Vol. 15, No. 10, 2020

swiss-academies.ch Swiss Academies Communications, Vol. 15, No. 10, 2020 10, No. 15, Vol. Communications, Academies Swiss

Space Research in 2018 – 2020 IMPRESSUM

PUBLISHER Swiss Academy of Sciences (SCNAT) • Swiss Committee on Space Research (CSR)

CONTACT Prof. Dr. Nicolas Thomas • Physics Institute • University of • Sidlerstrasse 5 • 3012 Bern • Switzerland • +41 31 631 44 06 • [email protected] • csr.scnat.ch

RECOMMENDED FORM OF CITATION N Thomas, S Nyeki (2020) Space Research in Switzerland 2018 – 2020 Swiss Academies Communications 15 (10)

EDITORS Nicolas Thomas • Stephan Nyeki

EDITORIAL REVIEW/COOPERATION Stephan Nyeki, PMOD/WRC • Monica Freeman, Freelance

LAYOUT Stephan Nyeki, PMOD/WRC

COVER PHOTO ESA’s Characterising Exoplanet Satellite, CHEOPS, lifted off on 18 December 2019 from ’s ­ in Kourou, French Guiana, on a Soyuz-Fregat launcher. CHEOPS is ESA’s first mission ­dedicated to the study of extrasolar planets, or exoplanets. It will observe bright stars that are ­already known to host planets, measuring minuscule brightness changes due to the planet’s across the star’s disc. Image credit: ESA, S. Corvaja.

Edition 2020, 800 ex. This communication can be dowloaded from csr.scnat.ch/publications.

ISSN (print) 2297-8275 ISSN (online) 2297-184X Cradle to CradleTM-certified and climate-neutral communication DOI: doi.org/10.5281/zenodo.3943786 printed by Vögeli AG in Langnau. Space Research in Switzerland 2018 – 2020 First exoplanet measured by CHEOPS. During its in-orbit commissioning, ESA‘s CHEOPS mission observed the transit of the planet, KELT-11b, in front of its host star. HD 93396 is a subgiant ­yellow star located 320 light-years away, slightly cooler and three times larger than our . It hosts a puffy gaseous planet, KELT-11b, about 30% larger in size than Jupiter, in an orbit that is much closer to the star than Mercury is to the Sun.

The light curve of this star shows a clear dip caused by the eight hour-long transit of KELT- 11b, which enabled scientists to determine very precisely the diameter of the planet at 181,600 km, with an uncertainty just under 4300 km. The measurements made by CHEOPS are five times more accurate than those from , providing a preview of the science to come from the ­CHEOPS mission. In this graphic, the Sun is shown as a comparison, along with the diame- ter of Earth and Jupiter (calculated from the mean volumetric radius). Image credits: ESA/ Airbus/CHEOPS Mission Consortium. Swiss Academies Communications, Vol. 15, Nr. 10, 2020 3

Contents

Contents �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������3

1. Foreword ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������5

2. Institutes and Observatories �������������������������������������������������������������������������������������������������������������������������������������������������6 2.1 ISSI – International Space Science Institute �����������������������������������������������������������������������������������������������������6 2.2 ISDC – INTEGRAL Science Data Centre �����������������������������������������������������������������������������������������������������������������8 2.3 CODE – Centre for Orbit Determination in Europe ��������������������������������������������������������������������������������������10 2.4 eSpace – EPFL Space Center ������������������������������������������������������������������������������������������������������������������������������������ 12 2.5 Research Initiative on Sustainable Space Logistics ���������������������������������������������������������������������������������� 13 2.6 SSC – Swiss Space Center ������������������������������������������������������������������������������������������������������������������������������������������14 2.7 Satellite Laser Ranging (SLR) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald (SwissOGS) ����������������������������������������������������������������������������������������������������������������16

3 Swiss Space Missions ����������������������������������������������������������������������������������������������������������������������������������������������������������������18 3.1 CHEOPS – CHaracterising ExOPlanet Satellite �����������������������������������������������������������������������������������������������18

4 Space Safety ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������20 4.1 SSA – International Space Situational Awareness ��������������������������������������������������������������������������������������20 4.2 LUCI – EUV Coronal Imager ����������������������������������������������������������������������������������������������������������������22

5 Astrophysics ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 24 5.1 – Variability Processing and Analysis ���������������������������������������������������������������������������������������������������� 24 5.2 POLAR – Ray Burst Polarisation �������������������������������������������������������������������������������������������������������� 26 5.3 DAMPE – DArk Matter Particle Explorer �����������������������������������������������������������������������������������������������������������28 5.4 LISA – Gravitational Reference Sensor Front-End Electronics ����������������������������������������������������������30 5.5 – The Swiss Contribution ������������������������������������������������������������������������������������������������������������������������32 5.6 – The Swiss Contribution ����������������������������������������������������������������������������������������������������������������������������34 5.7 THESEUS – The Transient High Energy Sky and Early Universe Surveyor ���������������������������������36 5.8 MIRI – Mid-Infrared Instrument for the James Webb ����������������������������������������38 5.9 SPICA – The Swiss Participation in the Infrared Observatory ����������������������������������������������������������39 5.10 HERD – High Energy Radiation Detection Facility ��������������������������������������������������������������������������������������40 5.11 XRISM – The Swiss Contribution to the X-Ray Imaging Spectroscopy Mission ����������������������� 41 5.12 eXTP – The Enhanced X-Ray Timing and Polarimetry Mission ��������������������������������������������������������� 42 5.13 PAN – Penetrating Particle Analyser ������������������������������������������������������������������������������������������������������������������ 43 5.14 KLPVE – Extreme Universe Space Observatory (K–EUSO) �������������������������������������������������������������������44 5.15 PLATO – The Mechanical Structure of the Telescope Optical Unit ��������������������������������������������������� 45 5.16 POLAR-2 – The Follow-up to POLAR ������������������������������������������������������������������������������������������������������������������46 5.17 LIFE – Large Interferometer For Exoplanets ��������������������������������������������������������������������������������������������������47

6 Solar Physics ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������48 6.1 VIRGO – Variability of Irradiance and Global Oscillations ���������������������������������������������������������������������48 6.2 NuSTAR – Probing Solar X-ray Nanoflares �����������������������������������������������������������������������������������������������������49 6.3 CLARA – Compact Lightweight Absolute Radiometer on NorSat-1 �������������������������������������������������50 6.4 STIX – Spectrometer/Telescope for Imaging X-rays on ��������������������������������������������52 6.5 SPICE and EUI Instruments on Solar Orbiter �������������������������������������������������������������������������������������������������54 6.6 SWA – Solar Plasma Analyser on Solar Orbiter ������������������������������������������������������������������������������56 6.7 MiSolFA – The Micro Solar-Flare Apparatus ����������������������������������������������������������������������������������������������������57

→ 4 Space Research in Switzerland 2018–2020

6 .8 DARA – Digital Absolute Radiometer on PROBA-3 ������������������������������������������������������������������������������������58 6.9 JTSIM-DARA on FY-3E ��������������������������������������������������������������������������������������������������������������������������������������������������59

7 Heliospheric Physics �����������������������������������������������������������������������������������������������������������������������������������������������������������������60 7.1 IBEX – Interstellar Boundary Explorer ��������������������������������������������������������������������������������������������������������������60 7.2 IMAP – Interstellar Mapping and Acceleration Probe ������������������������������������������������������������������������������61 7.3 SXI – Soft X-Ray Imager on SMILE �����������������������������������������������������������������������������������������������������������������������62 7.4 SMILE – – Magnetosphere Interaction ������������������������������������������������������������������������������������63

8 Earth Observation, Remote Sensing ������������������������������������������������������������������������������������������������������������������������������64 8.1 APEX – Airborne Prism Experiment �������������������������������������������������������������������������������������������������������������������64 8.2 SPECCHIO – Spectral Information System �������������������������������������������������������������������������������������������������������65 8.3 COST-G – Combination Service for Time-Variable Gravity Fields �����������������������������������������������������66 8.4 Copernicus Precise Orbit Determination Service ���������������������������������������������������������������������������������������68 8.5 EMRP MetEOC-3 / EMPIR MetEOC-4 ���������������������������������������������������������������������������������������������������������������������70 8.6 ARES – Airborne Research Facility for the Earth System ����������������������������������������������������������������������71 8.7 SARCD – Synthetic Aperture Radar Tomography for Change Detection Applications ���������72 8.8 MetOp – Calibration Targets for MWS and ICI Instruments ��������������������������������������������������������������������������������74

9 , Planets ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������75 9.1 ROSINA Analysis and Data Archiving ������������������������������������������������������������������������������������������������������������������75 9.2 CaSSIS – The Colour and Stereo Surface Imaging System �������������������������������������������������������������������� 76 9.3 CoCa and MANiaC for Interceptor ��������������������������������������������������������������������������������������������������������78 9.4 MINPA – Ions and Neutral Particles Analyser �������������������������������������������������������������������������������������������79 9.5 SEIS – InSight Seismic Experiment for Interior Structure ����������������������������������������������������������������������80 9.6 CLUPI – CLose-UP Imager for ExoMars Rover 2022 �����������������������������������������������������������������������������������������82 9.7 LASMA – The Chemical Composition of Lunar Soils on Luna-Glob and Luna-Resurs ����������84 9.8 NGMS – Volatiles in Lunar Soils from on Luna-Resurs ���������������������������������������������������������������������������85 9.9 BELA – BepiColombo Laser Altimeter �����������������������������������������������������������������������������������������������������������������������86 9.10 STROFIO and MPPE – Analysing the Exosphere from Onboard BepiColombo ������������������������88 9.11 PEP and NIM on JUICE ��������������������������������������������������������������������������������������������������������������������������������������������������89 9.12 GALA – Ganymede Laser Altimeter on JUICE �������������������������������������������������������������������������������������������������������90 9.13 SWI – Submillimeter Wave Instrument on JUICE �����������������������������������������������������������������������������������������91

10 Life Science ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 92 10.1 Yeast Bioreactor Experiment ���������������������������������������������������������������������������������������������������������������������������������� 92 10.2 COW – Cartilage ExpOsed to Weightlessness ���������������������������������������������������������������������������������������������� 93 10.3 The Effect of Changing Gravity on Spinal Stiffness ����������������������������������������������������������������������������������94

11 Swiss Space Industries Group �������������������������������������������������������������������������������������������������������������������������������������������� 95

12 List of Authors ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 97 of the43 sation ofbiennialScientificAssemblies.Ontheoccasion international level.COSPAR’s mainactivityistheorgani- organisation topromotescientificresearchinspaceonan the InternationalCouncil for Science(ICSU)asathematic research related to space. It was established in 1958 by the exchangeofinformationonprogressallkinds disciplinary scientificorganisationwhichisfocusedon The CommitteeonSpaceResearch(COSPAR) isaninter 1. high resolution colourandstereoimagesof thesurfaceof reo SurfaceImaging System),whichisnow returning the Swiss-led imaging system,CaSSIS(Colour andSte- recently reacheditsprimary scienceorbit.TGOcarries Gas Orbiter(TGO),waslaunched inMarch2016andhas The jointESA/Roscosmosmission, theExoMarsTrace graphic mappingofthesurface with<2metreprecision. on a7-yearflighttoMercurywhereitwillperformtopo - The spacecraftwaslaunchedfromKourouinOctober2018 at MercuryfromonboardESA’s BepiColombospacecraft. of experimentsdesignedtoperformgeodesy altimeter experiment,BELA.BELAformspartofasuite ware developmentofEurope’s firstinter-planetary laser Switzerland, throughtheUniversityofBern,ledhard - the comingyears. are thatthemissionwillmakesignificantdiscoveriesin discovery ofthefirstexoplanetin1995.Initial indications and DidierQuelozfromtheUniversityofGenevafor the awardofNobelPrizeforPhysicstoMichelMayor The timelinessofthismissionhasbeendemonstratedby mospheric structureofpreviouslydetectedexoplanets. the transitmethodtodetermineradiiandpossiblyat- now entereditsprimarysciencephase.Themissionuses instrument havebeencommissionedandthemissionhas launched inDecember2019.Thespacecraftanditssingle ence programmeasasmallnationally-ledmission,was izing ExOPlanets),whichwasselectedbyESA’s sci- The firstSwissresearchsatellite,CHEOPS(CHaracter the diversityanddepthofthisreport. extremely activein the pastyearsand this isreflected in gramme, Swiss scientists and their industries have been tance to the Swiss science community. Within this pro- therefore, ESA’s scienceprogrammeisofcentralimpor ed tomissionsoftheEuropeanSpaceAgency(ESA)and, The majorityofSwissspaceresearchactivitiesarerelat- community. opportunity toreportonitsactivitiestheinternational Swiss NationalCommitteeonSpaceResearchtakesthis

Foreword rd COSPAR AssemblyinSydney, ,the - - - Nicolas Thomas fields withtechnicalinnovationcapabilitiestomatch. space sciencecommunityhasbroadinterestsinmany ner inspaceresearchactivities.Switzerlandandits search community is very active and a reliable part- As thehighlightsaboveillustrate,Swissspacere - would liketofollowinthecoming8-10years. ty andshowsthedirectionsthatourleadingscientists information onthefutureplansofSwisscommuni - the SwissAcademyofScience.Thisdocumentprovides produced in2019andisavailablethroughthewebsiteof entitled “AreportonSpaceScienceinSwitzerland”was space researchcurrentlyinwork.Acompaniondocument book isacompilationofSwissnationalprojectsrelatedto For yourinformationandtotriggerinterest,this by mid-June2020. commissioning isongoingandexpectedtobecompleted STIX observeditsfirstsolarflareon18May. Instrument turned on.All32X-raydetectorsareworkingbeautifully. eter onboardESA’s SolarOrbitermissionwassuccessfully On 14April2020,theSTIXhardX-rayimagingspectrom- sion, withalaunchexpectedin2022. JAXA mission,XRISM,thesuccessorofHitomimis- pleted, injusttwoyears,itshardwarecontributionforthe only ~3000inthefirstdatarelease.Switzerlandalsocom- ies morethanhalf-a-millionvariablestars,comparedto land isleadingtheanalysisofvariablesources,andstud- which containedmorethan1.5billionobjects.Switzer milestone withtheseconddatareleaseinApril2018, ESA’s GaiaCornerstonemissionpassedaverysignificant support forexplorationoftheRedPlanet. 2022) arealsoindevelopmentandindicateSwitzerland’s time. SwisscontributionstotheExoMarsRover(launch thathasdetected“”forthefirst made amajorcontribution(throughETHZurich)tothe InSight landeronthesurfaceofMars.Switzerlandhas gium andRussia).ThecamerawasusedtoimageNASA’s gasesintheMartian atmosphere (suppliedbyBel- Mars insupportofthespectrometers designed tomeasure Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 5 -

FOREWORD INSTITUTES AND OBSERVATORIES 6 Space Research inSwitzerland 2018–2020 École Poly. Féd. deLausanne(EPFL), E-mail: [email protected] Int. Space Science Institute(ISSI), T. Spohn(Executive Director) 3012 Bern,Switzerland Contact Information Tel. +41316314896 Science Committee Davos, Switzerland Board ofTrustees G. Meylan (Chair), 6 Administrative www.issibern.ch Hallerstrasse 6, J. Wambsganss L. Harra(Chair), L. R. von Steiger A. Cazenave PMOD/WRC, 10 Scientific Switzerland Directors Staff contribution. porting ISSIwith anannualfinancial Science (ISAS,JAXA,) issup- Institute of Space and Astronautical in-kind facilities through agrant.The Bern contributestotheDirector and ISSI’s operation.TheUniversityof provide the financial resources for Swiss AcademyofSciences(SCNAT) the Swiss Confederation, and the The EuropeanSpaceAgency(ESA), rums aretheworkingtoolsofISSI. Groups, Visiting Scientists and Fo- terdisciplinary Workshops, Working International Teams, multi-andin- ISSI’s operationmodeisfivefold: mittee membersandotheradvisers. in consultationwiththeScienceCom- specific scientific themes are selected ence projects.ISSI’s studyprojectson ic requirementsoffuturespacesci- expected tohelpidentifythescientif- peer-reviewed journalsorbooks–are these activities–publishedinseveral data andresults.Theconclusionsof entists areencouragedtopooltheir and observations.Therefore,thesci- interpretations ofexperimentaldata ISSI toformulateinterdisciplinary and laboratory researchers meet at modellers, ground-basedobservers terpret theirdata.Scientists,theorists, together toanalyse,compareandin- over the world are invited to work Studies atwhichscientistsfromall tute (ISSI) is an Institute of Advanced The InternationalSpaceScienceInsti- Introduction sciences toastrobiology. ics andcosmology, andfromEarth planetary sciencestoastrophys- the physics of the system and spread spectrum of disciplines from The ISSIprogrammecoversawide- Fields ofResearch Space –International SI Science Institute 2.1 Observatories and nstitutes 2.

