Essential Microbiology

Total Page:16

File Type:pdf, Size:1020Kb

Essential Microbiology JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 Essential Microbiology i JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 ii JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 Essential Microbiology Stuart Hogg The University of Glamorgan, UK iii JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 Copyright C 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com Reprinted with corrections September 2005 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Library of Congress Cataloguing-in-Publication Data British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0 471 49753 3 (hbk) 0 471 49754 1 (pbk) Typeset in 10/12pt Sabon by TechBooks, New Delhi, India Printed and bound in Great Britain by Antony Rowe, Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. iv JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 Contents Preface ix Acknowledgements xi Part I Introduction 1 1 Microbiology: What, Why and How? 3 What is microbiology? 3 Why is microbiology important? 3 How do we know? Microbiology in perspective: to the ‘golden age’ and beyond 4 Light microscopy 10 Electron microscopy 15 2 Biochemical Principles 17 Atomic structure 17 Acids, bases, and pH 25 Biomacromolecules 27 Test yourself 48 3 Cell Structure and Organisation 51 The procaryotic cell 54 The eucaryotic cell 65 Cell division in procaryotes and eucaryotes 72 Test yourself 75 Part II Microbial Nutrition, Growth and Metabolism 77 4 Microbial Nutrition and Cultivation 79 Nutritional categories 81 How do nutrients get into the microbial cell? 83 Laboratory cultivation of microorganisms 84 Test yourself 89 5 Microbial Growth 91 Estimation of microbial numbers 91 Factors affecting microbial growth 96 The kinetics of microbial growth 101 v JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 vi CONTENTS Growth in multicellular microorganisms 105 Test yourself 106 6 Microbial Metabolism 109 Why is energy needed? 109 Enzymes 110 Principles of energy generation 118 Anabolic reactions 148 The regulation of metabolism 154 Test yourself 155 Part III Microbial Diversity 157 A few words about classification 158 7 Procaryote Diversity 163 Domain: Archaea 164 Domain: Bacteria 169 Bacteria and human disease 192 Test yourself 195 8 The Fungi 197 General biology of the Fungi 198 Classification of the Fungi 199 Fungi and disease 208 Test yourself 209 9 The Protista 211 ‘The Algae’ 211 ‘The Protozoa’ 224 The slime moulds and water moulds (the fungus-like protists) 230 Protistan taxonomy: a modern view 234 Test yourself 234 10 Viruses 237 What are viruses? 237 Viral structure 238 Classification of viruses 243 Viral replication cycles 244 Viroids 255 Prions 256 Cultivating viruses 256 Viral diseases in humans 259 Test yourself 264 Part IV Microbial Genetics 267 11 Microbial Genetics 269 How do we know genes are made of DNA? 269 DNA replication 271 JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 CONTENTS vii What exactly do genes do? 275 Regulation of gene expression 285 The molecular basis of mutations 288 Genetic transfer in microorganisms 299 Test yourself 312 12 Microorganisms in Genetic Engineering 315 Introduction 315 Plasmid cloning vectors 319 Bacteriophages as cloning vectors 323 Expression vectors 326 Eucaryotic cloning vectors 328 Polymerase chain reaction (PCR) 333 Test yourself 335 Part V Control of Microorganisms 337 13 The Control of Microorganisms 339 Sterilisation 339 Disinfection 344 The kinetics of cell death 347 Test yourself 351 14 Antimicrobial Agents 353 Antibiotics 355 Resistance to antibiotics 364 Antibiotic susceptibility testing 367 Antifungal and antiviral agents 368 The future 371 Test yourself 372 Part VI Microorganisms in the Environment 375 