The Morphological and Anatomical Interpretation And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Sex-Linked SCAR Marker in Bryonia Dioica (Cucurbitaceae), a Dioecious Species with XY Sex-Determination and Homomorphic Sex Chromosomes
doi: 10.1111/j.1420-9101.2008.01641.x A sex-linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex-determination and homomorphic sex chromosomes R. K. OYAMA, S. M. VOLZ & S. S. RENNER Department of Biology, Ludwig-Maximilians-Universita¨t, Munich, Germany Keywords: Abstract Bryonia; Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the Cucurbitaceae; monoecious B. alba in 1903 provided the first clear evidence for Mendelian population structure; inheritance of dioecy and made B. dioica the first organism for which XY sex- sex chromosome; determination was experimentally proven. Applying molecular tools to this Y-chromosome. system, we developed a sex-linked sequence-characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba.In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y-sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X- and the Y-homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phyloge- netic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution. -
The Rise of Traditional Chinese Medicine and Its Materia Medica A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Bath Research Portal Citation for published version: Williamson, EM, Lorenc, A, Booker, A & Robinson, N 2013, 'The rise of traditional Chinese medicine and its materia medica: a comparison of the frequency and safety of materials and species used in Europe and China', Journal of Ethnopharmacology, vol. 149, no. 2, pp. 453-62. https://doi.org/10.1016/j.jep.2013.06.050 DOI: 10.1016/j.jep.2013.06.050 Publication date: 2013 Document Version Early version, also known as pre-print Link to publication University of Bath General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 13. May. 2019 Journal of Ethnopharmacology 149 (2013) 453–462 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep The rise of traditional Chinese medicine and its materia medica: A comparison of the frequency and safety of materials and species used in Europe and China Elizabeth M. Williamson a,n, Ava Lorenc b,nn, Anthony Booker c, Nicola Robinson b a University of Reading School -
Add a Tuber to the Pod: on Edible Tuberous Legumes
LEGUME PERSPECTIVES Add a tuber to the pod: on edible tuberous legumes The journal of the International Legume Society Issue 19 • November 2020 IMPRESSUM ISSN Publishing Director 2340-1559 (electronic issue) Diego Rubiales CSIC, Institute for Sustainable Agriculture Quarterly publication Córdoba, Spain January, April, July and October [email protected] (additional issues possible) Editor-in-Chief Published by M. Carlota Vaz Patto International Legume Society (ILS) Instituto de Tecnologia Química e Biológica António Xavier Co-published by (Universidade Nova de Lisboa) CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier [email protected] (Universidade Nova de Lisboa), Oeiras, Portugal Technical Editor Office and subscriptions José Ricardo Parreira Salvado CSIC, Institute for Sustainable Agriculture Instituto de Tecnologia Química e Biológica António Xavier International Legume Society (Universidade Nova de Lisboa) Apdo. 4084, 14080 Córdoba, Spain Oeiras, Portugal Phone: +34957499215 • Fax: +34957499252 [email protected] [email protected] Legume Perspectives Design Front cover: Aleksandar Mikić Ahipa (Pachyrhizus ahipa) plant at harvest, [email protected] showing pods and tubers. Photo courtesy E.O. Leidi. Assistant Editors Svetlana Vujic Ramakrishnan Nair University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia AVRDC - The World Vegetable Center, Shanhua, Taiwan Vuk Đorđević Ana María Planchuelo-Ravelo Institute of Field and Vegetable Crops, Novi Sad, Serbia National University of Córdoba, CREAN, Córdoba, Argentina Bernadette Julier Diego Rubiales Institut national de la recherche agronomique, Lusignan, France CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Kevin McPhee Petr Smýkal North Dakota State University, Fargo, USA Palacký University in Olomouc, Faculty of Science, Department of Botany, Fred Muehlbauer Olomouc, Czech Republic USDA, ARS, Washington State University, Pullman, USA Frederick L. -