I IS Space Science Reviews. “Comets: Post 67PPerspectives”in published in the Topical Collection ments. Thepeer-reviewed papersare servations, andlaboratory measure- previous fly-bys,ground-based ob- set and integratedthe knowledge from plinary discussionoftheRosetta data vided aforumforbroadmulti-disci- wider community. TheWorkshop pro- from the MiARD project itself and the Data) and included invitees ARD (Multi-instrumentAnalysisof the EuropeanCommissioncalledMi- ration withaHorizon2020projectof spectives” (Jan.2018)wasincollabo- The Workshop “Comets:Post67PPer views. ical CollectionsinSpaceScienceRe- published inthecorrespondingTop - from the Workshops, are continuously The peer-reviewed papers,resulting planet ScienceSynergies”(Feb.2019). and aForumon“SolarSystem-Exo Element Measurements”(Nov. 2018) trial PlanetEvolutioninIsotopesand (Oct. 2018),andiii)“ReadingTerres - topes andElementMeasurements” ing Terrestrial PlanetEvolutioninIso- etary Sciences” (Feb.2018),ii)“Read- Major OutstandingQuestionsinPlan- “Role ofSampleReturninAddressing Thus, ISSIorganised3Workshops: i) across theEuropeanResearchArea. art researchdata,modelsandfacilities providing open access to state-of-the- facing modernplanetaryscienceby entific andtechnologicalchallenges Europlanet 2020RIaddresseskeysci- Research Infrastructure(RI)project. ISSI isapartoftheEuroplanet2020 visitors. annually, ofwhich40%arefirst-time welcomed todateabout950visitors took placein2018and2019.ISSIhas ings, 10Workshops, and5Forums In total,136InternationalTeam meet- Realisations in2018 and2019 - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 7 INSTITUTES AND OBSERVATORIES

The ESSC Committee from the Euro- SSSI Volume 61: Gamma-Ray Bursts – A Tool to Furthermore, two Scientific Reports pean Science Foundation (ESF) ini- Explore the Young Universe (ISSI-Beijing (both Open Access) appeared: tiated an interdisciplinary study on Book), D. Götz, et al., (Eds.), ISBN 978-94-024- “Ocean Worlds” in collaboration with 1278-9, 2018. Vol. 15: Earth Observation Open Science and the International Space Science Insti- Innovation, P.P. Mathieu, C. Aubrecht (Eds.), tute, the European Marine Board, and SSSI Vol. 62: Jets and Winds in Pulsar Wind Results of an ISSI Working Group, ISBN NAS / Space Studies Board experts. 40 Nebulae, Gamma-Ray Bursts and Blazars: 978-3-319-65632-8, 2018. link.springer.com/ Worldwide leading scientists from 11 Physics of Extreme Energy Release, A. Bykov, book/10.1007/978-3-319-65633-5. countries gathered during the Work- et al., (Eds.), ISBN 978-94-024-1291-8, 2018. shop ”ExoOceans: Vol. 17: Ionospheric Multi-Spacecraft Analysis of the Outer Solar System Icy SSSI Vol. 63: High Performance Clocks, with Tools, M.W. Dunlop, H. Lühr (Eds.), Results of an Oceans” (Jun. 2018) to review and syn- Special Emphasis on Geodesy and Geophysics ISSI Working Group, ISBN 978-3-030-26731-5, thesise what is presently known on the and Applications to Other Bodies of the Solar 2019. link.springer.com/book/10.1007/978-3-030- astrobiological potential of the outer System, R. Rodrigo, et al., (Eds.), ISBN 978-94- 26732-2. solar system. The thematic scientific 024-1565-0, 2018. papers are published in the Topical On average, the International Teams Collection “Ocean Worlds” in Space SSSI Vol. 64: The Delivery of Water to publish over 200 peer-reviewed pa- Science Reviews. Protoplanets, Planets and Satellites, A. pers per year. All results, published Morbidelli, et al., (Eds.), ISBN 978-94-024-1627-5, papers, and books can be found in IS- ISSI established a branch called IS- 2019. SI’s Annual Reports 23 (2017–2018) SI-BJ (International Space Science In- and 24 (2018-2019). stitute – Beijing) in 2013 jointly with SSSI Vol. 65: Shallow Clouds, Water Vapor, the National Space Science Centre Circulation and Climate Sensitivity, R. Pincus, of the Chinese Academy of Sciences et al., (Eds.), ISBN 978-3-319-77273-8, 2018. Outlook (NSSC/CAS). ISSI-BJ is sharing the same Science Committee with ISSI SSSI Vol. 66: . Distance Determination in Thirty two new International Teams, and is using the same study tools. ISSI the Space Age (ISSI-Beijing Book), R. de Grijs, approved in 2019 by the Science Com- releases together with ISSI-BJ annual- M. Falanga (Eds.), ISBN 978-94-024-1630-5, 2019. mittee, started their activities in the ly a joint Call for Proposals for Inter- present business year (2019/20), and national Teams in Space and Earth SSSI Vol. 67: The Scientific Foundation of Space four Teams are associated with IS- Sciences. More details about ISSI Bei- Weather, D. Baker, A. Balogh, T. Gombosi, H.E.J. SI-Beijing. Furthermore, eight Work- jing and its activities can be found on Koskinen, A. Veronig, R. von Steiger (Eds.), ISBN shops are scheduled for 2020 and 2021: www.issibj.ac.cn. 978-94-024-1587-2, 2019. – Surface Bounded Exospheres and SSSI Vol. 68: Supernovae, A. Bykov, et al., (Eds.), Interactions in the Solar System Publications ISBN 978-94-024-1580-3, 2019. – Venus: Evolution through Time – Strong Gravitational Lensing All scientific activities result in some SSSI Vol. 70: Exploring the Earth System with – Magnetic Reconnection: Explosive form of publication, e.g. in the Space Imaging Spectroscopy, S. Förster, et al., (Eds.), Energy Conversion in Space Sciences Series of ISSI (SSSI), ISSI ISBN 978-3-030-24909-0, 2019. Plasmas Scientific Report Series (SR), or indi- – Probing the Earth’s Deep Interior vidual papers in peer-reviewed inter- SSSI Vol. 71: Forest Properties and Carbon Cycle Using in Synergy Observations of national scientific journals. As of the Studies from Earth Observations, K. Scipal, A. the Earth’s Gravity and Magnetic end of 2019, 72 SSSI volumes, and 17 Cazenave, T. Lopez (Eds.), ISBN 978-3-030- Fields, and of the Earth’s Rotation SR volumes have been published. In- 32838-2, 2019. – Solar & Stellar Dynamos: A New formation about the complete collec- Era tion can be found on www.issibern. SSSI Vol. 72: Clusters of Galaxies: Physics and – The Heliosphere in the Local ch, in the section “Publications”. Cosmology, A. Bykov, et al., (Eds.), ISBN Interstellar Medium 978-94-024-1733-3, 2019. – Science Enabled by Exoplanetary In 2018 and 2019, the following vol- Transits umes appeared: INSTITUTES AND OBSERVATORIES 8 mated analyses ensure thedataqualityand software toanalyse them.Quick-lookandauto- buted to scientists worldwide together with the buted toscientistsworldwide togetherwith the observatory are processed, archived anddistri- About 10scientistsandsoftware Data from theINTEGRALgamma-rayspace discovery ofrelevant astronomical events. Space Research inSwitzerland 2018–2020 Dept. , Univ. Geneva (UNIGE) Astronomical Obs.,Univ. Geneva, Istituto NazionalediAstro., INTEGRAL Science DataCentre, Centro deAstrobiología, Spain www.isdc.unige.ch/ German Aerospace Centre 1290 Versoix, Switzerland including administrative/ Prinicipal Investigator(s) E-mail: [email protected] DTU Space, Versoix, Switzerland Tel. +41223792100 Fax +41223792133 Contact Information In cooperation with C. Ferrigno (UNIGE) Developments Measurement support staff. CNRS, France APC, France ­ engineer Institute Method Staff s, INTEGRAL. the publications basedondatafrom have participated inabout20%of data. To thepresent,ISDCmembers in theexploitationofINTEGRAL anteed Swissscientistsacentral role The presenceoftheISDChas guar munity. data availableto the astronomycom- the ISDCcontributionareINTEGRAL support tousers.Onlyasaresultof gether withhandbooks,andofgiving fline analysisofINTEGRALdatato- and distributingsoftwarefortheof- ISDC alsohasthetaskofintegrating complete sourceofINTEGRALdata. chived atISDCwhichistheonly tributed toguestobserversandar astronomical events.Dataaredis- data qualityanddiscovertransient a quick-lookanalysis to assessthe ble products,aswellperforming try togenerateasetofwidelyusa- ISDC processesspacecraftteleme- ploit missiondata. the astronomicalcommunitytoex- and providesessentialservicesfor which isaPIpartnerofthemission tre (bothoperatedbyESA),andISDC tion Centre,ScienceOperationCen- ties aredividedintoMissionOpera- INTEGRAL‘s groundsegmentactivi- physical phenomena. our knowledgeofhigh-energyastro- which havesignificantlyadvanced itor, andX-ray and opticalmonitors ma-ray polarimeter, a radiation mon- ager with a wide field-of-view, a gam- INTEGRAL operatesahard-X-rayim- trophysics Laboratory(INTEGRAL). ESA’s INTernational Gamma-RayAs- in the ground-segment activities of tutes andNASA.Ithasacentralrole a consortiumof11Europeaninsti- (ISDC) wasestablishedin1996as The INTEGRALScienceDataCentre Purpose ofResearch Centre Science Data DC –INTEGRAL 2.2

IS - - tension requests will be based on the tension requests willbebasedonthe gramme Committee (SPC).Furtherex- approved by the ESASciencePro- for which the budget has already been ity ofINTEGRALuntiltheend of2022, ational reviewascertainedthe reliabil- for manymoreyears.In2019, anoper will allowthemissiontobeprolonged battery ageing,andorbitalevolution that fuelconsumption,solarpaneland 2014, 2016,and 2019. They concluded ESA conductedreviewsin2010,2012, and radiobands. tion of akilonovain the optical, X-ray, tronomy withthesubsequentobserva- opened theeraofmulti-messengeras- 2017). Thishistoricalachievementhas tron starmerger(Savchenkoetal., originating asaresultofbinaryneu- arrival onEarthofgravitationalwaves, of gamma-raystwosecondsafterthe the Fermiobservatory, itfoundaflash with thegamma-raymonitoronboard mergers detected by LIGO. Together limits on85%ofthedoubleblack-hole team hasproducedstringentupper tational waveevents.TheINTEGRAL for gamma-raycounterpartsofgravi- tific andVirgo collaborationstolook derstanding withboththeLIGOscien- ISDC staffledtheMemorandumofUn- event (Savchenkoetal.,2016;2017). counterpart ofagravitationalwave sential tooltodiscoveragamma-ray localisation capability, andisanes- all-sky monitorforGRBswithouta INTEGRAL carriesthemostsensitive that GRBscanbelocalised. within secondsofthedetection so (GRB) issentto robotic telescopes automatic alertforagamma-rayburst published and, everysecondday, an tronomical telegramspermonthare a near-real timemonitor:severalas- for papersandPhDtheses,butalsoas 2002 anditsdataarenotonlyused INTEGRAL waslaunchedinOctober Past Achievements andStatus - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 9 INSTITUTES AND OBSERVATORIES

scientific output of the missions and central topics are the nature of dark wave event GW150914, Astrophys. J. Lett. budget constraints. matter and dark energy, the origin of 820(2): L36, 5 pp. cosmic rays and astrophysical par- ISDC is an essential pillar of the mis- ticle accelerators. Research in this Savchenko V, Ferrigno C et al. (2017) INTEGRAL sion and is currently funded by the field involves data from X-ray and detection of the first prompt gamma-ray , the University of gamma-ray space telescopes, as well signal coincident with the gravitational-wave Geneva, and ESA, with contributions as from ground-based gamma-ray tel- event GW170817, Astrophys. J. Lett. 848(2): L15, from the German Aerospace Centre escopes operating at even higher en- 8 pp. through the Inst. Astronomy and As- ergies, such as MAGIC, HESS or the trophysics, Tübingen. ISDC counts on future Cherenkov Telescope array. the contribution of about 10 software Abbreviations engineers and scientists who work in synergy with other space missions Publications INTEGRAL International Gamma-Ray within the Dept. Astronomy, Univ. Astrophysics Laboratory Geneva. Papitto A, Ferrigno C, Bozzo E et al. (2013) ISDC INTEGRAL Science Data Centre Swings between rotation and accretion HESS High Energy Stereoscopic System To ensure data quality and to exploit power in a binary millisecond pulsar, Nature LIGO Laser Interferometer Gravitatio the potential of the INTEGRAL obser- 501: 7468, 517-520. nal-Wave Observatory vatory, ISDC staff continuously perform MAGIC Major Atmospheric Gamma-Ray scientific validations to report relevant Savchenko V, Ferrigno C et al. (2016) Imaging Cherenkov Telescope. “hot” discoveries in collaboration with INTEGRAL upper limits on gamma-ray guest observers. Several astronomer’s emission associated with the gravitational telegrams, led or promoted by ISDC staff, are highly cited, and illustrate the Schematic view of importance of these discoveries. Dur- the INTEGRAL ground ing this activity, INTEGRAL managed segment activities. to capture the first pulsar swinging from accretion and rotation powered emission which has been sought since evolutionary theories first appeared in 1982 (Papitto et al., 2013).

The studies performed at ISDC are mainly in the field of high-energy as- trophysics. Although a significant frac- tion of the research topics are linked to areas in which INTEGRAL makes MOC, Darmstadt Observation Telemetry data a significant contribution, a variety plan of other observation facilities, such as XMM-Newton, RXTE, Chandra, Feedback , and Fermi, have so far been ex- ploited. The science topics developed Auxiliary data in the high-energy group span from ISOC, Madrid ISDC, Geneva nearby X-ray binaries up to cosmolog- Observing ical scales, with the study of active ga- Processed data proposals lactic nuclei and clusters of galaxies.