15 Microbial Associations 377 Microbial associations with animals 377 Microbial associations with plants 379 Microbial associations with other microorganisms 383 Test yourself 386 16 Microorganisms in the Environment 389 The carbon cycle 390 The nitrogen cycle 390 The sulphur cycle 393 Phosphorus 394 The microbiology of soil 394 The microbiology of freshwater 396 The microbiology of seawater 397 Detection and isolation of microorganisms in the environment 398 Beneficial effects of microorganisms in the environment 399 JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 viii CONTENTS Harmful effects of microorganisms in the environment 402 Test yourself 403 Part VII Microorganisms in Industry 405 17 Industrial and Food Microbiology 407 Microorganisms and food 407 Microorganisms as food 413 The microbial spoilage of food 414 Microorganisms in the production of biochemicals 414 Products derived from genetically engineered microorganisms 418 Microorganisms in wastewater treatment and bioremediation 420 Microorganisms in the mining industry 420 Test yourself 422 Glossary 425 Appendix 447 Further Reading 449 Index 454 JWBK011-FM JWBK011-Hogg August 12, 2005 19:44 Char Count= 0 Preface Every year, in UK universities alone, many hundreds of students study microbiology as part of an undergraduate course. For some, the subject will form the major part of their studies, leading to a BSc degree in Microbiology, or a related subject such as Bacteriology or Biotechnology. For the majority, however, the study of microbiology will be a brief encounter, forming only a minor part of their course content. A number of excellent and well-established textbooks are available to support the study of microbiology; such titles are mostly over 1000 pages in length, beautifully illustrated in colour, and rather expensive. This book in no way seeks to replace or compete with such texts, which will serve specialist students well throughout their three years of study, and represent a sound investment. It is directed rather towards the second group of students, who require a text that is less detailed, less comprehensive, and less expensive! The majority of the students in my own classes are enrolled on BSc degrees in Biology, Human Biology and Forensic Science; I have felt increasingly uncomfortable about recommending that they invest a substantial sum of money on a book much of whose content is irrelevant to their needs. Alternative recommendations, however, are not thick on the ground. This, then, was my initial stimulus to write a book of ‘microbiology for the non-microbiologist’. The facts and principles you will find here are no different from those described elsewhere, but I have tried to select those topics that one might expect to encounter in years 1 and 2 of a typical non-specialist degree in the life sciences or related disciplines. Above all, I have tried to explain concepts or mechanisms; one thing my research for this book has taught me is that textbooks are not always right, and they certainly don’t always explain things as clearly as they might. It is my wish that the present text will give the attentive reader a clear understanding of sometimes complex issues, whilst avoiding over-simplification. The book is arranged into seven sections, the fourth of which, Microbial Genetics, acts as a pivot, leading from principles to applications of microbiology. Depending on their starting knowledge, readers may ‘dip into’ the book at specific topics, but those whose biological and chemical knowledge is limited are strongly recommended to read Chapters 2 and 3 for the foundation necessary for the understanding of later chapters. Occasional boxes are inserted into the text, which provide some further enlightenment on the topic being discussed, or offer supplementary information for the inquisitive reader. As far as possible, diagrams are limited to simple line drawings, most of which could be memorised for reproduction in an examination setting.
