The Morphology of Illustrated Plants

Total Page:16

File Type:pdf, Size:1020Kb

The Morphology of Illustrated Plants The morphology of illustrated plants Alicja Zemanek and Bogdan Zemanek The watercolours in the Libri Picturati yield an enormous variety in Here in one drawing the same species is shown, at the time of bearing morphological information. Many organs are reproduced in meticu­ flowers and of fruits, and sometimes also producing seeds, with the lous and often correct detail, resulting from extensive observations time interval between flowering and fruiting expressed by a clear gap in the field. The plants are often portrayed as a synthesis of several in a branch ((PlatePlate 1, Yellow flag: 'risIris pseudacorus, A22A22.067)..067). A similar different individuals, showing general features ofthe species, as well method for presenting species is used today in plant atlases, flora as individual variation. Only in the flowers, of which the function was descriptions and identification keys. The painting of some of the not entirely understood at that time, some systematic mistakes may watercolours certainly was preceded by extensive observation in the be found. field. Plant morphology, dealing with the external features of plants Moreover, the specimens selected as models have been dug out, (appearance, shape, and symmetry), is one of the oldest branches hence their underground parts are reproduced in great detail. of botany. Its beginnings, in ancient times, were shaped by Although there are no separate compilations of drawings devoted to Theophrastus of Eresus (ca. 370-285 Be), and it was developed further various plant organs, such as appear in later publications, the faithful in subsequent centuries by the work of numerous authors. The 'species portraits' present specific morphological reviews showing foundations of modern morphology were laid by Joachim Jung the diversity of forms found in specific organs. (Jungius, 1587'1657) and John Ray (Rajus, 1627-1705), whose terminology But even with this perfection in depicting plants, it is evident how was adopted to a large extent by Carl Linnaeus. the style of thinking in the period limited the perception of the artist, In the Renaissance period, the basic morphological concepts intro­ as well as of the researcher who guided the artist. We see the in­ duced by Theophrastus were known, the principal organs of plants accuracies in presenting the structure of the flower, but at the same had been distinguished, and their most important functions had time we also see that utmost care is taken to present the artistic been recognized. It was only the flower of which the function was beauty of all flower parts, i.e. the corolla, its diverse colours, showing not correctly perceived, as it was regarded as the means of protection the double-flower forms, and the like. of the fruit during its development, and as the embodiment of beauty present in nature. At that time there was no commonly used Roots system of plant names, nor a standardized method of morphological The correct and detailed pictures of the underground organs of herbs, description, and compiling herbaria, i.e. the collection of dried plants, particularly the roots, cause the Libri Picturati to be recognized as was only at its earliest stage. one of the oldest 'rhizological compendia'. The interest taken in Despite this, the authors of printed books on herbs contributed underground organs was not only a consequence of the approach many new facts pertaining to plants as well as to details of their towards plants as sources of edible roots and medicinal substances. structure; and some of them, e.g., Leonhart Fuchs (1501-1566), added It was also connected with contemporary horticultural practices glossaries of botanical terms to their herbals, such as De historia at that time: roots, bulbs, tubers, rhizomes, etc., were used for the stirpium, published in 1542. Theoretical considerations on morphology vegetative reproduction of plants. Many exotic species shipped from were published by the leading 'botanical philosopher' of the period: other continents reached Europe in the form of underground organs, Andrea Cesalpino (Caesalpinus, 1519-1603) in De plan tis Iibri XVI, capable of withstanding desiccation and lack of light during the published in Florence, 1583. voyage back home that might take many months. Many new concepts were also introduced by Valerius Cordus (1515-1544) In the Libri the roots are shown in illustrations presenting herbs, in Historiae stirpium, Argentorati (1563), who differentiated for example woody perennials, and vines, whereas they are absent in the sheets between various types of leaves and of fruits. In the difficult task of that show trees, and only very rarely roots are shown in shrubs documenting nature, which is still not finished today, botanical illus­ (e.g., Broom: Cytisus scoparius, A20.021A20.021).). In some cases, next to the tration has always had a significant role to play. picture of a plant - or shown on a separate sheet - its root is shown, sometimes cut open to reveal its internal structure, e.g. in Great Portraits of species knapweed (Centaurea centaurium, A18A1B.oso)..050). From the point of view of the history of morphology the Libri Picturati The two principal morphological types of roots, fibrous root and A18-30 collection of watercolours is a compendium showing the variety taproots, are presented in dozens of examples. The pictures show and multiformity of plant organs. The merits of reliable scientific numerous modifications of the roots of plants of many ecological documentation, combined with a high level of artistry as if to prove groups, living in diverse types of habitats, such as root tubers or the Platonic idea of the paramount importance of beauty hidden in thickened storage roots, e.g. in White Bryony (Bryonia dioica, A23.003, nature. Painting the 'morphological synthesis' (and a phenological Fig. 11). one as well) of species.is a novel approach found in earlier authors A realistic drawing of the root of Mandrake (Mandragora officinarum, but it is applied consistently in the Libri Picturati. A30.085,A30.o85, FFig.ig. 2)2 ) is worth major attention, because it points to the evident rejection of old beliefs considering the plant to be a magical Plate 1I (A22.067) The portrait of a species: Yellow flag (Iris pseudacorus) object, with the root usually depicted in the form of a human figure. 79 .
