays Inn Road London WC1X8AL (GB) (72) Inventors: • Becerra-Nova, Jorge Octavio (56) References cited: Apodaca, Nuevo Leon (MX) EP-A- 0 021 222 DE-A- 3 201 608 • Viramontes-Brown, Ricardo Garza Garcia, Nuevo Leon (MX) DO ^> Is- lo Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. a. 99(1) European Patent Convention). LU Printed by Jouve, 75001 PARIS (FR) EP 0 515 744 B1 Description The present invention relates to a method applicable in the production of iron and steel, wherein a direct reduction process is employed to produce an intermediate product in the form of a particulate solid, commonly known as sponge 5 iron or Direct Reduced Iron (DRI).
    [Show full text]
  • Blast Furnace
    Blast furnace From Wikipedia, the free encyclopedia Jump to: navigation, search Blast furnace in Sestao, Spain. The actual furnace itself is inside the centre girderwork. A blast furnace is a type of metallurgical furnace used for smelting to produce metals, generally iron. In a blast furnace, fuel and ore are continuously supplied through the top of the furnace, while air (sometimes with oxygen enrichment) is blown into the bottom of the chamber, so that the chemical reactions take place throughout the furnace as the material moves downward. The end products are usually molten metal and slag phases tapped from the bottom, and flue gases exiting from the top of the furnace. Blast furnaces are to be contrasted with air furnaces (such as reverberatory furnaces), which were naturally aspirated, usually by the convection of hot gases in a chimney flue. According to this broad definition, bloomeries for iron, blowing houses for tin, and smelt mills for lead, would be classified as blast furnaces. However, the term has usually been limited to those used for smelting iron ore to produce pig iron, an intermediate material used in the production of commercial iron and steel. Contents [hide] • 1 History o 1.1 China o 1.2 Ancient World elsewhere o 1.3 Medieval Europe o 1.4 Early modern blast furnaces: origin and spread o 1.5 Coke blast furnaces o 1.6 Modern furnaces • 2 Modern process • 3 Chemistry • 4 See also • 5 References o 5.1 Notes o 5.2 Bibliography • 6 External links [edit] History Blast furnaces existed in China from about the 5th century BC, and in the West from the High Middle Ages.
    [Show full text]
  • Air-Sea Interactions on Titan: Lake Evaporation, Atmospheric Circulation, and Cloud Formation
    Air-Sea Interactions on Titan: Lake Evaporation, Atmospheric Circulation, and Cloud Formation Scot C. R. Rafkin* and Alejandro Soto Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO, USA, [email protected]. *Corresponding Author Keywords: Titan, Titan Seas, Titan Lakes, Titan Atmosphere, Air-Sea Interaction, Sea breeze, Titan Clouds Abstract Titan’s abundant lakes and seas exchange methane vapor and energy with the atmosphere via a process generally known as air-sea interaction. This turbulent exchange process is investigated with an atmospheric mesoscale model coupled to a slab model representation of an underlying lake. The impact of lake size, effective lake mixed layer depth, background wind speed, air-lake temperature differential, and atmospheric humidity on air-sea interaction processes is studied through dozens of two-dimensional simulations. The general, quasi-steady solution is a non-linear superposition of a very weak background plume circulation driven by the buoyancy of evaporated methane with a stronger opposing thermally direct (sea breeze) circulation driven by the thermal contrast between the cold marine layer over the lake and the warmer inland air. The specific solution depends on the value of selected atmosphere and lake property parameters, but the general solution of the superposition of these two circulations is persistent. Consistent with previous analytical work of others, the sensible heat flux and the latent heat flux trend toward opposite and equal values such that their ratio, the Bowen ratio, approaches -1.0 in most, but not all, of the quasi-steady state solutions. Importantly, in nearly all scenarios, the absolute magnitude of the 1 fluxes trends toward very small values such that the equilibrium solution is also nearly a trivial solution where air-sea energy exchange is ~3 W m-2 or less.