Recommended publications
  • ORGANIC GEOCHEMISTRY: CHALLENGES for the 21St CENTURY
    ORGANIC GEOCHEMISTRY: CHALLENGES FOR THE 21st CENTURY VOL. 2 Book of Abstracts of the Communications presented to the 22nd International Meeting on Organic Geochemistry Seville – Spain. September 12 -16, 2005 Editors: F.J. González-Vila, J.A. González-Pérez and G. Almendros Equipo de trabajo: Rocío González Vázquez Antonio Terán Rodíguez José Mª de la Rosa Arranz Maquetación: Rocío González Vázquez Fotomecánica e impresión: Akron Gráfica, Sevilla © 22nd IMOG, Sevilla 2005 Depósito legal: SE-61181-2005 I.S.B.N.: 84-689-3661-8 COMMITTEES INVOLVED IN THE ORGANIZATION OF THE 22 IMOG 2005 Chairman: Francisco J. GONZÁLEZ-VILA Vice-Chairman: José A. GONZÁLEZ-PÉREZ Consejo Superior de Investigaciones Científicas (CSIC) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) Scientific Committee Francisco J. GONZÁLEZ-VILA (Chairman) IRNAS-CSIC, Spain Gonzalo ALMENDROS Claude LARGEAU CCMA-CSIC, Spain ENSC, France Pim van BERGEN José C. del RÍO SHELL Global Solutions, The Netherlands IRNAS-CSIC, Spain Jørgen A. BOJESEN-KOEFOED Jürgen RULLKÖTTER GEUS, Denmark ICBM, Germany Chris CORNFORD Stefan SCHOUTEN IGI, UK NIOZ, The Netherlands Gary ISAKSEN Eugenio VAZ dos SANTOS NETO EXXONMOBIL, USA PETROBRAS RD, Brazil Local Committee José Ramón de ANDRÉS IGME, Spain Mª Carmen DORRONSORO Mª Enriqueta ARIAS Universidad del País Vasco Universidad de Alcalá Antonio GUERRERO Tomasz BOSKI Universidad de Sevilla Universidad do Algarve, Faro, Portugal Juan LLAMAS Ignacio BRISSON ETSI Minas de Madrid Repsol YPF Albert PERMANYER Juan COTA Universidad de Barcelona Universidad de Sevilla EAOG Board Richard L. PATIENCE (Chairman) Sylvie DERENNE (Secretary) Ger W. van GRAAS (Treasurer) Walter MICHAELIS (Awards) Francisco J. GONZALEZ-VILA (Newsletter) C.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • DAFTAR PUSTAKA Abidin, Z. A. Z., A. J. K. Chowdhury
    160 DAFTAR PUSTAKA AKTINOMISETES PENGHASIL ANTIBIOTIK DARI HUTAN BAKAU TOROSIAJE GORONTALO YULIANA RETNOWATI, PROF. DR. A. ENDANG SUTARININGSIH SOETARTO, M.SC; PROF. DR. SUKARTI MOELJOPAWIRO, M.APP.SC; PROF. DR. TJUT SUGANDAWATY DJOHAN, M.SC Universitas Gadjah Mada, 2019 | Diunduh dari http://etd.repository.ugm.ac.id/ Abidin, Z. A. Z., A. J. K. Chowdhury, N. A. Malek, and Z. Zainuddin. 2018. Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J. Coast. Res., 82:174–179 Adegboye, M. F., and O. O. Babalola. 2012. Taxonomy and ecology of antibiotic producing actinomycetes. Afr. J. Agric. Res., 7(15):2255-2261 Adegboye, M.,F., and O. O. Babalola. 2013. Actinomycetes: a yet inexhausative source of bioactive secondary metabolites. Microbial pathogen and strategies for combating them: science, technology and eductaion, (A.Mendez-Vila, Ed.). Pp. 786 – 795. Adegboye, M. F., and O. O. Babalola. 2015. Evaluation of biosynthesis antibiotic potential of actinomycete isolates to produces antimicrobial agents. Br. Microbiol. Res. J., 7(5):243-254. Accoceberry, I., and T. Noel. 2006. Antifungal cellular target and mechanisms of resistance. Therapie., 61(3): 195-199. Abstract. Alongi, D. M. 2009. The energetics of mangrove forests. Springer, New Delhi. India Alongi, D. M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3):313-322 Amrita, K., J. Nitin, and C. S. Devi. 2012. Novel bioactive compounds from mangrove dirived Actinomycetes. Int. Res. J. Pharm., 3(2):25-29 Ara, I., M. A Bakir, W. N. Hozzein, and T. Kudo. 2013. Population, morphological and chemotaxonomical characterization of diverse rare actinomycetes in the mangrove and medicinal plant rhizozphere.