Recommended publications
  • A Sex-Linked SCAR Marker in Bryonia Dioica (Cucurbitaceae), a Dioecious Species with XY Sex-Determination and Homomorphic Sex Chromosomes
    doi: 10.1111/j.1420-9101.2008.01641.x A sex-linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex-determination and homomorphic sex chromosomes R. K. OYAMA, S. M. VOLZ & S. S. RENNER Department of Biology, Ludwig-Maximilians-Universita¨t, Munich, Germany Keywords: Abstract Bryonia; Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the Cucurbitaceae; monoecious B. alba in 1903 provided the first clear evidence for Mendelian population structure; inheritance of dioecy and made B. dioica the first organism for which XY sex- sex chromosome; determination was experimentally proven. Applying molecular tools to this Y-chromosome. system, we developed a sex-linked sequence-characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba.In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y-sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X- and the Y-homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phyloge- netic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution.
    [Show full text]
  • Morphological and Histo-Anatomical Study of Bryonia Alba L
    Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not Bot Horti Agrobo , 2015, 43(1):47-52. DOI:10.15835/nbha4319713 Morphological and Histo-Anatomical Study of Bryonia alba L. (Cucurbitaceae) Lavinia M. RUS 1, Irina IELCIU 1*, Ramona PĂLTINEAN 1, Laurian VLASE 2, Cristina ŞTEFĂNESCU 1, Gianina CRIŞAN 1 1“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Botany, 23 Gheorghe Marinescu, Cluj-Napoca, Romania; [email protected] ; [email protected] (*corresponding author); [email protected] ; [email protected] ; [email protected] 2“Iuliu Ha ţieganu” University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, 12 Ion Creangă, Cluj-Napoca, Romania; [email protected] Abstract The purpose of this study consisted in the identification of the macroscopic and microscopic characters of the vegetative and reproductive organs of Bryonia alba L., by the analysis of vegetal material, both integral and as powder. Optical microscopy was used to reveal the anatomical structure of the vegetative (root, stem, tendrils, leaves) and reproductive (ovary, male flower petals) organs. Histo-anatomical details were highlighted by coloration with an original combination of reagents for the double coloration of cellulose and lignin. Scanning electronic microscopy (SEM) and stereomicroscopy led to the elucidation of the structure of tector and secretory trichomes on the inferior epidermis of the leaf.