Based on an approach merging Science high-energy astrophysics with parti- Community cle physics, astroparticle physics is rapidly developing around ISDC. Its INSTITUTES AND OBSERVATORIES 10 Inst. Astr Technische Universität München, Germany Research basedonexisting instruments Space Research inSwitzerland 2018–2020 Bundesamt f. Kart. u.Geodäsie(BKG), Astronomical Inst.,Univ. Bern(AIUB), onom. u.Physikal. Geodäsie(IAPG), Bundesamt fürLandestopographie (swisstopo), Wabern, Switzerland Principal/Swiss Investigator(s) E. Brockmann (swisstopo) Frankfurt a. www.aiub.unibe.ch/code GNSS dataanalysis and software U. Hugentobler(IAPG) In cooperation with Co-Investigator(s) Bern, Switzerland D. Thaller(BKG) development. ­ R. Dach(AIUB) A. Jäggi (AIUB) A. Jäggi Measurement

M., Germany Institute Website Method rapid and ultra-rapid product line, rapid and ultra-rapid product line, global system intotheoperational Galileo wasintroduced asthethird multi-GNSS processingsystem. When is alsoconsideredtobea rigorous established EuropeanGalileo system counterpart (GLONASS),the recently System (GPS)andthe Russian as the American Global Positioning from thewell-knownsystems,such stations areprocessedeveryday. Apart globally distributedIGStracking Nowadays, data from about 280 at AIUBformanyyears. has been developed and maintained Bernese GNSSSoftwarepackagethat cessing islocatedatAIUBusingthe uting totheIGS.Theoperationalpro- CODE hasbeencontinuouslycontrib- lot phaseoftheIGS(21June1992), Munich, Germany. Sincetheearlypi- Technische Universität München, Physikalische Geodäsie(IAPG)ofthe the InstitutfürAstronomischeund (BKG), Frankfurta.M.,Germany, and amt fürKartographieundGeodäsie Wabern, Switzerland,theBundes- für Landestopographie (swisstopo), Bern, Switzerland,theBundesamt tute oftheUniversityBern(AIUB), venture oftheAstronomicalInsti- analysis centersoftheIGS.Itisajoint CODE isoneoftheleadingglobal 1994. al AssociationofGeodesy(IAG)in was establishedbytheInternation- the InternationalGNSSService(IGS) development ofGNSSdataanalysis To supportthescientificuseand Orbiting (LEO)satellitesinspace. the precisegeolocationofLowEarth vestigation ofthesystemEarth,or of theglobalreferenceframe,in- well establishedfortherealisation is (among many other applications) Navigation SatelliteSystems(GNSS) Using measurementsfromGlobal Purpose ofResearch ODE – Centre for Orbit Determination in Europe Determination for Orbit ODE –Centre 2.3

C tional IGSproductschains. soon allowtheirinclusionintoopera- Japanese QZSS,whichwillhopefully way fortheChineseBeiDou,and necessary. Asimilareffortisunder orbit oftheGalileosatellites)was and research(e.g.,tounderstandthe handle thenewobservationtypes) nical developments(e.g.,inorderto To come to this point, intensive tech- their legacyproductchain. orbit andsatelliteclockproductsin only) IGSanalysiscenterwithGalileo CODE wasthefirst(andisstill group. Calibration andtheantenna working e.g., the working group on Bias and chair differentIGSworking groups, bers oftheCODEgroupcontribute or ment of modelling standards. Mem- to thedevelopmentandimprove- ucts, CODEsignificantlycontributes Apart from regularly generated prod- Service (IERS). Earth RotationandReferenceSystems day andprovidedtotheInternational length-of-day isdeterminedforeach to theEarth’s crustaswelltheexact the Earth’s rotationaxiswithrespect Frame (ITRF).Thedailypositionsof International Terrestrial Reference information fortherealizationof and platemotions,toprovide and horizontalsitedisplacements on a daily basis for studying vertical al IGStrackingnetworkarecomputed content. Thecoordinatesoftheglob- maps ofthetotalionosphericelectron troposphere zenith path delays, and dinates, Earthorientationparameters, ceiver clock corrections, station coor and GLONASSorbits,satellitere- The mainproductsarepreciseGPS Past Achievements andStatus - - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 11 INSTITUTES AND OBSERVATORIES

With the ongoing modernisation Abbreviations Publications programmes of the established GNSS and the upcoming GNSS, e.g., the Eu- CODE Centre for Orbit Determination A list of recent publications is avail- ropean Galileo, such work is highly in Europe able at: relevant because of the increasing GLONASS Globalnaja Nawigazionnaja manifold of signals that need to be Sputnikowaja Sistema www.bernese.unibe.ch/publist consistently processed in a fully com- GNSS Global Navigation Satellite Sys. bined multi-GNSS analysis scheme. GPS Global Positioning System Other contributions from CODE are IERS International Earth Rotation & the derivation of calibration values Reference Systems Service for the GNSS satellite antenna phase IGS International GNSS Service center model, GLONASS ambiguity ITRF International Terrestrial resolution, and the refinement of the Reference Frame CODE orbit model. LEO Low Earth Orbit QZSS Quasi-Zenith Satellite System

QZSS BeiDou Galileo GPS GLONASS

Network with tracking capability for various GNSS used for the processing at CODE at the end of 2019. INSTITUTES AND OBSERVATORIES 12 Space Research inSwitzerland 2018–2020 2 Postdocs,PhD, 3Supportstaff 1 Director, 1Manager, 3Engineers, EPFL Space EngineeringCentre EPFL Space Center(eSpace) EPFL E-mail: [email protected]

ENT Fax +4121693 6940 Contact Information Tel. +4121693 6948

1015 Lausanne S, tto 13 Station ESC, eSpace.epfl.ch J.-P. Kneib Institute Director Staff associations on campussuchasthe and support to various student-led The centeralso providesguidance ClearSpace-1). well astherecentlyselected mission, was launchedintospacein 2008,as ware (e.g. SwissCube satellite which ten leadtotheconstructionofhard- multidisciplinary projectswhichof- es are complemented by hands-on nologies. Thesetheoreticalclass- the fieldofspacescienceandtech- quire extensiveformalteachingin allows master-level studentstoac- minor in Space Technologies which The center coordinates the popular innovative developmentprojects. education, fundamentalresearchand its missionthroughthreekeyareas: education atEPFL.eSpaceachieves promote spacerelatedresearchand partners, withanoverallmissionto national spaceagencies,andindustry students, academicinstitutions,inter interdisciplinary hub,workingwith The EPFLSpaceCenter(eSpace)isan Description ucation andinnovation. science andtechnologyresearch,ed- nowned centerofexcellenceinspace To establish EPFL asaworld-re- Vision space initiatives. and beyond, to fosterinnovative partnership withEPFLlaboratories and technologyresearchtopicsin ties, todevelopnovelspacescience in space-related projects and activi- spire thenewgenerationofstudents three complementarymissions:toin- The EPFLSpaceCenter(eSpace)has Mission Space –EPFL Center 2.4

e - these technologiestospace. ing tocomputervision,andhelptake intelligence, andprecisionengineer eas, rangingfromrobotics,artificial of-the-art researchinanumberofar extensive knowledgebaseandstate- In thisway, thecentercanleanonan eSpace. with supportorcoordinationfrom ried outdirectlywithin these entities, opment activitiesperformedarecar many cases,theresearchanddevel- laboratories andinstitutes at EPFL.In close collaborationswithresearch ademic experience,andbenefitsfrom with a widerange of industry and ac- The centerboastsateamofexperts Space-1 missionbyESA. ing therecentselectionofClear removal missionin2025,follow- which willlaunchthefirstsatellite commercial spin-off,ClearspaceSA, is thepartnershipwitheSpace’s ics. Oneofthetimely developments ative Navigation and Space Robot- debris, andtechnologiessuchasRel- missions suchastheremovalofspace Space Logistics,whichcaninclude research initiativeonSustainable eSpace iscurrentlyfocusedonthe Space atyourservice. team, Growbothub,Callistaand EPFL rocket team, the Spacecraft - - - - – – tainable SpaceLogisticsare: tives oftheResearchInitiativeonSus- ferent fromEarthlogistics.Theobjec- orbital dynamics,fundamentallydif- sustainability: anewfielddrivenby they relatetospacelogistics,andtheir developments haveincommonthat tures beyond low Earthorbit.These ploration, ordeploylargeinfrastruc- sources (ISRU),mineralresourceex- orMarswhichusein-siture- emerged, suchassettlementsonthe Finally, newlong-termvisionshave commercial operation. pushing theindustrytowardsmore tive missionsandbusinessmodels, of satelliteproductionenableinnova- standardisation andindustrialisation small- andnano-satellites,the aviation industry. Atthesametime, it, similartothebeginningsof try, workingtirelesslytotransform path ofSpaceXinthelaunchindus- en bymanystart-upsfollowingthe drop inlaunchcostshasbeendriv- undergone profoundchanges.The In recentyearsthespaceindustryhas Purpose ofResearch onesearch Sustainable Initiative Space Logistics 2.5

T Space Logistics(SSL). Swiss leadershipinSustainable innovation andcontributeto that hasthepotentialtodrive T Swiss laboratorieswithabackg-

o connect the EPFL and other o connecttheEPFLandother o initiateandsupportresearch R L’Agefi, SpecialEdition,April 2020 logistics inspace, CommoditiesMagazine de Chavy-Macdonald M-A (2020)Sustainable ce &Electronic Systems, underreview industry anditsimpact,IEEETrans systems modelandscenarios oftheresource Aoyama K(2020)Thecis-lunarecosystem –a Chavy-Macdonald M-A, OizumiK,KneibJ-P, ronautics andSpace Sciences 2019 Logistics, European Conference for Ae- Towards anontologyofSustainableSpace Ben HamidaS,Richard M,KneibJ-P(2019), Publications modelling hasbegun. and issecuringfunding.High-level The project has identified partners Past Achievements andStatus – –

T T new vocations. technology transfer. developed researchandsupport tions andopportunitiesfromthe space logisticstechnologyscouting. round inspacetechnology, via o developtalentsandinspire o identifycommercialapplica- trends. of manykey industry actions andsystems view seeks tocapture theinter- tainable Space Logistics In thefirst instance, Sus- . . .

Aerospa- .

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 epfl-space-center www.epfl.ch/research/domains/ Website technology planning. system, andsubsystem design, Campaign andmissionmodelling,mission, Development of Simulation Method M-A. Chavy-MacdonaldeSpace) (EPFL, Co-Investigator(s) EPFL Swiss PrincipalInvestigator(s) J-P. Kneib(eSpace) Principal Investigator(s) ESA In cooperation with EPFL Space Center(eSpace) Institute 13

INSTITUTES AND OBSERVATORIES INSTITUTES AND OBSERVATORIES 14 Space Research inSwitzerland 2018–2020 E. Rugi-Grond (Industryrep.) 1015 Lausanne,Switzerland F. Rottmeier (Industryrep.) M. Rothacher (ETHZurich) 8 ScientificandTechnical 8049 Zurich, Switzerland EPFL, PPH338, Station13 EPFL, Leopold-Ruzicka-Weg 4, M. Righi(Academicrep.) D. Günther(ETHZurich) ETH Zurich,HPCG32.1, J. Binder (EPFL, Chair) J. Binder(EPFL, A. Madrigal (RTO rep.) [email protected] Tel. +41446333056 Tel. +4121693 69 48 www.spacecenter.ch Contact Information Steering Committee Swiss Space Centre Board ofDirectors M. Gruber(EPFL) 2 Administrative V. Gass(EPFL) 3 Professors Website Director Staff document isavailable for download on theSSCwebsite. FIgure 1.A catalogueofMember competences entitled“Members’ Profiles” was editedby SSC.This – – – – Roles tion betweenthesestakeholders. applications, andpromoteinterac- access space missions and related tutions, academiaandindustryto vides aservicesupportinginsti- The SwissSpaceCenter(SSC)pro- Mission –SwissSC Space Center 2.6 o networkSwissresearch space. T ning. T industries. Swiss researchinstitutionsand mentation ofspaceprojectsfor T and applications. recognised forbothspaceR&D of excellenceinternationally in ordertoestablishfocusedareas national andinternationallevels institutions andindustrieson T o promotepublicawarenessof o provideeducationandtrai- o facilitateaccesstoandimple-

S Engineering for R emote Sensing emote Membership 2020 (partner) (Figure 1). EAWAG) areallpartofthenetwork RTO (CSEM,EMPA, PMOD/WRC, versities ofAppliedSciences)and Federal Institutes,Universities,Uni- dium andstart-up),academies(Swiss types ofcompanies(large-sized,me- gion ofSwitzerlandrepresentingall Zurich), 39membersfromeachre- which constitutetheBoD(EPFL,ETH Apart from the founding members comed fivenewindustrialmembers. In 2020,theSwissSpaceCenterwel- Members vironment, suchastheMoon. potentially suitableforanextremeen- their knowledgetodesignahabitat 2) fromvariousdisciplinesgathered In oneyear, 20studentteams(Figure visionary spacetopic:AHabitatinIce. ternational, collaborativeprojectona opportunities toparticipateinan- Project, IGLUNA,offeredstudents Center, theESA_LabDemonstrator Coordinated bytheSwissSpace 2018 Activities Board ofDirectors

-

2020 Swiss Academies Communications, Vol. 15, Nr. 10, 2020 15 INSTITUTES AND OBSERVATORIES

IGLUNA continues to gather students IGLUNA 2020 – Space habitat and from all around the world to work on remote operations a collaborative interdisciplinary pro- ject. After the positive outcome of IG- Coordinated by the Swiss Space LUNA 2019 as the ESA_Lab Demon- Center, the ESA_Lab@CH Project IG- strator Project, ESA and the Swiss LUNA 2020 (Figure 5), as a follow-up Space Office have engaged to support of the 2019 campaign, again offers this initiative once more. Bringing it students opportunities to partici- to the next level, ESA has signed a pate in an international, collabora- Memorandum of Collaboration (Fig- tive project with the particular twist ure 4) with the Swiss Space Center of adding remote operations as a key for IGLUNA to be officially coordi- requirement. During this academic nated as an ESA_Lab@CH Project. year, 15 international student teams coming from 10 countries are devel- oping their technologies on the topic More than 150 students from 9 Eu- of a space habitat, with the goal to in- ropean countries designed their pro- stall their projects on the Pilatus and totypes during the autumn semester operate them by remote control from 2018 and built their modules in the the Verkehrshaus − Swiss Museum spring semester 2019. From 17 June of Transport in July 2020. This in- until the full disassembly on 3 July ter-university project follows the first 2019, the results came together dur- IGLUNA edition that was successful- ing a field campaign inside the gla- ly completed last summer in Zermatt. cier cave of the Klein Matterhorn and an exhibition in the village of Zer- matt, Switzerland (Figure 3). Figure 4. Signing of the Memorandum of Colla- boration, ESA_Lab@CH, between ESA director general Jan Wörner and SSC director Volker Gass.

Being a hub for disruptive innova- tion and cross-fertilisation, the ESA_ Lab@ initiative creates an institution- al link between ESA and universities. IGLUNA contributes to this vision and collects lessons learned for the Figure 2. IGLUNA 2019 exhibition during field- implementation of future ESA_Labs. campaign in the village of Zermatt, Switzerland.