    [Show full text]
  • Aerobic Respiration
    Life is based on redox • All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: + - C6H12O6 + 6 H2O ==> 6 CO2 + 24 H +24 e oxidation electron donor (aka energy source) + - (O2+ 4H + 4e ==> 2H2O) x6 reduction electron acceptor --------------------------------------- C6H12O6 + 6 O2 ==> 6 CO2 + 6 H2O overall reaction (24 electrons) Types of bacterial metabolisms • While eukaryotes only reduce O2 and oxidize organic compounds, prokaryotes can use a variety of electron donors and acceptors, organic and inorganic. - • Aerobic respiration: e acceptor is O2 - • Anaerobic respiration: e acceptor is not O2 • Fermentation: e- donor and acceptor are organic molecules • Chemolithotrophy: e- donor and acceptor are inorganic molecules • Phototrophy: e- donor is light and e- acceptor is either organic or inorganic all microorganisms energy source? chemical light chemotroph phototroph carbon source? carbon source? organic organic CO CO compound 2 compound 2 chemoheterotroph chemoautotroph photoheterotroph photoautotroph e- acceptor? Nitrifying and sulfur- use H O to reduce CO ? oxidizing bacteria 2 2 green non-sulfur and O Other than O 2 2 purple non-sulfur bacteria anoxygenic oxygenic photosynthesis: photosynthesis: green sulfur and most bacteria Organic Inorganic cyanobacteria compound compound purple sulfur bacteria fermentative organism anaerobic respiration: nitrate, sulfate, Fe(III) Aerobic or anaerobic respiration Chemolithotrophy Important molecules Redox Electron Carrier: for example the
    [Show full text]
  • Anticancer Drug Discovery from Microbial Sources: the Unique Mangrove Streptomycetes
    molecules Review Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes Jodi Woan-Fei Law 1, Lydia Ngiik-Shiew Law 2, Vengadesh Letchumanan 1 , Loh Teng-Hern Tan 1, Sunny Hei Wong 3, Kok-Gan Chan 4,5,* , Nurul-Syakima Ab Mutalib 6,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; [email protected] (J.W.-F.L.); [email protected] (V.L.); [email protected] (L.T.-H.T.) 2 Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia; [email protected] 3 Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 5 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 6 UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (N.-S.A.M.); [email protected] (L.-H.L.) Academic Editor: Owen M. McDougal Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Picophytoplankton Biomass Distribution in the Global Ocean
    CMYK RGB History of Geo- and Space Open Access Open Sciences Advances in Science & Research Open Access Proceedings Drinking Water Drinking Water Engineering and Science Engineering and Science Open Access Access Open Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Discussions Earth Syst. Sci. Data Discuss., 5, 221–242, Earth 2012 System Earth System www.earth-syst-sci-data-discuss.net/5/221/2012/ Science Science doi:10.5194/essdd-5-221-2012 ESSDD © Author(s) 2012. CC Attribution 3.0 License. 5, 221–242, 2012 Open Access Open Open Access Open Data Data This discussion paper is/has been under review for the journal Earth System Science Discussions Picophytoplankton Data (ESSD). Please refer to the corresponding final paper in ESSD if available. Social Social biomass distribution in the global ocean Open Access Open Geography Open Access Open Geography Picophytoplankton biomass distribution E. T. Buitenhuis et al. in the global ocean Title Page E. T. Buitenhuis1, W. K. W. Li2, D. Vaulot3, M. W. Lomas4, M. Landry5, F. Partensky3, D. M. Karl6, O. Ulloa7, L. Campbell8, S. Jacquet9, F. Lantoine10, Abstract Instruments F. Chavez11, D. Macias12, M. Gosselin13, and G. B. McManus14 Data Provenance & Structure 1Tyndall Centre for Climate Change Research and School of Environmental Sciences, Tables Figures University of East Anglia, Norwich NR4 7TJ, UK 2Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada J I 3UMR 7144 (CNRS and UPMC, Paris 06), Station Biologique, 29680
    [Show full text]
  • Milestones and Personalities in Science and Technology
    History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting,
    [Show full text]
  • The Reaction Center of Green Sulfur Bacteria1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1507 (2001) 260^277 www.bba-direct.com Review The reaction center of green sulfur bacteria1 G. Hauska a;*, T. Schoedl a, Herve¨ Remigy b, G. Tsiotis c a Lehrstuhl fu«r Zellbiologie und P£anzenphysiologie, Fakulta«tfu«r Biologie und Vorklinische Medizin, Universita«t Regensburg, 93040 Regenburg, Germany b Biozentrum, M.E. Mu«ller Institute of Microscopic Structural Biology, University of Basel, CH-4056 Basel, Switzerland c Division of Biochemistry, Department of Chemistry, University of Crete, 71409 Heraklion, Greece Received 9 April 2001; received in revised form 13 June 2001; accepted 5 July 2001 Abstract The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA^D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A0, which is a Chl a-derivative and FeS-center FX.