    [Show full text]
  • Carbothermic Reduction Kinetics of Ilmenite Concentrates Catalyzed by Sodium Silicate and Microwave- Absorbing Characteristics O
    Available on line at Association of the Chemical Engineers of Serbia AChE www.ache.org.rs/CICEQ Chemical Industry & Chemical Engineering Quarterly 19 (3) 423−433 (2013) CI&CEQ WEI LI1,2 CARBOTHERMIC REDUCTION KINETICS OF JINHUI PENG1 1 ILMENITE CONCENTRATES CATALYZED BY SHENGHUI GUO SODIUM SILICATE AND MICROWAVE- LIBO ZHANG1 GUO CHEN1 ABSORBING CHARACTERISTICS OF HONGYING XIA1 REDUCTIVE PRODUCTS 1 Key Laboratory of Unconventional Carbothermic reduction kinetics of ilmenite concentrates catalyzed by sodium Metallurgy, Ministry of Education, silicate were investigated; the reduction degree of ilmenite concentrates Kunming University of Science and reduction reaction was determined as R = 4/7(16y + 56x)(ΔWΣ - f W)/(16y + Technology, Yunnan, China A-P 2Faculty of Science, Kunming + 56x + 112). The results show that the reaction activation energy of initial University of Science and stage and later stage is 36.45 and 135.14 kJ/mol, respectively. There is a great Technology, Yunnan, China change in the reduction rate at temperatures of 1100 and 1150 °C; the catal- ysis effect and change of reduction rate were evaluated by TG and DSC curves SCIENTIFIC PAPER of sodium silicate. Microwave-absorbing characteristics of reduction products were measured by the method of microwave cavity perturbation. It was found UDC 544.47/.478 that microwave absorbing characteristics of reduction products obtained at ° DOI 10.2298/CICEQ120421077L temperatures of 900, 1100 and 1150 C have significant differences. XRD characterization results explained the formation and accumulation of reduction product Fe, and pronounced changes of microwave absorbing characteristics due to the decrease of the content of ilmenite concentrates. Keywords: sodium silicate; ilmenite concentrates; catalytic reduction; kinetics; microwave absorbing characteristics.
    [Show full text]
  • High Speed Infra Red Furnace
    International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-2962-2970 ISSN: 2249-6645 High Speed Infra Red Furnace 1, Mr.Amalorpava Dass. J, 2, Mr.Mohanraj.N 3, Mr. Senthil Vel.C, Mr.Gugan raja.PL) 1.Asst.Professor Aalim Muhammed Salegh College of Engineering,IAF, Avadi, Chennai-600055, 2..Asst.Professor Sri Krishna College of Technology, Covaipudur, Coimbatore-641042. 3. Asst.Professor Aalim Muhammed Salegh College of Engineering,IAF, Avadi, Chennai-600055, 4. Lecturer, VKS College of engineering and technology, desiyamangalam, kulithalai,karur-639120. ABSTRACT This project is designed to improve Electrical versus Thermal efficiency. Nowadays electrical heating system converts 65% of the electrical power into thermal power. We have introduced infrared penetration heating system to improve efficiency up to 95% thermal efficiency and 100% electrical efficiency. We are going to construct a furnace model to improve our system. A real fabrication model is to analyze IR heating system. The capacity of infrared lamps used inside the furnace will be about 500watts. IR lamps will be used to provide heat. From the furnace, the temperature is sensed by the thermocouple, which is based on the principle of Seeback effect. The function of a thermocouple is to convert heat energy to mill voltage and it is fed to a signal conditioner to improve the sensitivity and also to improve the non-linear Property of thermocouple. Temperature acquired from the thermocouple is indicated on the screen of the computer. The computer will also compare the temperature acquired with the set temperature and control action if any will be done by the solid-state relay that avoids instantaneous heating.
    [Show full text]
  • CARBOTHERMIC REDUCTION of MECHANICALLY ACTIVATED Nio-CARBON MIXTURE: NON-ISOTHERMAL KINETICS
    J. Min. Metall. Sect. B-Metall. 54 (3) B (2018) 313 - 322 Journal of Mining and Metallurgy, Section B: Metallurgy CARBOTHERMIC REDUCTION OF MECHANICALLY ACTIVATED NiO-CARBON MIXTURE: NON-ISOTHERMAL KINETICS S. Bakhshandeh, N. Setoudeh *, M. Ali Askari Zamani, A. Mohassel Yasouj University, Materials Engineering Department, Yasouj, Iran (Received 23 March 2018; accepted 10 December 2018) Abstract The effect of mechanical activation on the carbothermic reduction of nickel oxide was investigated. Mixtures of nickel oxide and activated carbon (99% carbon) were milled for different periods of time in a planetary ball mill. The unmilled mixture and milled samples were subjected to thermogravimetric analysis (TGA) under an argon atmosphere and their solid products of the reduction reaction were studied using XRD experiments. TGA showed that the reduction of NiO started at ~800 and ~720 in un-milled and one-hour milled samples respectively whilst after 25h of milling it decreased to about 430 . The kinetics parameters of carbothermic reduction were determined using non-isothermal method (Coats-Redfern Method) for un-milled and milled samples. The activation energy was determined to be about 222 kJ mol -1 for un-milled mixture whilst it was decreased to about 148 kJ mol -1 in 25-h milled sample. The decrease in the particle size/crystallite size of the℃ milled samp℃les resulted in a significant drop in the reaction temperature. ℃ Keywords : Ball milling; Carbothermic reduction; Nickel oxide; Non-isothermal kinetics; Thermo-gravimetric analysis (TGA). 1. Introduction solid product catalyzes the reaction rate [ 11 ]. It has been shown that mechanical activation by There have been many investigations on the milling reactants together with extended periods of carbothermic reduction of metal oxide in the literature time can intensify the reactions [ 16-19 ].