    [Show full text]
  • Cayaponia Tayuya Written by Leslie Taylor, ND Published by Sage Press, Inc
    Technical Data Report for TAYUYA Cayaponia tayuya Written by Leslie Taylor, ND Published by Sage Press, Inc. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without written permission from Sage Press, Inc. This document is not intended to provide medical advice and is sold with the understanding that the publisher and the author are not liable for the misconception or misuse of information provided. The author and Sage Press, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss, damage, or injury caused or alleged to be caused directly or indirectly by the information contained in this document or the use of any plants mentioned. Readers should not use any of the products discussed in this document without the advice of a medical professional. © Copyright 2003 Sage Press, Inc., P.O. Box 80064, Austin, TX 78708-0064. All rights reserved. For additional copies or information regarding this document or other such products offered, call or write at [email protected] or (512) 506-8282. Tayuya Preprinted from Herbal Secrets of the Rainforest, 2nd edition, by Leslie Taylor Published and copyrighted by Sage Press, Inc., © 2003 Family: Cucurbitaceae Genus: Cayaponia Species: tayuya Synonyms: Cayaponia piauhiensis, C. ficifolia, Bryonia tayuya, Trianosperma tayuya, T. piauhiensis, T. ficcifolia Common Names: Tayuya, taiuiá, taioia, abobrinha-do-mato, anapinta, cabeca-de-negro, guardião, tomba Part Used: Root Tayuya is a woody vine found in the Amazon rainforest (predominantly in Brazil and Peru) as well as in Bolivia.
    [Show full text]
  • Bryonia Alba L
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Bryonia alba L. Photo by Tim Prather White bryony Family: Cucurbitaceae Range: Montana, Idaho, and Utah. Habitat: Open woodlands and brushy riparian sites. Origin: Native to Eurasia and northern Africa. Sometimes grown as an ornamental or medicinal plant and escaped from cultivation about 1975. Impacts: Grows up and over the top of trees, shading and sometimes killing them. Photo by Rich Old Berries are toxic to humans. Western states listed as Noxious Weed: Idaho, Oregon, Washington White bryony is an herbaceous perennial vine that grows to 12 ft long or more, often to the tops of brush and trees. Its roots are thick, fleshy, and light yellow in color and the stems climb via tendrils that curl around other vegetation or structures; tendrils arise from leaf axils and are unbranched. The leaves are simple, with 3 to 5 lobes and broadly-toothed margins, roughly triangular or maple-like with palmate venation, and up to 5 inches long. Upper and lower surfaces bear small white glands.
    [Show full text]
  • Appendix B Natural History and Control of Nonnative Invasive Species
    Appendix B: Natural History and Control of Nonnative Invasive Plants Found in Ten Northern Rocky Mountains National Parks Introduction The Invasive Plant Management Plan was written for the following ten parks (in this document, parks are referred to by the four letter acronyms in bold): the Bear Paw Battlefield-BEPA (MT, also known as Nez Perce National Historical Park); Big Hole National Battlefield-BIHO (MT); City of Rocks National Reserve-CIRO (ID); Craters of the Moon National Monument and Preserve-CRMO (ID); Fossil Butte National Monument-FOBU (WY); Golden Spike National Historic Site-GOSP (UT); Grant-Kohrs Ranch National Historic Site-GRKO (MT); Hagerman Fossil Beds National Monument-HAFO (ID); Little Bighorn Battlefield National Monument-LIBI (MT); and Minidoka National Historic Site-MIIN (ID). The following information is contained for each weed species covered in this document (1) Park presence: based on formal surveys or park representatives’ observations (2) Status: whether the plant is listed as noxious in ID, MT, UT, or WY (3) Identifying characteristics: key characteristics to aid identification, and where possible, unique features to help distinguish the weed from look-a-like species (4) Life cycle: annual, winter-annual, biennial, or perennial and season of flowering and fruit set (5) Spread: the most common method of spread and potential for long distance dispersal (6) Seeds per plant and seed longevity (when available) (7) Habitat (8) Control Options: recommendations on the effectiveness of a. Mechanical Control b. Cultural
    [Show full text]
  • New Combinations in African Cucurbitaceae
    Blumea 55, 2010: 294 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X550945 New combinations in African Cucurbitaceae W.J.J.O. de Wilde1, B.E.E. Duyfjes1 Key words Abstract Eight new combinations are made for African Cucurbitaceae, two in the genus Neoachmandra, six in Pilogyne. Africa Bryonia Published on 9 December 2010 Cucurbitaceae Melothria Neoachmandra Pilogyne Zehneria With the breaking up of Zehneria Endl., De Wilde & Duyfjes Pilogyne marlothii (Cogn.) W.J.de Wilde & Duyfjes, comb. (2006) recognized the new genus Neoachmandra W.J.de Wilde nov. & Duyfjes, besides Zehneria. Subsequent molecular analysis Melothria marlothii Cogn., Verh. Bot. Vereins Prov. Brandenburg 30 (1888) (Schaefer et al. 2009, Cross et al. in prep.) indicates that both 152. — Type: Schinz 320 (lecto Z, designated by Meeuse 1962: 15), South genera should be united again. However, on morphological Africa, Cape Province. grounds, De Wilde & Duyfjes (2009a, b) chose to keep the genera apart, at the same time restricting Zehneria to its type- Pilogyne minutiflora (Cogn.) W.J.de Wilde & Duyfjes, comb. species Z. baueriana Endl. as sole species, and re-instating nov. Pilogyne Schrad. Both Neoachmandra and Pilogyne are wide- spread in the Old World, whereas Zehneria is restricted to Melothria minutiflora Cogn., in A.DC. & C.DC., Monogr. Phan. 3 (1881) 611. Norfolk Island (type) and New Caledonia. For naming DNA- — Type: Mann 2010 (holo K), Cameroon. samples to be used in ongoing molecular research (Cross et al. in prep.) a few species need names either in Neoachmandra Pilogyne parvifolia (Cogn.) W.J.de Wilde & Duyfjes, comb.