Figure 3. IGLUNA 2019 field campaign test-bed on a glacier at Klein Matterhorn, Zermatt, Switzerland. FIgure 5. IGLUNA 2020 participating universities and partners INSTITUTES AND OSERVATORIES 16 ZIMLAT telescope tomeasure thedistances of Laser beamtransmittedfrom the1-meter Space Research inSwitzerland 2018–2020 artificial satelliteswithamm-accuracy. Bundesamt fürLandestopographie (swisstopo), Wabern, Switzerland P. Lauber, E.Cordelli AIUB), E. Brockmann (swisstopo) Principal Investigator(s) Univ. Bern(AIUB), Astronomical Institute, T. Schildknecht(AIUB) In cooperation with www.aiub.unibe.ch Co-Investigator(s) Measurement Institute Website Method val). by averagingoverashorttime inter derived fromrawmeasurement data per normalpoint(normalpoints are tions ataleveloffewmillimetres and theprecisionoflaserobserva- orbit precisionofgeodeticsatellites term) isessentialduetotheunique (especially thedynamicoblateness monics oftheEarth’s gravityfield eters, andlow-degreesphericalhar the globalscale,preciseorbitparam- (the so-calledgeocentercoordinates), Terrestrial ReferenceFrame(ITRF) tion oftheoriginInternational The contributionofSLRtothedefini- and rates,length-of-day). Parameters (EOPs,i.e.,polarmotion ILRS network, and Earth Orientation sitions andvelocitiesofsitesinthe satellite ephemerides,stationpo- observations whichincludeprecise lite) ProductsderivedfromtheseSLR 2, andLARES(Laser Relativity Satel- (Laser GeodynamicsSatellite)1and detic satellites,inparticularLAGEOS using SLRmeasurementtothegeo- erated bytheILRSanalysiscenters centers, andofficialproductsaregen- near real-timetotheglobalILRSdata The collecteddataaredeliveredin week. erated 24hoursadayand7daysper escope (ZIMLAT). Thesystemisop- merwald LaserandAstrometricTel- monostatic 1-mmulti-purposeZim- ro-reflectors areacquiredwiththe satellites equipped with laser ret- Service (ILRS).SLRobservationsto of theInternationalLaserRanging station oftheglobaltrackingnetwork servatory, partoftheSwissOGS,isa The ZimmerwaldGeodynamicsOb- Purpose ofResearch Swiss the at Ground Optical Ranging (SLR) atellite Laser Zimmerwald (SwissOGS) and Geodynamics Observatory Station 2.7

S - - upgraded with cuttingedgeinnova- The Zimmerwald SLRstationwillbe needs tobesignificantlyimproved. and amountofSLRmeasurements GGOS sciencegoals,theaccuracy odesy (IAG).Inordertoachieve the the InternationalAssociation ofGe- odetic Observing System (GGOS) of the larger context of the Global Ge- All theseeffortshavetobeseenin the multi-purposetelescope. debris withCCDcamerasattachedto search andcharacterisationofspace between SLRoperationsandthe tion timeissharedduringthenight thirds ofthetime,andthatobserva- only allowoperationsabouttwo weather conditionsinSwitzerland ble whenconsideringthefactsthat wide. Thisachievementisremarka- productiveSLRstationsworld- in thelastdecadestooneof Zimmerwald Observatorytoevolve oped controlsoftwareallowedthe operations by the in-house devel- autonomous managementoftheSLR national SpaceStation.Thehighly iment (ELT) tobeflownontheInter European LaserTime Transfer exper connaissance Orbiter(LRO),orthe transponders suchastheLunarRe- experiments tospaceborneoptical operation inone-waylaserranging which alsoallowsforsynchronous the actualfiringrateandepochs, a highflexibilityintheselectionof Observatory Zimmerwaldenables Ground StationandGeodynamics ser systemusedattheSwissOptical The designofthe100HzNd:YAG la- hemisphere. ductive SLRstationinthenorthern a 24/7basisandisstillthemostpro- data tothescientificcommunityon tinues toprovidehighqualityrange The Zimmerwald SLR station con- Past Achievements andStatus - - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 17 INSTITUTES AND OBSERVATORIES

tive lasers systems. A new kHz laser Publications Abbreviations with a pulse length of 8ps in combi- nation with new receiver electronics Andritsch F, Grahsl A, Dach R et al. (2020) ADRIOS Active Debris Removal and In and picosecond event timers will im- Simulation of tracking scenarios to LAGEOS and Orbit Servicing project prove the single observation range Etalon satellites, J. Geod. 94: 40, doi.org/10.1007 GGOS Global Geodetic Observing accuracy from 1.2 cm to 2 mm and System at the same time increase the num- Cordelli E, Lauber P, Schildknecht T, Prohaska ILRS International Laser Ranging ber of measurements by a factor of M, Brockmann E, Jäggi A (2019) Satellite Laser Service 10. In addition, a 200 Hz high pow- Ranging at Zimmerwald, Swiss National ITRF International Terrestrial er laser will be installed in order to Report on the Geodetic Activities in the Reference Frame measure ranges to targets which are years 2015-2019. LAGEOS Laser Geodynamics Satellite not equipped with laser retro-reflec- LARES Laser Relativity Satellite tors. This system in particular will be Cordelli E, Lauber P, Prohaska M, Rodriguez J, SLR Satellite Laser Ranging used to provide high precision orbit Schlatter P, Schildknecht T (2019) Recent ZIMLAT Zimmerwald Laser and and attitude information for the tar- developments at the Swiss Optical Ground Astrometry Telescope get object of the ESA-CH Active De- Station and Geodynamics Observatory bris Removal and In Orbit Servicing Zimmerwald, Proc. ESA NEO SST Conf., project (ADRIOS). Darmstadt, Germany, 2019.

30k

25k

20k

15k

10k

Number of normal points 5k

0 Station Kiev 1824 Kiev Riga 1884 Graz 7839 Altay 1879 Tahiti 7124 Tahiti Simeiz 1873 Irkutsk 1891 Matera 7941 Matera Beijing 7249 Sejong 7394 Arkhyz 1886 Grasse 7845 Badary 1890 Wuhan 7396 Wuhan Brasilia 7407 Svetloe 1888 Svetloe Wettzell 7827 Wettzell Wettzell 8834 Wettzell Borowiec 7811 Borowiec Potsdam 7841 Kunming 7819 Baikonur 1887 Baikonur Katzively 1893 Katzively Shanghai 7821 Arequipa 7403 Arequipa Haleakala 7119Haleakala Simosato 7838 Greenbelt 7105Greenbelt Changchun 7237 Yarragadee 7090 Yarragadee Mendeleevo 1874 Mendeleevo Zimmerwald 7810 Zimmerwald Komsomolsk 1868 Komsomolsk Tanegashima 7358 Tanegashima San Fernando 7824 San Fernando Mount Stromlo 7825 Stromlo Mount Hertsmonceux 7840 Hertsmonceux Hartebeesthoek 7501 Monument Peak 7110Monument Hartebeesthoek 7503 Zelenchukskaya 1889 Zelenchukskaya

Station

Number of “normal points” (NPT) over the period 1 February 2019 – 31 January 2020 for the geodetic satellite LAGEOS and LARES acquired in the ILRS network in 2019. The Zimmerwald Observatory is the most productive SLR station in the northern hemisphere (second worldwide). SWISS SPACE MISSIONS 18 on aSoyuz-Fregat from Kourou, French Guyana. Institut fürWeltraumforschung Graz,Austria Centro deAstro. daUniv. do Porto, Portugal CHEOPS lift-offat8:54UT, 18December 2019, INAF Osserv. Astrofisico diCatania, Italy Space Research inSwitzerland 2018–2020 Swiss Space Center, Switzerland EPFL, Obs. deGenève, Genève, Switzerland Onsala Space Observatory, Sweden INAF Osserv. Astro. diPadova, Italy Lab. d’Astrophys. Marseille, France Univ. Warwick, Univ. Cambridge,UK DLR Inst.Opt.SensorSys., Germany DLR Inst.PlanetaryRes., Germany Center SpatialdeLiege,Belgium Center for Space &Habitability, , Engenharia,Portugal Stockholm Univ., Sweden Image credit: . In cooperation with Univ. Bern(UNIBE), Bern, Switzerland Institute

– – – In particular, CHEOPSwill: mospheres. characterisation ofexoplanetaryat- struments suitedtothespectroscopic provide primetargetsforfuturein- characterisation, CHEOPSwillalso ets withhighpotentialforin-depth By unveilingtransitingexoplan- smaller). transit surveys(Neptune-sizeand generation ofgroundorspace-based new planetsdiscoveredbythenext It will also provide precise radii for where inthesky. of exoplanets located almost every- providing on-the-flycharacterisation ground-based spectroscopicsurveys, mass hasalreadybeenestimatedfrom subset ofthoseplanetsforwhichthe ty ofdeterminingaccurateradiifora It willprovidetheuniquecapabili- to hostplanets. tometry onbrightstarsalreadyknown by meansofultra-highprecisionpho- ed to search for transits of exoplanets CHEOPS isthefirst mission dedicat- Purpose ofResearch Satellite –CHaracterising ExOPlanet HEOPS wiss Space3.1 Missions 3

ments suitedto thespectroscopic prime targetsfor futureinstru- tion, CHEOPSwillalsoprovide potential forin-depthcharacteriza - transiting exoplanetswithhigh on ofplanets.Byunveiling during theformationandevoluti planet migrationpathsfollowed Place constraintsonpossible stellar parameters. distances fromthehoststar atmospheres inarangeofmasses, Identify planetswithsignificant previously achieved. exist andtoaprecisionnot for whichonlyahandfulofdata relation inaplanetarymassrange Determine themass-radius

S C , and - – – – – – – – – – – – – Past Achievements andStatus – – addressed. a widerangeofsciencetopicscanbe process carried out by ESA, in which to thecommunitythroughaselection serving timewillbemadeavailable In addition,20%oftheCHEOPSob-

April 2018. for integration: T March 2018. T January 2018. mass, andmomentofinertia: Measurement ofthecenter December 2017. Instrument EMCtest: November 2017. SVT June 2017. SVT University ofBern:April2017 Flight telescopearrivesatthe System CDR: January 2016. Ground segmentCDR: December 2015. Instrument CDR: February 2014. Mission adoption: October 2012. Mission selection: May 2016. Extremely LargeT future ground(e.g.theEuropean atmospheric characterisationby Provide uniquetargetsfordetailed hot Jupitersviaphasecurves. atmospheric propertiesofknown Bring newconstraintsonthe atmospheres. characterisation ofexoplanetary capabilities. facilities withspectroscopic Webb SpaceTelescope, JWST) and space-based(e.g.theJames elescope shippedtoADSMadrid elescope readyforcalibration: -1B: -1A:

elescope, E-ELT)

– – – – – – – –

April 2020. the Consortium: CHEOPS operationsfromESAto Hand-over oftheresponsibilityfor 25 March2020. in-orbit commissioningreview: Successful completionofthe January 2020. and firstimagetaken: Successful openingofthecover 8 January2020. In-orbit commissioningstarts: 18 December2019. rocket: passenger onaSoyuz-Fregat from Kourouasasecondary CHEOPS issuccessfullylaunched July 2019. Kourou passed: Final reviewbeforeshipmentto May 2019. placed instorageatADS: Satellite readyforlaunch,and July 2018. Space: Environmental testsatRUAG

STM SVT JWST EMC CHEOPS CDR Abbreviations Astronomy &Astrophysics 635:A24 architecture andsimulatedperformances, Satellite (CHEOPS).III.Datareduction pipeline: performances oftheCharacterisingExoplanet Deleuil M,Meunier JC,BenzW(2020)Expected Ho Astronomy &Astrophysics 635:A22 performances from ground-based calibration, Exoplanet Satellite(CHEOPS).I.Photometric Expected performances oftheCharacterising Fortier A,Broeg C,Futyan D, BenzW(2020) Deline A,QuelozD 30648-3, id Springer LivingRef of Exoplanets, Eds CHaracterising ExOPlanetsSatellite,Handbook Benz W, Ehrenreich D, IsaakK(2017) CHEOPS: Publications E-EL Planning aaeauto Apr Data evaluation Apr Measurement Phase Construction Time-Line yer S,GutermanP, DemangeonO, SousaSG,

T

. 84 S Structural ThermalM James W Electr T Eur Satellite CHaracterising ExOPlanet Critical DesignR . elescope ystem Validation Test opean Extremely Large , ChazelasB, Sordet M,WildiF, . . HJ Deeg, JA Belmonte, HJDeeg,JABelmonte, Work, ISBN:978-3-319- omagnetic Compatibility ebb Space Telescope Mar Mar From . . . . 2020 2020 21 Jul 2014 21 Feb 2013 eview odel . . open open .

2019 To . 2014

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 www..unibe.ch Website RUAG Space Connova AG, Pfeiffer Vacuum AG; P&P, Airbus Defense &Space (ADS);Almatech; Main industrialhardware contract(s) to mission’s ground segment. development andoperationofthe diameter telescope aswell asthe ment, assembly, andverification ofa33cm Switzerland isresponsible for thedevelop- Development &construction ofinstrument(s) Measurement Method E. Renotte, T. Spohn,S.Udry, CHEOPS Team G.Piotto,D.A. L.-d-Etangs, Queloz, M. Deleuil,A.Fortier, A.Gutierrez, M. Gillon,W. Baumjohann,C.Broeg, T. Barczy, T. Beck,M.Davies,D. Ehrenreich, Co-Investigator(s) W. Benz(UNIBE) Principal/Swiss Investigator(s) declared ready tofly. Imagecredit: ESA. and Space, Madrid, Spain,afterhavingbeen CHEOPS intheclean-room atAirbusDefence 19

SWISS SPACE MISSIONS SWISSSPACE SAFETY 20 DLR/German Space Operation Centre (GSOC), Graphical representation ofthespa Keldish Inst.AppliedMathematics (KIAM), Space Research inSwitzerland 2018–2020 Astronomical Inst.,Univ. Bern(AIUB), ­population ofobjects>10cmasseen I. Molotov (KIAM),H.Fiedler(DLR) International ScientificOptical European Space Agency(ESA) Observation Network (ISON) Measurement, Compilation Zimmerwald, Switzerland Sutherland, SouthAfrica Principal Investigator(s) fr om 15Earthradii(ESA). T. Schildknecht(AIUB) Darmstadt, Germany In cooperation with www.aiub.unibe.ch Co-Investigator(s) ISON telescopes Moscow, Russia Observatories ESA, Tenerife ­ c Institute Website e debris Method Bern terising objects toassess their nature tical environment models,bycharac- small-size objects insupportofstatis- ing statisticalorbitinformation on jects towardsmallersizes,by acquir the cataloguesof“known”space ob- Earth environmentthroughextending at abetterunderstandingof thenear flight. Researchinthisdomainaims ational satellites and manned space- sults in an increasing threat to oper growing numberofspacedebrisre- artificial objectsinEarthorbits.The quire informationaboutnaturaland al Awareness / Space Safety is to ac- The centralaimofSpaceSituation- Earth. success ofimportantinfrastructureon otal toprotectingandfurtheringthe ing infrastructureinspaceisthuspiv- tion, etc.,tonamejustafew. Protect- monitoring ofenvironmentalpollu- for agriculture,disastermanagement, models, Earthobservationdataused data forweatherforecastandclimate them arenavigationservices,critical by infrastructure in space. Among depend on vital services provided Our modernsocietiesincreasingly tion Committee(IADC). Inter-Agency SpaceDebrisCoordina- (UNCOPUOS)andthe Committee onthePeacefulUsesof such activities,amongthemtheUN hance the long-term sustainability of els areexaminingmeasurestoen- tional organizationsatdifferentlev- orbit (GEO)environments.Interna- Earth orbit(LEO)andgeostationary activities, particularlyinthelow- the long-termsustainabilityofspace objects inspaceraiseconcernsabout and interferencebetweenman-made the increasedprobabilityofcollisions all sizesinnear-Earth space–and man-made non-functionalobjectsof The proliferationofspacedebris– Purpose ofResearch nternational Space Situational Awareness Situational Space nternational SA pace Safety 4.1 4

S S

I - - these events. shows thedebris cloudsofthree debris clouds. Thefigureontheright tion andcataloguingofthe resulting sentially contributedtotheidentifica - SSA /SpaceSafetycollaboration es- bris piecesof substantial size.The bits producing several thousand de - stages tookplaceinhigh-altitudeor eral severefragmentationsofupper events. During the past two years sev- are fragmentsfromon-orbitbreakup An importantsourceofspacedebris Space Safetyprogram. primary opticalsensorsintheESA TER. TheAIUBtelescopesconstitute space debrisreferencemodelMAS- for theEuropeanESAmeteoroidand research areusedaskeyinputdata small-size debris.Resultsfromthis to eventually discriminate sources of physical propertiesofthedebrisand observations tofurtherinvestigatethe These cataloguesenablefollow-up logues ofhigh-altitudespacedebris. vide thedatatomaintainorbitcata- DLR SMARTnetsensornetworkpro- escopes, andthedatafromAIUB/ formed byKIAMusingtheISONtel- of ESA,aswellthesurveysper ESA telescopeinTenerife onbehalf Zimmerwald Observatoryandthe and ZimSMARTtelescopesatthe formed byAIUBusingitsZIMLAT ESA, andDLR.Opticalsurveysper plied Mathematics(KIAM),Moscow, (AIUB), theKeldish Institute ofAp- cal InstituteoftheUniversityBern laboration betweentheAstronomi- This isanongoing international col- Past Achievements andStatus outer spaceactivities. ation measuresenablingsustainable space debrismitigationandremedi- scientific rationaletodeviseefficient debris. This research isprovidingthe and toidentifythesourcesofspace - - - fragmentation events inGEOandHEO,Proc (2019) Schildknecht T Activities intheyears 2015-2019 Swiss NationalReport ontheGeodetic and GeodynamicsObservatory Zimmerwald, E (2019) TheSwiss OpticalGround Station Cor Debris cloudsfrom three recent fragmentationsofupper stagesinhigh-altitudeorbits ESA NEOSSTConf Geodynamics Observatory Zimmerwald, Proc Cordelli E,etal Publications the S Int . OrbitalDebrisConf delli E,SchildknechtT, A,Brockmann Jäggi wiss OpticalGround Stationand Optical surveys tocharacterizerecent , Vananti A,Cordelli E,Flohrer T . (2019) Recent developments at . , Darmstadt,Germany, 2019 . , SugarLand,Texas . . . 1 . . st