    [Show full text]
  • Xith General Assembly Berkeley, USA
    XIth General Assembly Berkeley, USA 1961 XIe Asselllblée Générale Berkeley, USA 1961 RESOLUTIONS ADOPTEES A. PAR L'ASSEMBLEE GENERALE SOMMAIRE DES DÉCISIONS CONTENUES DANS LE RAPPORT DE L'ASSEMBLÉE GÉNÉRALE 1. Statuts et Règlements. Le texte révisé des Statuts et Règlements, tel qu'il a été adopté, se trouve page 476, 6ème Partie. 2. Structure des Commissions. Une révision de la structure des Commissions a été adoptée. 3. Admission de nouveaux Pays. La décision prise par le Comité Exécutif d'admettre Taiwan comme pays adhérent a été confirmée. II a été annoncé que le Comité Exécutif avait également décidé d'admettre le Brésil, la Corée du Nord, et la Turquie. 4- Le Service International des Latitudes. La résolution soumise par l'Union Géodésique et Géophysique Internationale a été adoptée. II a été noté que le Comité Exécutif avait accepté l'offre faite par le Conseil Scientifique du Japon d'installer le Bureau Central à Mizusawa sous la direction de M. T. Hattori. 5· Unité de Cotisation. Il a été décidé de porter l'unité de cotisation pour les années 1962, 1963 et 1964 de 500 à 600 francs-or. 6. Budget des Dépenses. En acceptant le Budget, tel qu'il a été proposé par le Comité des Finances (voir page 39), l'Assemblée Générale a approuvé celles des résolutions financières issues des Commissions, pour lesquelles un financement est prévu. Ces résolutions ne sont pas reproduites ici. 7· Comité Financier Consultatif. Il a été décidé de mettre fin à l'existence de ce Comité. 8. Commissions et Sous-Commissions. Les décisions suivantes ont été prises: (a) la Commission 3 (Notations) est dissoute; (b) la Commission 14 prend le nouveau nom de "Commission sur les Données spectro­ scopiques fondamentales"; (c) la Commission 28 prend le nouveau nom de "Commission des Galaxies"; (d) la Sous-Commission 29 a devient la Commission 36 sur "La Théorie des Atmosphères stellaires" ; (e) toutes les autres Sous-Commissions deviennent des Comités ou des Groupes de Travail de leur Commission principale.
    [Show full text]
  • Arxiv:1205.3312V3 [Physics.Gen-Ph] 4 Sep 2012
    A beacon of new physics: the Pioneer anomaly modelled as a path based speed loss driven by the externalisation of aggregate non-inertial QM energy Paul G. ten Boom School of Physics, University of New South Wales, Sydney NSW 2052, Australia Email: [email protected], [email protected] Abstract: This treatise outlines how a non-systematic based Pioneer anomaly, with its implied violation (re: ‘low’ mass bodies only) of both general relativity’s weak equivalence principle and the Newtonian inverse-square law, can be successfully modelled. These theoretical hurdles and various awkward observational constraints, such as the low value of Pioneer 11’s anomaly pre-Saturn encounter, have (to date) not been convincingly modelled. Notwithstanding the recent trend to embrace a non-constant Sun/Earth-directed heat based explanation of this anomalous deceleration, the actual: nature, direction, and temporal and spatial variation of the Pioneer anomaly remain an open arena of research. Working backwards from the observational evidence, and rethinking: time, mass, quantum entanglement and non-locality, we hypothesise a mechanism involving a quantum mechanical energy source and a new type of ‘gravitational’ field; neither of which lie within general relativity’s domain of formulation/application. By way of a systemic conservation of energy principle, an internally inexpressible (aggregate) non-inertial energy discrepancy/uncertainty — involving a myriad of quantum (lunar/third-body residing) atomic and molecular systems moving in analog curved spacetime — is (non-locally) re-expressed externally as a (rotating) non-Euclidean spatial geometry perturbation. At a moving body each “rotating space-warp” induces sinusoidal proper acceleration and speed perturbations, as well as a path-based constant (per cycle) rate of speed shortfall relative to predictions that omit the additional effect.
    [Show full text]