    [Show full text]
  • Medicinal Plants for Snake Bite Treatment - Future Focus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OpenSIUC Ethnobotanical Leaflets 13: 508-21 , 2009. Medicinal Plants for Snake Bite Treatment - Future Focus Kuntal Das HOD, Department of Pharmacognosy and Phytochemistry, St. John’s Pharmacy College, #6, Vijayanagar, II Stage, Bangalore-560 040. India Issued 01 April 2009 Abstract Snake bite is a major health hazard that leads to high mortality and great suffering in victims. The remedies are of great interest since they may have recognizable therapeutic or toxic effects and are steeped in cultural beliefs that invariably conflict with formal health care practices. The study of the interaction between plants and people is invaluable in discovering new herbal medicines and plant-derived drugs. The present study was aimed at conserving largely herbal drug knowledge and availing to the scientific world the plant therapies used as antivenom in the society. The long-term goal is to actualize conventional snake bite therapy options with effective, cheap, accessible and less allergic plant compounds. Key words: Anti venom; Medicinal Plant; Remedies; Snake bite. Introduction Snake bites were considered emergency threats for human life. Perhaps, venomous bites show as double teeth marks than ordinary bites. Snake venom is one of the most amazing and unique adoptions of snakes in animal planet. Venoms are mainly toxic modified saliva consisting of a complex mixture of chemicals called enzymes found in snake poisons throughout the world known to man. Broadly there are two types of toxins namely neurotoxins, which attack the central nervous system and haemotoxins which target the circulatory system.
    [Show full text]
  • In Vitro Analysis of Antioxidant and Antimicrobial Activity of Iraqi Bryonia Dioica
    Int. J. Pharm. Sci. Rev. Res., 43(1), March - April 2017; Article No. 46, Pages: 248-252 ISSN 0976 – 044X Research Article In vitro Analysis of Antioxidant and Antimicrobial Activity of Iraqi Bryonia dioica Amjed Haseeb Khamees*1, Enas Jawad Kadhim 1, Hayder Bahaa Sahib* 2, Shihab Hattab Mutlag1 1College of Pharmacy / Baghdad University/ Pharmacognosy Department/ Iraq. 2College of Pharmacy / AL-Nahrain University/ Pharmacology Department/ Iraq. *Corresponding author’s E-mail: [email protected] Received: 10-02-2017; Revised: 06-03-2017; Accepted: 20-03-2017. ABSTRACT Bryonia dioica is used as a medicinal plant in traditional medicine. This study was performed to investigate the phytochemical, antioxidant and antimicrobial potentials of Bryonia dioica by using different in-vitro methods. 1, 1 Diphenyl 2 picryl hydrazyl (DPPH) was used for determination of antioxidant potential of ethanolic extract. Antibacterial analysis carried out using agar well diffusion method for different concentrations of aerial parts extract of plant. Qualitative phytochemical analysis of different metabolites was performed using specific chemical tests on ethanolic extract after extraction by 80% ethanol using soxhlet apparatus. Preliminary phytochemical investigation of Bryonia dioica indicated the presence of various chemical compounds including alkaloids, Glycosides, steroids, Tannins, Carbohydrates and flavonoids. The results exhibited that Bryonia dioica extract has a valuable antibacterial activity against E.coli, K. pneumoniea, and P. valgaris. In addition it has significant antioxidant activity especially in concentrations of 100 and 150 and 200 mg ml-1 at which plant extract shows similar reading as that of ascorbic acid. The experimental data verified Bryonia dioica displayed remarkable antioxidant activity.