Morphological and Histo-Anatomical Study of Bryonia Alba L
Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not Bot Horti Agrobo , 2015, 43(1):47-52. DOI:10.15835/nbha4319713 Morphological and Histo-Anatomical Study of Bryonia alba L. (Cucurbitaceae) Lavinia M. RUS 1, Irina IELCIU 1*, Ramona PĂLTINEAN 1, Laurian VLASE 2, Cristina ŞTEFĂNESCU 1, Gianina CRIŞAN 1 1“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Botany, 23 Gheorghe Marinescu, Cluj-Napoca, Romania; [email protected] ; [email protected] (*corresponding author); [email protected] ; [email protected] ; [email protected] 2“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, 12 Ion Creangă, Cluj-Napoca, Romania; [email protected] Abstract The purpose of this study consisted in the identification of the macroscopic and microscopic characters of the vegetative and reproductive organs of Bryonia alba L., by the analysis of vegetal material, both integral and as powder. Optical microscopy was used to reveal the anatomical structure of the vegetative (root, stem, tendrils, leaves) and reproductive (ovary, male flower petals) organs. Histo-anatomical details were highlighted by coloration with an original combination of reagents for the double coloration of cellulose and lignin. Scanning electronic microscopy (SEM) and stereomicroscopy led to the elucidation of the structure of tector and secretory trichomes on the inferior epidermis of the leaf. -
Cayaponia Tayuya Written by Leslie Taylor, ND Published by Sage Press, Inc
Technical Data Report for TAYUYA Cayaponia tayuya Written by Leslie Taylor, ND Published by Sage Press, Inc. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without written permission from Sage Press, Inc. This document is not intended to provide medical advice and is sold with the understanding that the publisher and the author are not liable for the misconception or misuse of information provided. The author and Sage Press, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss, damage, or injury caused or alleged to be caused directly or indirectly by the information contained in this document or the use of any plants mentioned. Readers should not use any of the products discussed in this document without the advice of a medical professional. © Copyright 2003 Sage Press, Inc., P.O. Box 80064, Austin, TX 78708-0064. All rights reserved. For additional copies or information regarding this document or other such products offered, call or write at [email protected] or (512) 506-8282. Tayuya Preprinted from Herbal Secrets of the Rainforest, 2nd edition, by Leslie Taylor Published and copyrighted by Sage Press, Inc., © 2003 Family: Cucurbitaceae Genus: Cayaponia Species: tayuya Synonyms: Cayaponia piauhiensis, C. ficifolia, Bryonia tayuya, Trianosperma tayuya, T. piauhiensis, T. ficcifolia Common Names: Tayuya, taiuiá, taioia, abobrinha-do-mato, anapinta, cabeca-de-negro, guardião, tomba Part Used: Root Tayuya is a woody vine found in the Amazon rainforest (predominantly in Brazil and Peru) as well as in Bolivia. -
(BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 8, Issue 1, January 2019 Evaluation of Bioaccumulation Factor (BAF), Bioconcentration Factor (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater S. S. Shingadgaon1, B.L. Chavan2 Research Scholar, Department of Environmental Science, School of Earth Sciences, Solapur University, Solapur, MS, India1 Former Professor and Head, Department of Environmental Science, Solapur University Solapur and presently working at Department of Environmental Science, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, MS, India 2 ABSTRACT: Wastewaters receiving aquatic bodies are quiet complex in terms of pollutants, the transport and interactions with heavy metals. This complexity is primarily due to high variability of pollutants, contaminants and related parameters. The macrophytes are plausible bio-indicators of the pollution load and level of metals within the aquatic systems than the wastewater or sediment analyses. The potential ability of aquatic macrophytes in natural water bodies receiving municipal sewage from Solapur city was assessed. Data from the studies on macrophytes exposed to a mixed test bath of metals and examined to know their potentialities to accumulate heavy metals for judging their suitability for phytoremediation technology -