ZimSMART ZIMLAT UNCOPUOS SSA SMARTnet IADC Abbreviations

R Zimmerw Astr Zimmerw Uses ofOuterSpac UN CommitteeonthePeac Spac T SM Coor Inter- elescope network obotic Telescope all Aperture Robotic onomical Telescope dination Committee e SituationalAwareness Agency ald SMall Aperture ald Laser& e

eful

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 21

SPACE SAFETY SPACE SAFETY 22 Development &construction ofinstrument(s) M. Gyo, P. Langer, M.Spescha(PMOD/WRC) Observatorium Davos /World Radiation Centre (PMOD/WRC), Davos, Switzerland D. Berghmans,M.West, S.Gissot(ROB) Space Research inSwitzerland 2018–2020 L. Harra,S.Koller,L. D. Pfiffner, V. Büchel, LUCI tobedeveloped andconstructed Royal Observatory ofBelgium(ROB), Field-of-view oftheLUCIinstrument. Rutherford Appleton Lab.(RAL), Physikalisch-Meteorologisches C. Kintziger, Jacques (CSL) L. M. Haberreiter (PMOD/WRC) Image credit: Matthew West. Centre SpatialLiège(CSL), Swiss ScientificContact under theleadofCSL. In cooperation with Co-Investigator(s) www.pmodwrc.ch Liège, Belgium J. Hurely (RAL) Measurement Institute Belgium Website Method ESA ESA UK ly completedPhases AandB1,is The LUCI consortium has successful- Past Achievements and Status response tosolaractivity. advance ourknowledgeofthe Earth’s LUCI willprovidekeyobservationsto Earth’s upperatmosphere.Assuch, sity and total electron content of the range drivesthetemperature,den- radiation. ThevariabilityintheEUV and modelsofthevariabilityEUV low ustoimproveourunderstanding of theSunobtainedwithLUCIwillal- possible. Inaddition,theEUVimages with higheraccuracythaniscurrently time of CMEsinthevicinityEarth tance inordertodeterminethearrival the Earth.Thisisofparticularimpor Ejections (CMEs)travellingtowards acceleration phaseofCoronalMass to observetheonsetandearly line, will,forthefirsttime,allowus er withtheside-viewofSun-Earth particular, thedesignofLUCI,togeth- lar activity and itsimpactonEarth.In and to provide new insights into so- erate reliablespaceweatherforecasts at 195 Å. It will provide input to gen- treme ultravioletwavelengthrange LUCI willobtainimagesintheex- EUI telescopeonSolarOrbiter. the ESAPROBA-2satelliteand and ImageProcessing)telescopeon er usingActivePixelSystemdetector the heritageofSWAP (SunWatch- direction towardsEarth.Itbuildson outer corona,upto2.5solarradiiin the fullsolardiscandregionof spacecraft andisdedicatedtoimaging remote sensinginstrumentsonthe grange pointL5.LUCIisoneofthe Space SafetyProgrammetothe La- board theESAmissionwithin (LUCI) is an extreme UV imager on The LagrangeEUVCoronalImager Purpose ofResearch Coronal EUV Imager –Lagrange UCI 4.2

L - the launchfor2026. rently foreseenfortheendof2024and Q2/2021. Instrumentdeliveryiscur the start ofPhaseB2isforeseenfor expected tocomeoutinQ4/2020and chosen. TheRequestforProposalis Contractor forthemissionwasalso funding fromPRODEX.ThePrime (S2P). LUCIisalsoexpectedtoreceive of ESA’s SpaceSafetyProgramme Conference inNovember2019aspart ed attheSpace19+ESAMinisterial The LAGRANGE mission was select- respectively. run untilJune2020andMay2021, idation Phase, which areforeseento the subsequentBridgingandConsol- the Pre-Development are covered by 2021. Additionalactivitiesbesides strument, foreseen to lastuntilMarch Thermal-Mechanics (TM)ofthein- Front-End Electronics (FEE) and the ered bythePre-Developmentof currently performingactivitiescov- S2P LUCI EUV CME Abbreviations Liege, Belgium Lagrange, European Week, W Fall Meeting 2019, abstract#SH11C-3396 middle c West MJ,etal Publications Time-Line Planning Data evaluation Measurement Phase Construction est M,etal

orona from theL5perspective, AGU, . Spac Lagrange EUVCor Extr Cor (2019) TheEUVimageron . (2019) EUVObservations ofthe . onal Mass Ejection eme Ultra-Violet e Safety Programme Mar Feb From 06>2033 >2033 2026 2026 . . 22 Dec 2023 21 Feb 2018 onal Imager To . . 2024 2022 . - green). We canalsoseesmall‘streaks’ corresponding toglobularclusters. Thegalacticplane(horizontal)isvisibleby itslackofdetectedRRLyrae stars. Large andSmallMagellanic Clouds(thetwo lower leftclumps),theSagittariusdwarf galaxy(lower rightclump)andtheassociatedSagittariusstream (in standard candlesandcanbeusedtoderive distances (here usedwithoutanyinterstellar extinction correction). They trace thehaloofourGalaxy, the The Gaiaproject, next articleonpage22:The3-dimensionalview ofthe141,000RRLyrae stars from theGaiasecond DataRelease. RRLyrae stars are Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 23

ASTROPHYSICS ASTROPHYSICS 24 O-rich (toppanel)andaC-rich (bottompanel),at various phasesoftheirpulsationcycles (pulsa- tion periodsof203and425days, respectively). The displayed spectraapproximately cover the I. Lecoeur-Taibi, N.Mowlavi, K.Nienartowicz, www.unige.ch/sciences/astro/variability/en M. Audard, B. Holl,G.Jevardat deFombelle, (www.cosmos.esa.int/web/gaia/iow_20181115). Image credit: ESA/Gaia/DPAC, Mowlavi etal., Gaia RPepochspectraoftwo Mirastars, an Dept. Astr Space Research inSwitzerland 2018–2020 L. Rimoldini(UNIGE,SixSq, Sednai Sàrl) L. wavelength nm. rangefrom 640to1100 Gaia ImageoftheWeek 15/11/2018 Swiss PrincipalInvestigator(s) onomy, Univ. Geneva (UNIGE), USA andIsrael(60people) Principal Investigator(s) 17 InstitutesinEurope, Versoix, Switzerland In cooperation with Co-Investigator(s) L. EyerL. (UNIGE) Measurement Institute Website Method ESA data release, we presented a showcase data release,we presentedashowcase variable objects publishedinthefirst ature published inthatyear. For the cited articleintheastrophysics liter the 2018summaryarticleis the most pact, theGaiaseconddatarelease of or another. Asanexampleofthisim- fields are/willbeaffectedin one way unimaginable andmostastronomical and theirscientificimpactarealmost and spectroscopy. Thewealthofdata urements inastrometry, photometry, vey withnearlysimultaneousmeas- with ahomogeneouswholeskysur edented astrometricprecisionalong survey, becauseitprovidesunprec- important multi-epochastronomical Gaia is one ofthe most (if not the most) ber 2016andinApril2018.Currently, releases weremadepublic,inSeptem- ing datasincesummer2014.Two data The Gaiaspacecrafthasbeengather Past Achievements andStatus their astrophysicalproperties. in selectedvariabilitytypestoprovide specific analysesaredoneonsources into distinct variability types. Further the variablesourcesandclassifythem all twobillionsources,thenidentify statistically describethetime-seriesof processing centre. The task is first to sity ofGenevawithitsassociateddata stitutes iscoordinatedbytheUniver about 60peopledistributedover17in- iable celestialobjects.Thiseffortof tium istodetectandanalysethevar One ofthedutiesGaiaconsor peatedly measured. than 2 billion celestial objects are re- spectroscopic measurements. More with astrometric,photometric,and Way brighterthanmagnitude20.7, och surveyofallstarsintheMilky sion fromESA,performingamulti-ep- The Gaiaprojectisacornerstonemis- Purpose ofResearch aia –Variability Processing and Analysis 5.1 5

Astrophysics G ------processing andanalysis results, A&A618:30 Gaia DataRelease 2.Summaryofthevariability Holl B collaboration, A&A623:110 colour-absolute magnitudediagram,Gaia Gaia DataRelease 2.Variable stars inthe E Collaboration, A&A616:1 contents andsurvey properties, Gaia Brown A,Vallenari A,PrustiT, etal Publications Gaia DataR data release(2024attheearliest). dred million,isplannedforthefourth catalogue ofvariablestars,afewhun- on theAndromedagalaxy. Thefull in adirectionaroundregioncentred a pencilbeamof2milliontime-series variables tobemadepublic,aswell Gaia datareleasewith5-10million ric measurements,preparingthethird analysing 260billionGaiaphotomet- al hundredcitations.We arecurrently release whichreceivedintotal,sever more than10articlesrelatedtothislast Our GaiaVariability teamproduced team inthenextGaiadatareleases. that isgoingtobepublishedbyour tion ofthevariableobjectsinsky million) representsonlyasmallfrac- ber ofvariablestarspublished(halfa ever published,eventhoughthenum- catalogues ofthegivensub-classes lished alreadyrepresentthelargest logues ofvariablestarsthatwepub- second datarelease,someofthecata- of theLargeMagellanicCloud.In of 3194 variable stars in the direction Time-Line Data Evaluation M Construction Planning yer L, Rimoldini L, Audard M,etal RimoldiniL, yer L, easurement Phase . , Audard M,Nienartowicz K,etal elease 2.Summaryofthe cyclic dev . cyclic From 2006 2014 .

. . up to2026 up to2024 (2018) up to2027 up to2027 . (2019) . (2018) (2018) To . - stars ingrey. Thisisthefirst timesuchacomprehensive plothasbeencompiled. different observation times.Themovement ofindividual variable stars isshown by linesofdifferent colour, onabackdrop ofnon-variable The motionofindividualstars inthe Colour-Magnitude Diagramby connecting themeasured colour (BP-RP) andabsolutemagnitude(G)at Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 25

ASTROPHYSICS ASTROPHYSICS 26 Launched aspartofTiangong-2,it was dest- N. Produit, X.Wu, M.Kole (DPNC),W. Hajdas(PSI) Nucl. Res. Inst.Poland(NCBJ),Warsaw, Poland POLAR was designed,constructed, qualified, Dépt. Phys. Nucl. Inst. HighEnergyPhys. (IHEP),Beijing, www.astro.unige.ch/polar/polar.ihep.ac.cn/en Tiangong-2 ready for launchby aLongMarch rocket attheJiuquanSatelliteLaunchCenter, calibrated andoperatedby aSwiss collab. Research basedonexisting instruments Space Research inSwitzerland 2018–2020 Obs. deGenève, Geneva, Switzerland royed by de-orbitingon19July2019. Industrial hardware contract(s) to China, onthedayoflaunch. Paul Scherrer Institute(PSI), N. Produit (Obs.deGenève) ­Corp. (DPNC),Univ Art ofTechnology, Zürich Principal Investigator(s) Image credit: N.Produit. Geneva, Switzerland Villigen, Switzerland S. NanZhang(IHEP) In cooperation with Co-Investigator(s) Mission Manager Measurement . Geneva, Institute Website Method flight data.We studiedindetail the also shownto correctlypredictthe rays. TheMonte Carlosimulationwas a polarised ground-source of gamma tified bycomparingdatataken with simulation code.Thiscode was cer building a very preciseMonteCarlo tor performances that wegatherby very preciseknowledgeofthedetec- Measuring polarisationrequiresa during thelaunchandflight. that thiscalibrationwasmaintained ibrated andwehavedemonstrated The detectorwascarefullyground-cal- pulsation phase. using GRBtriangulationandtheCrab was showntobebetterthan1msby time calibration(providedbyGPS) of eacheventis62ms.Theabsolute scintillator bars.Thetimeaccuracy in oneorseveralofthe1600plastic list oftime-taggedenergydepositions tivity inspace.Thedataconsistsofa during itssixmonthsofscienceac- POLAR tookmorethan3TBofdata Past Achievements andStatus error. isation withacontrolledsystematic the firstlargecatalogueofGRBpolar from POLARhavebeenpublishedin monitored 55GRBs.Measurements in sciencemodeforsixmonthsand ton polarimeter. It took data in space POLAR isawidefield-of-viewComp- waves. GRBs wereconnectedtogravitational sive creationofblack holes. Recently, nomical eventslinkedwiththeexplo- Bursts (GRBs)arecosmologicalastro- nese spacelaboratory. GammaRay at 14:04UTContheTiangong-2 Chi- was launchedon15September2016 POLAR isacompactpolarimeterthat Purpose ofResearch OLAR –Gamma Ray Polarisation Burst OLAR 5.2

P - - LAR-2 isinthedesignstage. and animproveddetectorcalledPO- We haveacceptedthisopportunity the Chinesespacestationin2024. a successortoPOLARisflownon ities toproposeSwitzerlandthat convinced the Chinese space author The excellentscientificresultshave igation. strate thepossibilitiesofpulsarnav- the Crab, and was used to demon- the spectrumand polarisation of The detectorwasalsousedtostudy of allGRBs. tector toseeifthisisageneralfeature pected andrequiresamuchlargerde- low value.Thisbehaviourwasnotex- ages thepolarisationdegreetoavery polarisation exists.Thisrotationaver been observedthatastrongrotational when examiningasinglepulse,ithas strongly polarised.Butsurprisingly sumptions, GRBsareoverallnot shown thatcontrarytopreviousas- alysed ingreatdetail.POLARhas tion ofadozenGRBshavebeenan- 2018, 2019and2020.Thepolarisa- POLAR datawasanalysedduring GRB polarisationmeasurements. tension seeninthecorpusofexisting ic correctionsthatcouldexplainthe ods werelackingimportantsystemat- vious “stateoftheart”analysismeth- statistical tools.We showedthatpre- analysis usingveryadvancedBaesian method ofpolarisationmeasurement - - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 27 ASTROPHYSICS

Publications Abbreviations

Burgess JM, Kole M, et al. (2019) Astronomy & CSU Tech. and Engineering Centre Astrophysics 627: A105. for Space Utilization GRB Gamma-Ray Bursts Kole M, et al. (2017) Nucl. Instrum. Meth. POLAR POLAR is a compact A 872: 28. gamma-ray polarimeter TG2 The second Chinese space Li HC, et al. (2019) J. High Energy Astrophysics laboratory, Tiangong-2 24: 15-22.