    [Show full text]
  • Descriptors for Melon (Cucumis Melo L.)
    Descriptors for CucumisMelon melo L. List of Descriptors Allium (E,S) 2000 Pearl millet (E,F) 1993 Almond (revised) * (E) 1985 Phaseolus acutifolius (E) 1985 Apple * (E) 1982 Phaseolus coccineus * (E) 1983 Apricot * (E) 1984 Phaseolus vulgaris * (E,P) 1982 Avocado (E,S) 1995 Pigeonpea (E) 1993 Bambara groundnut (E,F) 2000 Pineapple (E) 1991 Banana (E,S,F) 1996 Pistacia (excluding Pistacia vera) (E) 1998 Barley (E) 1994 Pistachio (E,F,A,R) 1997 Beta (E) 1991 Plum * (E) 1985 Black pepper (E,S) 1995 Potato variety * (E) 1985 Brassica and Raphanus (E) 1990 Quinua * (E) 1981 Brassica campestris L. (E) 1987 Rice * (E) 1980 Buckwheat (E) 1994 Rocket (E,I) 1999 Capsicum * (E,S) 1995 Rye and Triticale * (E) 1985 Cardamom (E) 1994 Safflower * (E) 1983 Carrot (E,S,F) 1999 Sesame * (E) 1981 Cashew * (E) 1986 Setaria italica Cherry * (E) 1985 and S. pumilia (E) 1985 Chickpea (E) 1993 Sorghum (E,F) 1993 Citrus (E,F,S) 1999 Soyabean * (E,C) 1984 Coconut (E) 1992 Strawberry (E) 1986 Coffee (E,S,F) 1996 Sunflower * (E) 1985 Cotton * (Revised) (E) 1985 Sweet potato (E,S,F) 1991 Cowpea * (E) 1983 Taro (E,F,S) 1999 Cultivated potato * (E) 1977 Tea (E,S,F) 1997 Echinochloa millet * (E) 1983 Tomato (E, S, F) 1996 Eggplant (E,F) 1990 Tropical fruit * (E) 1980 Faba bean * (E) 1985 Vigna aconitifolia Finger millet * (E) 1985 and V. trilobata (E) 1985 Forage grass * (E) 1985 Vigna mungo Forage legumes * (E) 1984 and V. radiata (Revised) * (E) 1985 Grapevine (E,S,F) 1997 Walnut (E) 1994 Groundnut (E,S,F) 1992 Wheat (Revised) * (E) 1985 Jackfruit (E) 2000 Wheat and Aegilops * (E) 1978 Kodo millet * (E) 1983 White Clover (E) 1992 Lathyrus spp.
    [Show full text]
  • Black Bryony, Called by Some in the Common Tongue Bryonia and Others Cheironios Ambelos
    Dioscorides’s bruonia melaina is Bryonia alba , not Tamus communis , and an illustration labeled bruonia melaina in the Codex Vindobonensis is Humulus lupulus not Bryonia dioica 1 S.S. Renner 1*, J. Scarborough 2, H. Schaefer 1, H.S. Paris 3, and J. Janick 4 1 Department of Biology, University Munich, Menzinger Strasse 67, D-80638 Munich, Germany 2 School of Pharmacy and Departments of History and Classics, University of Wisconsin, 777 Highland Drive, Madison, Wisconsin 53705, USA 3 Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya’ar Research center, PO Box 1021, Ramat Yishay 30-095, Israel 4 Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, Indiana 47907-2010, USA * Corresponding author e-mail: [email protected] Keywords: Botanical illustration, European Cucurbitaceae , medicinal plants, pharmaceutical uses, Pliny the Elder Abstract The Cucurbitaceae genus Bryonia contains ten species that are distributed throughout the Mediterranean to North Africa and from central Europe to Kazakhstan. References to the medicinal uses of species of Bryonia span two millennia, including two passages in Dioscorides’s De Materia Medica , written in about 65 CE. An illustrated copy of this text, known as the Codex Vindobonensis and dated 512 CE, is enriched with illustrations, including two labeled as bru ōnia or bryonia. Here we argue that while Dioscorides’s text clearly concerns the black- fruited B. alba and a red-fruited species, perhaps B. cretica or B. dioica , only one of the plates in the Codex shows a species of Bryonia , while the other shows Humulus lupulus .