    [Show full text]
  • Taxonomic Studies and Phylogenetic Characterization of Streptomyces Rimosus - KH-1223-55 Isolated from Al-Khurmah Governorate, KSA
    Researcher, 2011;3(9) http://www.sciencepub.net/researcher Taxonomic Studies and Phylogenetic Characterization of Streptomyces rimosus - KH-1223-55 Isolated from Al-Khurmah Governorate, KSA *1 Houssam M. Atta; 1 Bayoumi R.; 2 El-Sehrawi M. and 3 Gehan F. Galal 1. Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt. The present address: Biotechnology Department. Faculty of Science and Education- Al-Khurmah, Taif University; KSA. 2. Biology Dept. Faculty of Science - Taif University; KSA. 3. Biotechnology Department; Faculty of Science and Education (Girls)- Al-Khurmah, Taif University; KSA. [email protected] and [email protected] Tel: 00966506917966 Abstract: This work was carried out in the course of a screening program for specifying the bioactive substances that demonstrated inhibitory affects against microbial pathogenic. Twenty-eight actinomycete strains were isolated from soil samples collected from Al-Khurmah governorate, KSA. One of the actinomycete culture, symbol KH-1223-55 from six cultures was found to produce a wide spectrum antimicrobial agent against (bacterial Gram positive and Bacteria Gram negative and unicellular and filamentous Fungi). The nucleotide sequence of the 16s RNA gene (1.5 Kb) of the most potent strain evidenced an 98% similarity with Streptomyces rimosus. From the taxonomic features, the actinomycetes isolate KH-1223-55 matched with Streptomyces rimosus in the morphological, physiological and biochemical characters. Thus, it was given the suggested name Streptomyces rimosus. The parameters controlling the biosynthetic process of antimicrobial agent formation including: different inoculum size, pH values, temperatures, incubation period, and different carbon and nitrogen sources were fully investigates. [Houssam M.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl the Rockefeller University
    History of Microbiology Milton Wainwright University of Sheffield Joshua Lederbergl The Rockefeller University I. Observations without Application ness of the nature and etiology of disease, with the II. The Spontaneous Generation Controversy result that the majority of the traditional killer dis- III. Tools of the Trade eases have now been conquered. Similar strides IV. Microorganisms as Causal Agents of have been made in the use of microorganisms in Disease industry. and more recently attempts are being made V. Chemotherapy and Antibiosis to apply our knowledge of microbial ecology and VI. Microbial Metabolism and Applied physiology to help solve environmental problems. A Microbiology dramatic development and broadening of the subject VII. Nutrition, Comparative Biochemistry, and of microbiology has taken place since World War II. Other Aspects of Metabolism Microbial genetics, molecular biology, and bio- VIII. Microbial Genetics technology in particular have blossomed. It is to be IX. Viruses and Lysogeny: The Plasmid hoped that these developments are sufficiently op- Concept portune to enable us to conquer the latest specter of X. Virology disease facing us, namely AIDS. Any account of the XI. Mycology and Protozoology, history of a discipline is. by its very nature, a per- Microbiology’s Cinderellas sonal view: hopefully, what follows includes all the XII. Modern Period major highlights in the development of our science. The period approximating 1930-1950 was a ‘vi- cennium” of extraordinary transformation of micro- Glossary biology, just prior to the landmark publication on the structure of DNA by Watson and Crick in 1953. Antibiotics Antimicrobial agents produced b) We have important milestones for the vicennium: living organisms Jordan and Falk (1928) and “System of Bacteriol- Bacterial genetics Study of genetic elements and ogy” (1930) at its start are magisterial reviews of hereditary in bacteria prior knowledge and thought.
    [Show full text]