Produit N, et al. (2005) Nucl. Instrum. Meth. A 550: 616. Time-Line From To Planning 2009 2011 Produit N, et al. (2018) Nucl. Instrum. Meth. Construction 2012 2014 A 877: 259. Qualification 2014 2016 Zhang SN, Kole M, et al. (2019) Nature Measurement Phase 2016 2017 Astronomy 3 (3): 258-264. Data Evaluation 2017 2020

POLAR Flight Spare on display at the Chinese National Museum in Beijing in front of a life size model of TG2. Merlin Kole and Nicolas Produit can be seen in the picture. Image credit: N. Produit. ASTROPHYSICS 28 Dépt. Phys. Nucl. The Silicon-Tungsten Tracker ofDAMPE const- Inst. HighEnergyPhys.(IHEP), Beijing,China Univ. Sci.Technol. China(USTC), Hefei, China Istituto NazionalediFisicaNucleare (INFN), Inst. Modern Physics (IMP), Lanzhou, China Astroparticle physics research usingdata Research basedonexisting instruments Space Research inSwitzerland 2018–2020 ructed attheUniversity ofGeneva collected by theDAMPE mission Swiss PrincipalInvestigator(s) www.dpnc.unige.ch/dampe ­Corp. (DPNC),Univ Perugia; Bari;Lecce, Italy Principal Investigator(s) GSI PMO, Nanjing,China J. Chang(PMO, China) Geneva, Switzerland In cooperation with Measurement X. Wu (DPNC) . Geneva, Institute Website Method processing and analysis. a majorcontributor tothesciencedata the DAMPEpayload, andcurrentlyis both inthehardwareconstruction of The DPNCgroupplayedaleading role the STK. in-orbit calibrationandmonitoring of ification, on-groundcalibration,and the development,construction,qual- ce andIHEP, Beijing,isresponsiblefor INFN Perugia,Bari,Lec- collaboration ledbyDPNC,including Geneva DPNCgroup.Aninternational bility ofDAMPE,wasproposedbythe tracking andphotondetectioncapa- The STK,whichgreatlyimprovesthe bottom ofthecalorimeter. of neutrondetectorsissituatedatthe doscopic arrangement. Finally, a layer muth germanium oxide bars in a ho- ness, constructed of 14 layers of bis- of about 31 radiationlengths in thick- converter, thenanimagingcalorimeter by a Silicon-Tungsten Tracker (STK) an anti-coincidencedetector, followed strip detector(twolayers)thatservesas DAMPE consistsofaplasticscintillator propagation throughtheGalaxy. their stillunknownoriginand will bringnewinputtothestudyof to 100TeV with goodprecisionwhich will also study cosmic ray nuclei up ray electronpluspositronspectrum.It search fornewfeaturesinthecosmic unprecedented energyresolutionto (and positrons)upto10TeV with DAMPE isdesignedtodetectelectrons With arelativelylargeacceptance, ray datahasbeencollected. cember 2015,alargeamountofcosmic Since its successful launch on 17 De- to highenergycosmicraydetection. Academy ofSciences(CAS)dedicated er) is asatellite mission oftheChinese DAMPE (DarkMatterParticleExplor Purpose ofResearch Explorer Particle Matter –DArk AMPE 5.3

D - tributor tothis analysis. ments. TheDPNC groupisakeycon- hinted atindirectly byotherexperi- at 10TeV, whichwas previouslyonly direct evidenceofspectralsoftening opposite) revealed,forthefirst time, 2019). Thismeasurement(see Figure lished inScienceAdvances(Anetal., to 100TeV energywasrecentlypub- The cosmicrayprotonspectrumup analysis. played aleadingroleintheelectron of theseparticles.TheDPNCgroup new inputtounderstandtheorgin(s) spectral indexat~1TeV, providinga the detectionofa break of the CRE trum inthemulti-TeV range,and most preciselymeasuredCREspec- (Ambrosi etal.,2017),concernedthe First results, published in Nature PE detector. Monte CarlosimulationoftheDAM- The groupisalsocoordinatingthe STK trackreconstructionsoftware. development andtheoperationof alignment oftheSTK,aswell riodic monitoring,calibrationand science dataoperation,includingpe- major responsibilitiesfortheground years inorbit.TheDPNCgrouphas functioning wellaftermorethanfour STK 73728 readout channels are very stable. More than 99.7% of the and electronicconditionshavebeen tations. In-orbitmechanical,thermal The STKisperformingaboveexpec- of DAMPEarestillfunctioningwell. 17 December2015.Allsub-systems ellite wassuccessfullylaunchedon curred inMay2015.TheDAMPEsat- 2015. Integrationintothesatelliteoc- DPNC and delivered to China in April final assemblywascompletedatthe three yearsofintensiveeffort.The tion oftheSTKwascompletedafter The developmentandtheconstruc- Past Achievements andStatus Swiss Academies Communications, Vol. 15, Nr. 10, 2020 29 ASTROPHYSICS

The initial operation period of DAM- Publications PE was three years, but given the excellent working condition of the Ambrosi G, et al. (2017) Direct detection of a detector, and the interesting new break in the teraelectronvolt cosmic-ray spectral features observed in electron spectrum of electrons and positrons, Nature and proton fluxes, the mission has 552: 63. been extended for at least three more years, to the end of 2021. The DPNC An Q, et al. (2019) Measurement of the group is involved in several data anal- cosmic-ray proton spectrum from 40 GeV to ysis projects, including extending the 100 TeV with the DAMPE satellite, Sci. Adv. electron flux measurement to 10 TeV, 5: eaax3793. the Helium flux measurement, aniso- tropy studies and pulse studies. Wu X, et al. (2015) The Silicon-Tungsten Tracker of the DAMPE Mission, PoS, ICRC2015, 1192.

Time-Line From To

Planning 2012 2013 Abbreviations Construction 2013 2015 CRE Cosmic ray electron plus positron Measurement Phase 2016 >2021 DAMPE DArk Matter Particle Explorer Data evaluation 2016 >2021 STK Silicon-Tungsten Tracker

Cosmic ray proton spectrum measured with DAMPE data compared to the results of other experiments. Outer and inner bands correspond to the total systematic uncertainty with and without the hadronic model uncertainty included, respectively. ASTROPHYSICS 30 Karsten Danzmann(AlbertEinsteinInstitute) Development &construction ofinstruments Artist‘s impression ofaLaser Electronics (GRSFEE)for theLISAmission. Gravitational Reference SensorFront-End Space Research inSwitzerland 2018–2020 Max PlanckInst.GravitationalPhysics, Space Antenna(LISA)missionconcept Physics Inst.,Univ. Zurich(UNIZH), Swiss PrincipalInvestigator(s) Inst. Geophysics, ETHZurich European Space Agency Principal Investigator(s) L. FerraioliL. (ETHZurich) D. Giardini (ETHZurich) Jan tenPierick(UNIZH) D. Mance (ETHZurich) www.lisamission.org Albert EinsteinInst., In cooperation with Zurich, Switzerland Zurich, Switzerland Co-Investigator(s) Univ. Trento, Italy P. Jetzer(UNIZH) Interf ­ Measurement ­ spacecraft. erometer Germany Institute Website Method gravitational waves. reference forthe measurementofthe test massesthat arethefree-falling of theLISAinstrument.Ithosts the al ReferenceSensor(GRS)is thecore million kilometres.TheGravitation - craft-to-spacecraft distance of2.5 and maintaining a mutual space- liocentric orbitfollowingtheEarth form anequilateraltriangleinahe- identical spacecraftwhichwill The LISAmissionconsistsofthree success. due toitscriticalityforthemission The ISFEEwasbuiltfullyredundant cy bandfrom1Hzdownto0.1mHz. tion andstabilityinthelow-frequen- actuation requirednanometerresolu- static actuation. The sensing and ble capacitivesensingandelectro- frame. ISFEEwasbasedonultra-sta- test masseswithrespecttotheir the positionandattitudeof FEE), whichsensedandcontrolled tial SensorFront-EndElectronics(IS sisted of the development of the Iner The SwisscontributiontoLPFcon- development. sion aftertwentyyearsoftechnology which recentlycompleteditsmis- success ofLISAPathfinder(LPF), mental physics. LISA builds on the gravity, thuscontributingtofunda- hints aboutthenatureofquantum ry alsohasthepotentialtouncover entirely new regime. The observato- the theoryofgeneralrelativityinan and providehighlyaccuratetestsof lution andstructure of ourUniverse knowledge aboutthebeginning,evo- Universe. LISAwillenhanceour ted by sources located in the whole gravitational waves in space emit- the early2030s.LISAaimstodetect mission withalaunchexpectedin tenna (LISA)istheESAL3selected The Laser Interferometer Space An- Purpose ofResearch Front-End Sensor Reference Gravitational – ISA Electronics 5.4

L - November 2017. Definition Reviewwascompletedin load partofthemission.TheMission sing onthespacecraftandpay- 2017 untilNovemberfocus- study was performed from April The ESALISAPhase0Instrument Formulation Reviewin2021. (2019) andwillendwiththeMission ed the Mission Consolidation Review studies whichhavealreadycomplet- strument andLISASystemPhaseA conducted togetherwiththeLISAIn- The GRSFEEPhaseAstudyisbeing and developing the design concept. strument requirement specifications ETH Zurichisestablishingthein- currently in its PhaseA(2019-2020). bution totheLISAmissionandis LISA GRSFEEistheSwissContri- Past Achievements andStatus μHz. quency band from1 Hz downto 20 stable performancesinthelow-fre- tion for the LISA GRS requires ultra es. Thesensingandactuation func- sensing (4 mm), and larger (μN) forc- erometer modewith“wall-to-wall” nN), atestmassacquisition/accel- μm), smallactuationforces(several with small displacements (upto100 respectively, sciencemodeoperation tion andwide range modesoffering, cy actuation.Ithasbothhighresolu- pacitive sensingandaudio-frequen- to LISA.Itisbasedon100kHzca- GRS FEEistheSwissContribution and controlelectronicsfortheGRS. The LISAGRSFEEisthesensing Time-Line Planning Data evaluation Measurement Phase Construction >2030 >2030 >2021 From 092021 2019 To Swiss Academies Communications, Vol. 15, Nr. 10, 2020 31 ASTROPHYSICS

Publications 10-13 ]

Armano M, et al. (2017) Capacitive sensing of 0.5

test mass motion with nanometer precision / Hz -2 over millimeter-wide sensing gaps for space-borne gravitational reference sensors, Phys. Rev. D 96: 062004.

Armano M, et al. (2018) Beyond the required 10-14 LISA free-fall performance: New LISA Pathfinder results down to 20 μHz, Phys. Rev. Lett. 120: 061101.

Armano M, et al. (2020) Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder, Residual relative acceleration of test masses [ms acceleration relative Residual accepted for publication, Rev. Sci. Instr., 10-15 2020.

0.00001 0.0001 0.001 0.01 Frequency [Hz] Abbreviations ASD of parasitic differential acceleration of LPF test masses as a function of the frequency. Source: FEE Front-End Electronics Phys. Rev. Lett. 120, 061101. GRS Gravitational Reference Sensor IS Inertial Sensor LISA Laser Interfer. Space Antenna LPF LISA Pathfinder

LPF inertial Sensor Assembly with both test masses enclosed by the Electrode Housings. The optical bench is situated between both test masses. ASTROPHYSICS 32 filters. Development ofthethickfilterfor soft Development ofdatacentre activitiesfor the as thecorresponding control electronics and The X-IFU FilterWheelmechanism,aswell Artist's impression oftheATHENA spacecraft. WFI andX-IFU instrument science centres. X-ray suppression for theWFIinstrument. Inst. Rech. enAstrophys. etPlanét.(IRAP), Max-Planck-Inst. Extraterr. Physik (MPE), E. Bozzo, M. Audard, L. Genolet (UNIGE) E. Bozzo,M.Audard, L. Dept. Astronomy, Univ. Geneva (UNIGE) Space Research inSwitzerland 2018–2020 Image credit: IRAP, CNES,ACO, ESA. K. Nandra(MPE),D. Barret (IRAP) Swiss PrincipalInvestigator(s) European Space Agency(ESA) www.sci.esa.int/web/athena Principal Investigator(s) Versoix, Switzerland In cooperation with Garching, Germany Co-Investigator(s) S. Paltani (UNIGE) Toulouse, France Developments Measurement Institute Website Method a timeresolutionof80 count-rate applicationsandachieving sensor matrixoptimisedforthehigh with asinglesmallergateableDEPFET a field-of-viewof40’x40’,together active pixelsensormatricescovering ed p-channelfield-effecttransistor) mosaic oflarge-areaDEPFET(deplet- The WFIwillbeequippedwitha2x of-view). for surveygrasp(effectiveareaxfield- spectral resolutionspectro-imagingand of X-raytelescopesforhighspatialand provements overthecurrentgeneration Athena willprovidetremendousim- the X-rayIntegralFieldUnit(X-IFU), and acryogenicimagingcalorimeter, imager, theWide FieldImager(WFI), instruments, alargefield-of-viewfast the period2015-2025).Thankstoitstwo agency plansforspaceexplorationin mic Vision Programme (covering the ESA fortheso-calledL2slotofCos- X-ray observatorymissionselectedby High EnergyAstrophysics)isalarge ATHENA (AdvancedTelescope for Purpose ofResearch Swiss –The Contribution THENA 5.5 , XRISM, eXTP, THESEUS, INTEGRAL, XMM-Newton, NuSTAR, rent and futureX-ray missions, such as the scienceexploitationofseveral cur two decades.Thegroupisinvolved in Department ofAstronomyfor about priority ofthehigh-energygroup ofthe sequently, ATHENA hasbeen thetop lactic andextra-Galacticsources.Con- terpretation ofX-raydataonbothGa- at theUNIGEinanalysisand- within thelong-establishedexpertise The scienceofATHENA willfitnicely ing instruments. ment byafactor>50overcurrentimag- resolution. This provides an improve- aging ofthesoftX-rayskywith~2eV chanical coolingchain,toperformim- exploiting acomplexmulti-stageme- at cryogenic(50mK)temperaturesby uses Transition EdgeSensors,operated

A µ s. The X-IFU s. TheX-IFU - period of the mission development, period of the mission development, ber of critical roles during the entire (ISCs). Thesecenters willcoveranum- and WFIInstrumentScience Centers solidated itspositioninboththe X-IFU ment andoperations,UNIGE has con- Concerning themissionground seg- same function. the X-IFU filters that has exactly the being designedonthemodelofone strument performances.Thefilteris saturation anddegradationofthein- of verybrightX-raysources,avoiding detector fromthesofterX-rayphotons function ofreducingtheloadon WFI FilterWheel.Thisfilterhasthe the filtersthatwillbemountedon UNIGE isalsoresponsibleforoneof and XRISMmissions. bution totheJAXAASTRO-H/Hitomi on our heritage fromthe Swiss contri- development atUNIGEreliesheavily tion stability. TheX-IFUFilterWheel X-IFU toachieveanoptimalcalibra- scientific observation.Thisallowsthe the detectorsimultaneouslyduring ic photonsforthegaincalibrationsof es whichcangeneratemono-energet- ics will also drive active X-ray sourc- mechanism, thefilterwheelelectron- Besides controllingthefilterwheel ed forthecalibrationofinstrument. also hosttheradioactivesourcesneed- es tobe observed. Thefilterwheel will bright counterpartsoftheX-raysourc- cal loadduetoUVphotonsfromthe bright X-raysources,orlimittheopti- load ofsoftX-rayphotonsfromvery latter areneededtoeitherreducethe electronics andallplannedfilters.The gether withthecorrespondingcontrol the X-IFUFilterWheelmechanism,to- UNIGE isleadingthedevelopmentof sensitivity and fine spectral resolution. ploiting auniquecombinationofhigh mentary andrevolutionarydata,ex- sions, ATHENA willprovidecomple- and Strobe-X.Comparedtothesemis- Swiss Academies Communications, Vol. 15, Nr. 10, 2020 33 ASTROPHYSICS

operations, and post operations. These Publications roles include the software develop- ment, the instrument health moni- Barret D, et al. (2018) Proc. SPIE 10699: id. toring and calibrations, as well as the 10699G. development of all data reduction/ analysis software. UNIGE is responsi- Meidinger N (2019) Proc. SPIE 11118: id. 11180Y ble for the bulk of the science software production for the X-IFU ISC and the development of the data reduction Abbreviations pipelines of the WFI ISC. For this latter ISC, UNIGE will also take care of the ATHENA Advanced Telescope for daily data processing mainly for quick- High-Energy Astrophysics look analysis purposes. ISC Instrument Science Centre JAXA Japan Aerospace Exploration Agency Past Achievements and Status WFI Wide-Field Imager X-IFU X-ray Integral FIeld Unit The Athena mission has successfully completed its phase A study with the closure of the Mission Formulation Time-Line From To Review (MFR) at the end of 2019. A Planning 2019 2021 preliminary design of the ATHENA/ Construction 2022 2031 X-IFU filter wheel was developed by UNIGE during phase A. The ATH- Measurement Phase 2031 2036 ENA/X-IFU Filter Wheel will be more Data evaluation 2031 2041 than a factor two larger in size than the HITOMI/XRISM filter wheel (710 mm in diameter compared to 300 mm for HITOMI/XRISM) and a factor of three in mass (about 10 kg compared to 3 kg for HITOMI/XRISM).