    [Show full text]
  • Reports Based on the Work Performed by the Nordic Project Group on Inherent Natural Toxicants in Food Plants and Mushrooms Has Been Published
    Cucurbitacins in plant food Jørn Gry, Inge Søborg and Hans Christer Andersson TemaNord 2006:556 Cucurbitacins in plant food TemaNord 2006:556 © Nordic Council of Ministers, Copenhagen 2006 ISBN 92-893-1381-1 Print: Ekspressen Tryk & Kopicenter Copies: 200 Printed on environmentally friendly paper This publication can be ordered on www.norden.org/order. Other Nordic publications are available at www.norden.org/publications Printed in Denmark Nordic Council of Ministers Nordic Council Store Strandstræde 18 Store Strandstræde 18 DK-1255 Copenhagen K DK-1255 Copenhagen K Phone (+45) 3396 0200 Phone (+45) 3396 0400 Fax (+45) 3396 0202 Fax (+45) 3311 1870 www.norden.org The Nordic Food Policy Co-operation The Nordic Committee of Senior Officials for Food Issues is concerned with basic Food Policy issues relating to food and nutrition, food toxicology and food microbiology, risk evaluation, food control and food legislation. The co-operation aims at protection of the health of the consumer, common utilisation of professional and administrative resources and at Nordic and international developments in this field. Nordic co-operation Nordic co-operation, one of the oldest and most wide-ranging regional partnerships in the world, involves Denmark, Finland, Iceland, Norway, Sweden, the Faroe Islands, Greenland and Åland. Co- operation reinforces the sense of Nordic community while respecting national differences and simi- larities, makes it possible to uphold Nordic interests in the world at large and promotes positive relations between neighbouring peoples. Co-operation was formalised in 1952 when the Nordic Council was set up as a forum for parlia- mentarians and governments. The Helsinki Treaty of 1962 has formed the framework for Nordic partnership ever since.
    [Show full text]
  • White Bryony Identification and Management of “Western Kudzu”
    TechLine INVASIVE PLANT NEWS INNOVATIVE RESEARCH, SUCCESS STORIES, AND TIPS FOR INVASIVE PLANT MANAGERS White Bryony Identification and Management of “Western Kudzu” By Celestine Duncan REPRINTED FROM TECHLINENEWS.COM White Bryony (Bryonia alba) also know as devil’s turnip or western kudzu, is a fast-growing perennial climbing APRIL 2017 vine native to Europe and Northern Iran. The invasive plant was reported as early as 1953 in Montana (Rice 2017), and subsequently reported in four other western states in the United States (Figure 1). The vine can grow as much as six inches per day to a length of 150 feet, swiftly covering trees, shrubs or structures with dense mats of foliage (Figure 2). It is classified as a noxious weed in Idaho, Oregon and Washington. Identification White bryony initiates growth in spring from a large underground tuber that can be up to 18 inches in length (Figure 3). Leaves are five-lobed, palmately compound, rough to the touch, and up to five inches long (Figure 4). Stems have long, unbranched tendrils that are associated with leaves. Flowers clusters form in the leaf axis and are yellowish white, producing green berries that turn dark purple in late summer (Figure 5 and 6). Three to six seed are borne in each berry and are readily spread by birds. White bryony is a member of the Cucurbitaceae (cucumber) family. Impacts White bryony is usually found in windbreaks, riparian areas, fence rows, gardens, and wildlife plantings. Desirable trees and shrubs can be killed when bryony stems block sunlight, reducing wildlife habitat and modifying plant community structure.
    [Show full text]