Bryonia Alba L
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Bryonia alba L. Photo by Tim Prather White bryony Family: Cucurbitaceae Range: Montana, Idaho, and Utah. Habitat: Open woodlands and brushy riparian sites. Origin: Native to Eurasia and northern Africa. Sometimes grown as an ornamental or medicinal plant and escaped from cultivation about 1975. Impacts: Grows up and over the top of trees, shading and sometimes killing them. Photo by Rich Old Berries are toxic to humans. Western states listed as Noxious Weed: Idaho, Oregon, Washington White bryony is an herbaceous perennial vine that grows to 12 ft long or more, often to the tops of brush and trees. Its roots are thick, fleshy, and light yellow in color and the stems climb via tendrils that curl around other vegetation or structures; tendrils arise from leaf axils and are unbranched. The leaves are simple, with 3 to 5 lobes and broadly-toothed margins, roughly triangular or maple-like with palmate venation, and up to 5 inches long. Upper and lower surfaces bear small white glands. -
Este Trabalho Não Teria Sido Possível Sem O Contributo De Algumas Pessoas Para As Quais Uma Palavra De Agradecimento É Insufi
AGRADECIMENTOS Este trabalho não teria sido possível sem o contributo de algumas pessoas para as quais uma palavra de agradecimento é insuficiente para aquilo que representaram nesta tão importante etapa. O meu mais sincero obrigado, Ao Nuno e à minha filha Constança, pelo apoio, compreensão e estímulo que sempre me deram. Aos meus pais, Gaspar e Fátima, por toda a força e apoio. Aos meus orientadores da Dissertação de Mestrado, Professor Doutor António Xavier Pereira Coutinho e Doutora Catarina Schreck Reis, a quem eu agradeço todo o empenho, paciência, disponibilidade, compreensão e dedicação que por mim revelaram ao longo destes meses. À Doutora Palmira Carvalho, do Museu Nacional de História Natural/Jardim Botânico da Universidade de Lisboa por todo o apoio prestado na identificação e reconhecimento dos líquenes recolhidos na mata. Ao Senhor Arménio de Matos, funcionário do Jardim Botânico da Universidade de Coimbra, por todas as vezes que me ajudou na identificação de alguns espécimes vegetais. Aos meus colegas e amigos, pela troca de ideias, pelas explicações, pela força, apoio logístico, etc. I ÍNDICE RESUMO V ABSTRACT VI I. INTRODUÇÃO 1.1. Enquadramento 1 1.2. O clima mediterrânico e a vegetação 1 1.3. Origens da vegetação portuguesa 3 1.4. Objetivos da tese 6 1.5. Estrutura da tese 7 II. A SANTA CASA DA MISERICÓRDIA DE ARGANIL E A MATA DO HOSPITAL 2.1. Breve perspetiva histórica 8 2.2. A Mata do Hospital 8 2.2.1. Localização, limites e vias de acesso 8 2.2.2. Fatores Edafo-Climáticos-Hidrológicos 9 2.2.3. -
Toxicology in Antiquity
TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
Images of Medicinal Plants Identified for Animal Diseases / Conditions
IMAGES OF MEDICINAL PLANTS IDENTIFIED FOR ANIMAL DISEASES / CONDITIONS S. No. Identified plants Plant details & Medicinal use 1. Kaach maach Botanical name: Solanum nigrum Family: Solanaceae (potato family) Animal disease / condition used in: Tympany 2. Gadau Botanical name: Tinospora cordifolia Family: Menispermaceae (Moonseed family) Animal disease / condition used in: Arthritis, Anorexia, as Galactagouge 3. Fakadi Botanical name: Ficus palmata Family: Moraceae (Mulberry family) Animal disease / condition used in: Retention of Placenta 4. Charoti Botanical name: Prunus armeniaca Family: Rosaceae (Rose family) Animal disease / condition used in: Black Quarter 5. Batal bail Botanical name: Cissampelos pareira Family: Menispermaceae (Moonseed family) Animal disease / condition used in: Colic 0 6. Bariyan Botanical name: Acorus calamus Family: Araceae (Arum family) Animal disease / condition used in: as an anthelmintic / Liver flukes 7. Mehndu Botanical name: Dodonaea viscosa Family: Sapindaceae (Soapberry family) Animal disease / condition used in: Rabies, Wound treatment 8. Kodisumbi / Brahmi Botanical name: Centella asiatica Family: Apiaceae (Carrot family) Animal disease / condition used in: Tympany 9. Soot Tamaku Botanical name: Verbascum thapsus Family: Scrophulariaceae (dog flower family) Animal disease / condition used in: Fever of unknown origin 10. Sooliyan Botanical name: Euphorbia royleana Family: Euphorbiaceae (Castor family) Animal disease / condition used in: Respiratory problem 11. Bill Patri Botanical name: Aegle marmelos Family: Rutaceae (Citrus family) Animal disease / condition used in: Anoestrous 1 12. Trimbaru Botanical name: Zanthoxylum armatum Family: Rutaceae (Citrus family) Animal disease / condition used in: Fever of unknown origin / Indigestion 13. Kamila Botanical name: Mallotus philippensis Family: Euphorbiaceae (Castor family) Animal disease / condition used in: Ectoparasites 14. Peele phool wali booti Botanical name: Tridax procumbens Family: Asteraceae (Sunflower family) Animal disease / condition used in: Prolapse of vagina 15. -
Genetic Diversity of Bitter Vetch (Vicia Ervilia
¤vûÈv Ë÷“fiã fl ËæÉûŸ ¤w„wÍ— ëÚ≠v fl ÃÍÑ›° Åw Í îÉ Ë™„fl¢~ ( ÊŸwfi÷Æ≈ # # ,.31 $ ,,. ( ,-3 Êî∆≠ I - Âùw⁄© I ,0 ö÷ã ¤° Ûwz #Vicia ervilia $ ñ÷É Ã©wŸ ¤‡Í¶Œ÷Õ ËŒÍÑ›° ª‡fiÉ ËzwÈüùv ˌȰ‡’‡≈ù‡Ÿ ËΩvùü Åw∆≠ £w•v ûz ¤vûÈv Ë÷Ÿ Ë„wÍ— - - ËÈw z ÚÈüw› fl ,Ë∫Ωvfl ‹Í„w© I ,Ë•w{Ω w±ù ö⁄îŸ E-mail: [email protected] I âûÕ I ùúz fl ”w‰› ‚Í‰É fl ëÚ≠v Åw Í îÉ ‚¶• Ÿo ,( ) ) Ë•wfi© ǶÈü ·flû— I◊‡÷Ω ·öŒ™›vô I†Èû{É ·w“™›vô I†Èû{É -( ·ô‡É ,-1 Áv ·ö„w™Ÿ ®ÈwŸüj ÃÈ ùô I¤vû vÈ ÷ŸË Ë Í„w — ¤° Ûwz ñ÷É Ã©wŸ ¤‡ ͶŒ÷Õ ùô Ë ÍŒ Ñ›° ª‡fiÉ Ë •ùûz ù‡∫fiŸ ‚z w„ ·ô‡É Ë ÈŒ °‡’‡≈ù‡Ÿ fl ËΩvùü Ç∆≠ /- üv ‘⁄æ’vù‡Ñ•ô »{µ ) ö› ö© Ç™Õ ‚Ωù†Ÿ ùô ,.23 öfi∆•v ùô (V. ervilia) ñ÷É Ã©wŸ ôvöæÉ ) ô‡z ûͬџ ûÑ⁄ Ñ›w•Í 3+ wÉ -, üv Ë„ö÷— ùô ·wÍ— ªw∆Éùv ) öfiÑ©vô ‚Ñ©vû≈v ö©ù Ç’wì w„ ·ô‡É ËŸ w⁄É ) ôû—Èö Áùvôûz Ç©vô wÈô üv üflù ôvöæÉ ) ô‡z ûͬџ ‘— wÉ. , üv ‹ õjÈ ‘— ùô ‘— ôvöæÉ ) ôûÕ Ë Ÿ û ¬ÉÍÍ üflù 14 3* “›wÍ‹ ÍŸ wz üflù 33 wÉ 00 üv Ë „ö÷— wÉ üflù ‚z ·w Í— ùô ◊w ›Í ôvöæÉ fl ◊wÍ› ùô ùúz ôvöæÉ ‹ “›wÍ )ŸÍ Ç©vô ûÍÍ¬É üflù ,++ ‹Í“›wÍŸ wz üflù ,,0 wÉ 4. -
Flora of Vascular Plants of the Seili Island and Its Surroundings (SW Finland)
Biodiv. Res. Conserv. 53: 33-65, 2019 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2019-0003 Submitted 20.03.2018, Accepted 10.01.2019 Flora of vascular plants of the Seili island and its surroundings (SW Finland) Andrzej Brzeg1, Wojciech Szwed2 & Maria Wojterska1* 1Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland 2Department of Forest Botany, Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71D, 60-625 Poznań, Poland * corresponding author (e-mail: [email protected]; ORCID: https://orcid.org/0000-0002-7774-1419) Abstract. The paper shows the results of floristic investigations of 12 islands and several skerries of the inner part of SW Finnish archipelago, situated within a square of 11.56 km2. The research comprised all vascular plants – growing spontaneously and cultivated, and the results were compared to the present flora of a square 10 × 10 km from the Atlas of Vascular Plants of Finland, in which the studied area is nested. The total flora counted 611 species, among them, 535 growing spontaneously or escapees from cultivation, and 76 exclusively in cultivation. The results showed that the flora of Seili and adjacent islands was almost as rich in species as that recorded in the square 10 × 10 km. This study contributed 74 new species to this square. The hitherto published analyses from this area did not focus on origin (geographic-historical groups), socioecological groups, life forms and on the degree of threat of recorded species. Spontaneous flora of the studied area constituted about 44% of the whole flora of Regio aboënsis.