The increase in size and mass is driv- en by the uniquely large X-ray tel- escope onboard ATHENA that will require filters as large as 160 mm in diameter (to be compared with the 80 mm required for HITOMI/XRISM). Phase B1 started at the beginning of 2020 and will last until mid-2021, where the mission adoption is expect- ed pending the success of the System Requirement Review (SRR). Phase B2 will start in 2022 and will be conclud- ed at the end of the same year with Current design of the ATHENA/X-IFU Filter Wheel, as developed by UNIGE, at the end of 2019. The the Preliminary Design Review (PDR). wheel hosts seven filter positions (including a position dedicated to the radioactive sources). The large The construction of the different in- size (710 mm diameter) has necessitated the development of a complex shape, in order to save weight. struments and sub-system models will start in 2023, leading to a launch date currently set for mid-2031. 34 Space Research in Switzerland 2018–2020

5.6 Euclid – The Swiss Contribution ASTROPHYSICS

Purpose of Research in the so-called Shear Organisation Unit. FHNW contributes an important Euclid is an ESA mission designed to component of the data processing in- understand the origin and evolution frastructure which integrates the data of the Universe by investigating the centres distributed in Europe into a nature of its most mysterious compo- uniform processing system. nents: dark energy and dark matter, and by testing the nature of gravi- UNIGE is in charge of the so-called ty. Euclid will achieve its scientific Photometric-Redshift Organisation goal by combining a number of cos- Unit (OU-PHZ) and leads the devel- mological probes, among which the opment of algorithms and software Artist's impression of the Euclid spacecraft. primary ones are weak gravitational for the determination of photometric Image credit: ESA/C. Carreau. lensing and baryonic acoustic oscil- redshifts, which is a central compo- lations. nent of one of the main science goals of Euclid, weak lensing. UNIGE also The Euclid payload consists of a 1.2 hosts the Swiss Euclid Science Data Institute m Korsch telescope designed to pro- Center and is in charge of the imple- École Poly. Fédérale de Lausanne (EPFL) vide a large field-of-view. The Euclid mentation of the algorithms for the Fachhochschule Nordwestschweiz (FHNW) survey will cover 15,000 deg2 of the determination of the photometric Univ. Geneva, (UNIGE); Univ. Zurich, (UNIZH) extragalactic sky with its two instru- redshifts and the detection of strong Switzerland ments: the VISual imager (VIS) and lenses. the Near-Infrared Spectrometer Pho- In cooperation with tometer instrument (NISP) which The Euclid data processing is a large ESA and ~100 European institutes, NASA includes a slitless spectrometer and distributed effort which will have to >1000 astronomers and engineers worldwide a 3-band photometer. Euclid is the operate a multi-petabyte archive and second Medium Class mission of the a commensurate processing pow- Principal Investigator(s) ESA 2015 - 2025 pro- er. UNIGE also develops the Read- Y. Mellier, Inst. d’Astrophys. de , gramme, with a foreseen launch date out Shutter Unit (RSU), a cryogenics Paris, France in 2022. shutter for the VIS instrument which it has started to design and is now be- Co-Investigator(s) Switzerland is playing an important ing manufactured by the Swiss com- F. Courbin (EPFL), M. Melchior (FHNW) role in Euclid, with participation at pany, APCO Technologies SA. All S. Paltani (UNIGE), R. Teyssier (UNIZH) all levels, from the science definition participating institutes will partake to the building of space hardware, the in the science of Euclid, whether for Method development of analysis algorithms, the main science goals or for the very Measurement participation in the data processing rich secondary science that will result and science exploitation. Several from the huge Euclid survey. Developments Swiss institutes are strongly involved Development and construction of the RSU in Euclid: EPFL, FHNW, UNIGE and of the VIS instr. Development of algorithms UNIZH. At the science level, the Past Achievements and Status for photometric redshifts, weak and strong EPFL (strong lensing), UNIGE (theo- lensing. Development of infrastructure and ry) and UNIZH (cosmological simula- The VIS RSU Qualification Model processing software. tions) are co-coordinating the respec- (QM), Flight Model (FM) and Flight tive Science Working Groups. Spare (FS) were manufactured by Industrial Hardware Contract to APCO Technologies, under the lead of APCO Technologies SA On the software and algorithms lev- UNIGE. The FM successfully passed (VIS RSU Phase C/D) el, the EPFL is active in the devel- all acceptance campaign tests and opment of algorithms for the detec- was delivered to Airbus for assembly Website tion of strong gravitational lenses, for on the spacecraft and to commence www.sci.esa.int/euclid which it plays the role of coordinator Swiss Academies Communications, Vol. 15, Nr. 10, 2020 35 ASTROPHYSICS

system level tests (pending the clo- Abbreviations sure of a Non-Conformance Report. NISP Near-Infrared Spectrometer On the ground-segment side, Euclid Photometer instrument is currently undergoing a series of OU-PHZ Photometric-Redshift Organisa scientific challenges with increasing tion Unit complexity and increasing represent- RSU Read-out Shutter Unit ativity of the Euclid processing. The SWG Science Working Group Scientific Challenge 4/5/6 has been VIS VISible imager completed, and served as the basis for the Design Review which took place at the end of last year. The challenges involved all the Euclid science data centres, including the Swiss Science Time-Line From To Data Centre at UNIGE. Planning 2012 2020 (HW)/ Construction 2012 The Infrastructure Abstraction Layer 2020 (SW) developed at FHNW played an essen- Measurement Phase 2022 2028 tial role in the distribution and pro- Data evaluation 2022 2031 cessing of the pipelines. Scientific Challenge 5 included the first version of the photometric pipeline devel- oped by OU-PHZ at UNIGE.

Further developments of the Scien- tific Challenges will include more re- finements of the Euclid pipeline, in particular the photometric-redshift pipeline, and the first version of the strong-lens detection pipeline led by EPFL. These challenges will use more and more realistic end-to-end simulations including mock galaxy catalogues developed by the Cosmo- Sim-SWG led by UNIZH.

Publications

Cropper M, et al. (2016) VIS: The visible imager for Euclid, Proc. SPIE, 9904, Article ID. 99040Q.

Laureijs R, et al. (2011) Euclid Definition Study Report, Euclid Red Book, ESA/SRE(2011)12, eprint arXiv: 1110.3193. The VIS RSU Breadboard Model. Image credit: APCO Technologies SA. Potter D, et al. (2017) PKDGRAV3, Comp. Astrophys. Cosmol. 4: 2, doi:10.1186/ s40668-017-0021-1 ASTROPHYSICS 36 mission science ground segmentandtothe THESEUS missionconcept aftertheConcurrent Design Facility study. Imagecredit: ESACDF. Contribution totheIRTinstrument, tothe Dept. Astronomy, Univ. Geneva (UNIGE) Space Research inSwitzerland 2018–2020 Development andConstruction Swiss PrincipalInvestigator(s) www.isdc.unige.ch/ INAF-IASF, Bologna,Italy Principal Investigator(s) mission project office. Enrico Bozzo(UNIGE) Versoix, Switzerland In cooperation with Co-Investigator(s) S. Paltani (UNIGE) of Instruments Measurement Institute L. Amati L. Website Method HESEUS – The Transient –The HESEUS and Early Sky High Energy Surveyor Universe 5.7 in responsetotheESA5 by alargeinternationalcollaboration is aspacemissionconceptdeveloped Early UniverseSurveyor(THESEUS) The Transient HighEnergySkyand Purpose ofResearch lecting prompt follow-up data in the lecting prompt follow-updatainthe sients andvariable sources,alsocol- tions, alarge number ofX-raytran- and localise,duringregular observa- SEUS willserendipitously detect Besides high-redshiftGRBs, THE- Universe uptothere-ionisation era. resent auniquetooltostudytheearly massive stars.Inparticular, GRBsrep- sociation withtheexplosivedeathof <500 millionyearsold),andtheiras- least toz~10whentheUniversewas redshift (z) distribution (extending at ted asX-raysandgamma-rays,their their hugeluminosities,mostlyemit- for cosmology, especially because of GRBs, areuniqueandpowerfultools The mostcriticalTHESEUStargets,i.e. – – unique capabilitiesofthemissionto: and astrophysics,byexploitingthe tal questionsofmoderncosmology to findanswersmanyfundamen- history. Its drivingsciencegoalsaim nomena overtheentiretyofcosmic space of high energy transient phe- signed tovastlyincreasethediscovery M-class missions. THESEUS is de-

(EM) facilitiesofthenextdecade. well asthelargeelectromagnetic (multi-messenger astrophysics)as wave andneutrinodetectors next generationofgravitational a fundamentalsynergywiththe transient Universe,thusproviding deep monitoringofthesoftX-ray T billion years. (GRB) populationinthefirst unveiling theGamma-RayBurst andre-ionisationera)by the EarlyUniverse(thecosmic Explore thephysicalconditionsof

o performanunprecedented T th call for callfor coordination team over-viewing all University of Geneva, is part of the the Department ofAstronomythe The SwissTHESEUSteam, based at cludes thefollowinginstrumentation: The foreseenpayloadofTHESEUSin- SKA, CTA, JWST, ATHENA). erating intheEMdomain(e.g.,ELT, by thelargefacilitiesthatwillbeop- with transientphenomenaobserved in orbitwillenableastrongsynergy gether witha0.7minfraredtelescope monitoring capabilityinthe2020sto- provision ofahighcadencesoftX-ray escope, andKm3NET. Inaddition,the aLIGO/aVirgo, LISA,theEinsteinTel - by nextgenerationfacilitiessuchas ly detectedinthelate’20s/early’30s and neutrinoswhichwillberoutine- to sources of gravitational radiation tify theelectromagneticcounterparts SEUS willbeabletolocateandiden- ty carriedoutathighcadence.THE- of extraordinarygraspandsensitivi- ploiting an all-sky X-ray monitoring as it occurs in real-time, and byex- ties, byrevealingtheviolentUniverse wealth of unique science opportuni- IR. Theseobservationswillprovidea – – –

unprecedented broadenergyband. arcmin in2-150keVandan source locationaccuracyof~10 tor, allowingupto4srFOV, a coupled withaCsIcrystalscintilla- based onbarsofsilicondiodes monolithic X-gammaraydetectors of 2coded-maskcamerasusing meter (XGIS,2keV-20MeV):aset The X-GammarayImagingSpectro spectroscopic capabilities. response, withbothimagingand with 15×15arcminFOV, forfast 1.8 μm):a0.7mclassIRtelescope The InfraRedT accuracy <1-2arcmin. FOV of~1srwithsourcelocation telescope units,coveringatotal keV): asetof2lobster The SoftX-rayImager(SXI,0.3-5 elescope (IRT, 0.7- -eye - high-resolution spectroscopy (red band)orlow-resolution spectrophotometry (green) band. on theGRBpopulation models)injust3yrs of operation,for redshifts obtained eitherfrom predecessor in10yrs (blueline)andtheprediction for THESEUS(including uncertainties Cumulative distribution ofGRBsasafunctiontheredshift asobtainedby theTHESEUS ment design. nation ofthemissionground-seg- mounted intheIRTandcoordi- of thecryofilter-wheel mechanism Swiss team cover the development site. Theotherresponsibilitiesofthe project officeandthemissionweb- Geneva ishostingpartofthemission around THESEUS.TheUniversityof engineering andscientificactivities Time-Line Planning -1 Data evaluation Jan Measurement Phase Construction N (>z) [yr ] 1000.0

GRB 100.0 10.0 1.0 0.1 13.46 0 1.51 Oct Jul From 022040 2032 . . 21 Jun 2018 . 23 Jan 2032 2021 5 Age oftheUniverse [Gyr] 2031 . . To 0.62 2035 2021 Redshift 10 jective tobemetwithalargemargin. tion, allowingitsplannedscienceob- achieved asolidbaselineconfigura- been raisedand the missionhas so far the projectoffice.Nocriticalityhas the coordinationofSwissteamand by the THESEUS teams to ESA under tation fortheMCRhasbeendelivered April 2020. All requested documen- Review (MCR),tobecompletedby ond review, theMissionConsolidation 2018 anditisnowundergoingasec- Formulation ReviewinDecember pleted itsphase0withtheMission THESEUS hassofarsuccessfullycom- implemented andlaunchedin2032. the MissionSelectionReview)tobe lection ofasinglemission(during ed inmid-2021,withthedown-se- a competitive phase A to be conclud- sion candidatescurrentlyundergoing THESEUS isoneofthethreeM5mis- Past Achievements andStatus 0.36 15 0.24 20 0.17 Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 XGIS THESEUS SXI IRT Abbreviations Stratta G,etal Amati L etal Amati L, Publications 20 17, arXiv:1802

, etal

. . (2018) Adv T Soft X InfraR Spectr X Early Univ . (2017) TheTHESEUSWorkshop (2018) Adv ransient HighEnergySkyand -Gamma rayImaging . 01673 -ray Imager ed Telescope ometer . erse Surveyor . . Space Res Space Res . . . 62:662 62:191

. . 37

ASTROPHYSICS ASTROPHYSICS 38 Development &construction ofinstruments commissioning oftheMedium Resolution Cryogenic Mechanisms andCryoharness. Space Research inSwitzerland 2018–2020 Calibration, pipelinedevelopment and M. Güdel(Univ. Vienna/ETHZurich) The JamesWebb Space Telescope. SYDERAL SWISSSA,Switzerland Industrial Hardware Contractto Swiss PrincipalInvestigator(s) Image credit: ChrisGunn/NASA. Spectrometer (MRS)ofMIRI MIRI European Consortium RUAG Space, Switzerland Principal Investigator(s) A. Glauser(ETHZurich) In cooperation with www.jwst..gov S. Lilly(ETHZurich) ETH Zurich, G. Wright (UKATC) Co-Investigator(s) Measurement Switzerland Institute Website Method NASA ESA the Swiss project was moved to ETH the Swissproject wasmovedtoETH delivered in2008. Afterthedelivery, hardware was successfully testedand mum thermalconductivity. Theflight ment thatwasoptimisedfor mini- non-isothermal cablingofthe instru- mechanism operatingat7K andthe contribution consistsofacryogenic SYDERAL SWISSSA.Thehardware dustrial partners,RUAGSpaceand Institute incollaborationwiththe- was developedatthePaulScherrer The Swisshardwarecontribution Past Achievements andStatus for originsoflife. and provideindicatorsforthesearch processes instarandplanetformation ent. Inaddition,itwillstudycomplex z>10 andtheirevolutionuntilpres- observe theveryfirstgalaxiesseenat ing first lightobjects.Itwill detect and “Dark Ages”oftheuniversebydetect- erful forthestudyofend The JWSTwillbeexceptionallypow- copy. mid-resolution integralfieldspectros- slit low-resolutionspectroscopyand vides imaging,coronagraphy, long- between 5and28μm.MIRIpro- operating in the mid-infrared range of theJamesWebb SpaceTelescope ment (MIRI)istheonlyinstrument capabilities. TheMid-InfraredInstru- providing alargesetofobservational clude camerasandspectrographs, μm. Thefourscienceinstrumentsin- wavelength rangebetween0.6and28 vide unprecedentedsensitivityforthe very largesun-shieldinordertopro- will passivelycoolto50Kbehinda 6.5m deployableprimarymirrorthat Hubble SpaceTelescope. JWSThasa scope andthesuccessoroffamous (JWST) willbethenextbigspacetele- The JamesWebb SpaceTelescope Purpose ofResearch James for the WebbIRI –Mid-Infrared Instrument TelescopeSpace 5.8

M 2021. Guyana isplannedforend2020/early of writing,andshipmenttoFrench tests havebeenconductedatthetime sunshield and the space bus. The last the telescopewascombinedwith JWST isnowfullyassembledafter est cryogenicfacility. in summer 2017 using the worlds larg- ed attheNASAJohnsonSpaceCenter tical telescopeandcryogenicallytest- ISIM wasthencombinedwiththeop- Module (ISIM)atNASAGoddard. of theIntegratedScienceInstruments and 2015 as part of the development paigns were conducted between 2013 2012. Thereafter, 3 cryogenic test cam- then formallydeliveredtoNASAin ly testedin2011.Theinstrumentwas MIRI wasintegratedandcryogenical- of therequiredpost-deliverysupport. Zurich toguaranteethecontinuation MIRI ISIM Abbreviations Telescope, I-X,PASP, 129, 953(Spec Instrument for theJamesWebb Space Wright GS, etal 7018: 70184L of theJamesWebb Space Telescope, SPIE c Glauser AM,etal Publications Time-Line Construction Planning Data evaluation Measurement Phase ontrol cover for theMidInfrared Instrument

.

Mid-Infrar M Integrated Scienc odule . (2015) TheMid-Infrared . (2008)Acontamination ed Instrument From 062021 2006 012021 2001 012031 2031 2021 2021 e Instruments . Issue) To .

for thefocalplaneunit. ule thermal/mechanical suspensions grating modulesandthe mod- ing structuresfortwoofthe SAFARI ware. UNIGEwillalsobuildthe hous- and maintainthedatareductionsoft- ment health,conductflightcalibration software. TheICCsmonitortheinstru- develop the relevant data reduction maintain instrumentcommandsand str. ControlCenter(ICC).TheICCswill ment andoperationsoftheSAFARI In- tory. UNIGEaimstoleadthedevelop- it isdesignedtooperateasanobserva- driven bythesetop-levelsciencegoals, While theSPICApayloadisprimarily – – – main goalsofSPICAare: tude deeperthanHerschel. The three sigma/1hr), abouttwoordersofmagni- a highsensitivityof2-15E-20Wm provide spectroscopiccapabilitiesat and R≈ troscopy atR≈ at R≈ that willprovideimagingspectroscopy µ aging polarimeterat110,220,and350 230 SAFARI, an infrared spectrometer (34- spectroscopic depths.SPICAwillcarry and widesurveystounprecedented 350 μmrange,capableofmakingdeep scope (below8K).Itwillcoverthe10- ry witha2.5-m,activelycooledtele- SPICA isaninfraredspaceobservato- Purpose ofResearch in Infrared Swiss the –The Participation PICA Observatory 5.9

m, and SMI, a Japanese instrument, m, andSMI,aJapaneseinstrument, evolution of planetary systems. evolution ofplanetarysystems. forming regionsintheMilkyWay. hence themagneticfield,ofstar far-infrared polarisation,and holes overtime. evolution ofgalaxiesandblack that governtheformationand T T T o understand the formation and o understandtheformationand o resolveforthefirsttime

o revealthephysicalprocesses µ m) at R≈ 100 andfull-bandslit-fedspec- 29,000 (9.6-18 S 250-11000, B-BOP, an im- 100-2,000 (17-36 µ m). SPICA will m). SPICAwill µ -2 m), m), (5 (5 decided inJanuary2020. the newSPICAverticalconfiguration sign, inparticulartakingintoaccount consolidation oftheinstrumentde- tion. Work in2020willfocusonthe termediate stepbeforethefinalselec- Mission ConsolidationReview, anin- provided attheendofMarchfor module documentsandstudywere quency, material).TheICCandgrating team (e.g.,size,mass,resonancefre- quirements setbytheSAFARI system module housingstructuretofitthere- UNIGE isalsodesigningthegrating organisation andmanagementplan. dition, theSAFARI ICCdeliveredits Review planned in April 2021. In ad- be deliveredfortheMissionSelection Operations AssumptionDocumentto from theSAFARI ICCtotheScience is inchargeofprovidingtheinput institute fortheSAFARI ICC,UNIGE delivered duringoperations.Aslead transmitted, received,processedand group thatdefinesthewaydatawillbe Science GroundSegmentworking role. UNIGEparticipatesintheSPICA will assumeapartnerSpaceAgency with a foreseen launch in 2032. JAXA was selectedinMay2018forPhaseA mission underCosmicVision M5.It SPICA wasproposedasanESA-led Past Achievements andStatus R 91431K, 1 R 105631K 8pp Jellema W, etal Publications Measurement Phase Construction Time-Line Planning oelfsema PR,etal oelfsema PR,etal 1pp . . . (2017) Proc . . (2018) PASA 35:30 (2014) Proc From 042032 2024 022035 2032 092023 2019 . SPIE10563:id . SPIE9143:id . To .

.

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 suspensions. magnetic shieldingandthethermo-mechanical SAFARI gratingmodulehousingwiththe www.-mission.org Website Grating Module housing. The SAFARI InstrumentControl Centerand Development ofsoftware andhardware for Measurement Method Genolet,S.PaltaniM. Audard,(UNIGE) L. Co-Investigator(s) D. Schaerer (UNIGE) Swiss PrincipalInvestigator(s) P. Roelfsema (SRON) Principal Investigator(s) SPICA Consortium Japan Inst. Space &Astronautical Sci.(ISAS) Netherlands Netherlands Inst.Space Res. (SRON), In cooperation with Versoix, Switzerland Dept. Astronomy, Univ. Geneva (UNIGE) Institute 39

ASTROPHYSICS ASTROPHYSICS 40 Composite Design Sàrl,Hauterive, Switzerland Dépt. Phys. Nucl. École Poly. Fédérale deLausanne(EPFL), Inst. CosmosSci.Univ. Barcelona (ICCUB) Space Research inSwitzerland 2018–2020 Exploded view oftheFiberTracker (FIT) Hybrid SA,Chez-le-Bart, Switzerland Istit. Naz.diFisicaNucleare (INFN), Industrial hardware contract(s) to Inst. HighEnergyPhys. (IHEP), Swiss PrincipalInvestigator(s) ­Corp. (DPNC),Univ Principal Investigator(s) Lausanne, Switzerland for theHERDmission. Geneva, Switzerland In cooperation with S-N. Zhang(IHEP) Barcelona, Spain Measurement Beijing, China X. Wu (DPNC) Perugia, Italy . Geneva, Institute Method crystal cubes (3x3x3 cm tium-yttrium oxyorthosilicate(LYSO) tral calorimeter, madeof~7500lute- The HERDdetectorconsistsofacen- of discoveryingamma-rayastronomy. verter, thusopeningupanewwindow multiple trackinglayerswithoutacon- precedented angularresolutionusing GeV gamma-rayobservatorywithun- cost-effective implementationofasub- the proposedtrackerlayoutprovidesa er field-of-viewofHERD.Inaddition, and robustsolutiontocoverthelarg- posed bythegroupprovidesaflexible The FiberTracker (FIT)conceptpro- such technologywillbeusedinspace. tomultipliers. Thisisthefirsttimethat ers, read out byarraysof silicon pho- area trackermadeofscintillatingfib- In particular, it is developing a large ment ofthetrackingdetectorforHERD. The DPNC’s focusisonthedevelop- anti-coincidence andchargedetectors. five sidesbyhighprecisiontrackers, by the Chinese Manned Space Agency by theChinese MannedSpaceAgency proposal toareview jointlyorganised 2018, theJWT submittedtheHERD coordinate PhaseAstudies. In April and Germanywassetupin 2017to from China,Italy, Switzerland,Spain representing more than 10 institutes A HERDJointWorking Team (JWT) Past Achievements andStatus cal factorof~3m six surfaces,allowingalargegeometri- HERD isthatitsensitiveonfiveofits astronomy. The unique feature of Dark Mattersearchesandgamma-ray cosmic raydetectionuptoafewPeV, ence goalsofHERDareprecisedirect launched around2025.Themainsci- in 2020-2022. HERD is expected to be tion (CSS),whichwillbeconstructed iment onboardtheChinaSpaceSta- HERD isaflagshipscientificexper Purpose ofResearch Facility Radiation Detection ERD –High Energy 5.10

H 2 sr tobereached. 3 ), covered on ), covered on - Eng Zhang S,etal pos Perrina C,etal Perrina C,etal Publications for SwitzerlandintheHERDmission. detector, ensuring a leading position the onlytrackerbaselineofHERD adopted thefibertrackertechnologyas Dec. 2019,theHERDcollaboration ment oftheHERDparticletracker. In mance, compatiblewiththerequire- FIT detectorshaveaverygoodperfor particle beamsatCERNshowthatthe tor havebeensolved.Test resultswith nical aspectstobuildaFITdemonstra- is being designed by ICCUB. All tech- tion-Specific IntegratedCircuit(ASIC) side. Thefront-endreadoutApplica- on the top, and 9 doublelayers on the out has5double(X-Y)trackinglayers a shortone(70cm).Thebaselinelay- are needed:a long one(100cm), and tomultiplier arrays.Two typesofmat read outby3MPPC-128siliconpho- ers thickand97.83mmwide,each FIT ismadeoffibermats,6-fiberlay- project iscurrentlyinitsfinalphase. in theESAPRODEXprogramme.The cially bytheSwissSpaceOfficewith- (HERD FIT)”in2018,supportedfinan- the HERDScintillatingFiberTracker project “DesignandDevelopmentof The DPNCgroupstartedthePhaseB tional reviewcommitteeinMay2018. ment ofthemissionbyaninterna- (ASI), whichresultedinafullendorse- (CMSA) andtheItalianSpaceAgency Planning Time-Line Data Evaluation Measurement Phase Construction . . sissa 9144:91440X . it/358/122/ . (2014) Proc . . (2019) Proc (2018) Proc . . SPIEInt From 05>2035 2035 2025 2025 . . 012025 2021 022020 2012 ICRC2019, https:// Phys . 212:12-16 . Soc . To Opt . .

- several important results,including Perseus galaxy clusterresultedin ment. Asingle observationofthe to itsnew-generationSXS instru- mi wasincrediblysuccessful thanks Despite itsextremelyshortlife, Hito- Past Achievements and Status the filterwheel. by SRON and isassembled on top of X-ray calibrationsourcesprovided also supportsandcommandsactive detector frommicro-meteorites.It on thedetector, andtoprotectthe X-ray countrateortheopticalload science observations by reducing the of thefilterwheelistooptimise and high throughput. The purpose gy range,withimagingcapabilities (about 5eV)inthe0.3-10keVener ing outstandingenergyresolution lometer workingat50mK,provid- Resolve uses a cryogenicsilicon bo- of arebuildthissub-system. Swiss contributiontoXRISMconsists Soft X-raySpectrometer(SXS).The by developingafilterwheelforthe Dutch spaceresearchinstitute,SRON, pated intheHitomimissionwith energetic Universe.UNIGEpartici- dedicated to the studyof the hotand ATHENA, ESA’s futureLargeMission rent generationoftelescopesand X-ray astrophysics,betweenthecur Hitomi wasanessentialmissionfor in operation. experienced afailureaftersixweeks launched on 17 February2016,but omi missionwhichwassuccessfully tious scientificobjectivesoftheHit- planned torecoverthemostambi- Exploration Agency(JAXA),andis is amissionoftheJapanAerospace Mission (XRISM,formerlyXARM) The X-RayImagingSpectroscopy Purpose ofResearch X-Ray Swiss the –The RISM to Contribution Imaging Mission Spectroscopy 5.11

X - - SXS FWM FWE Abbreviations in thePerseus , Nature 551:478 abundance ratiosoftheiron-peak elements The HitomiCollaboration(20 Perseus cluster,Nature 535:117 intracluster mediuminthecore ofthe The HitomiCollaboration(20 9905, id (Hitomi) X Takahashi T, etal Publications been deliveredtoSRONandJAXA. completed, andthesub-systemshave The programhasbeensuccessfully respectively. AL SWISSSAandRUAGSpaceAG, was performed by industry, SYDER- Resolve instrumentonboardXRISM FWE andFWMsub-systems for the refereed journals.Therebuildofthe pers havebeenpublishedinother In addition, more than ten other pa- energy calibrationoftheSXS. sufficient level of knowledge of the the filterwheelinordertoreacha results necessitated the operation of the origin of metalsin this gas.These tion intheintra-clustergas,andto rect measurementofturbulentmo- the journalNaturerelatedtodi- two majordiscoveriespublishedin Time-Line Data evaluation Measurement Phase Construction Planning

. 99050U -ray astronomy satellite,Proc Soft X Filter WheelM Filter WheelElectr . . (2016) TheASTRO-H -ray Spectrometer From 082019 2018 012031 2026 2021 2021 072017 2017 echanism 17) Solar 16) Thequiescent . onics . To . SPIE, Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 Image credit: JAXA. 3D rendering oftheXRISMspacecraft. www.astro.unige.ch/xrism Website and filterwheelelectronics. Manufacturer ofthefilterwheelmechanism Development &construction ofinstruments Measurement Method S. Paltani (UNIGE) Swiss PrincipalInvestigator(s) (JAXA) Japan Aerospace ExplorationAgency Principal Investigator(s) (ESA) European Space Agency (SRON) Netherlands Institutefor Space Research In cooperation with Versoix, Switzerland Dept. Astronomy, Univ. Geneva (UNIGE) Institute 41

ASTROPHYSICS ASTROPHYSICS 42 Geneva, Switzerland •Dept.Astronomy, Univ. nics, LADdetectors, ASICs,front-end electro- Dépt. Phys. Nucl. Development &construction ofinstruments Artist's impression ofeXTP. Imagecredit: IHEP. Development oftheLADfront-end electro- nics assembly, contribution tothemission Space Research inSwitzerland 2018–2020 Geneva (UNIGE),Versoix, Switzerland Inst. HighEnergyPhys. (IHEP), Swiss PrincipalInvestigator(s) ­Corp. (DPNC),Univ science ground segment. Stephane Paltani (UNIGE) Principal Investigator(s) www.isdc.unige.ch/extp Enrico Bozzo(UNIGE) In cooperation with Co-Investigator(s) S-N. Zhang(IHEP) Measurement Beijing, China X. Wu (DPNC) . Geneva, Institute Website Method – Key elementsofthepayloadare: - 30keVenergyrange(andbeyond). try studies of cosmicsourcesin the 0.5 multaneous spectral-timing polarime- enabling, forthefirsttimeever, thesi- state-of-the-art scientific instruments a uniqueandunprecedentedsuiteof sive blackholes.Themissioncarries tars, andstellar-mass andsupermas- magnetic fieldsystemssuchasmagne- lated andbinaryneutronstars,strong netism. Primarytargetsincludeiso- conditions ofdensity, gravityandmag- study thestateofmatterunderextreme eXTP isasciencemissiondesignedto Purpose ofResearch Enhanced –The X-RayXTP Timing and Polarimetry Mission 5.12 – – Science Program oftheChineseAcad- missions inthe StrategicPrioritySpace ed asoneofthe so-calledbackground concept, hasbeenselectedand fund- decessor ofeXTP, theXTPmission tries andtheUnitedStates. The pre- from China, several European coun- includes majorresearchinstitutions The eXTPinternationalconsortium –

about 0.9m optics foratotaleffectiveareaof Array (SF The SpectroscopicFocussing (PF The PolarimetryFocussingArray 250 cm copes, withatotaleffectiveareaof <250 eV. 6-10 keV, andspectralresolution a totaleffectiveareaof~3.4m deployable setof640SDDs,with The LargeAreaDetector(LAD):a resolution. (SDDs) offering<180eVspectral with SiliconDriftDetectors and 6keV, respectively, equipped a 90°xfield-of-view. on-sensitive SDDs,eachcovering units, equippedwithpositi- set ofthreecodedmaskwide-field polarimeters. imaging gaspixelphotoelectric The W

A): asetoftwoX-rayteles- e ide-Field Monitor(WFM):a 2 at2keV, equippedwith A): asetof11X-ray 2 and0.6m 2 at2keV 2 , at Astr Zhang S,etal Publications ed in2027. entering phase B. The launch is expect- passed thisreviewinlate2019before organised byESA,andsuccessfully reviewed byacommissionofexperts load elementdevelopmenthasbeen fixed. ThestatusoftheEuropeanpay- elements andthespacecrafthavebeen portant interfacesbetweenthepayload since the start of2020.Themost im- ing phaseB,bothinChinaandEurope, The eXTPmissionhasbeenundergo- Past Achievements andStatus ground segmentofthemission. is involvedinthedesignofscience Circuits (ASIC).TheDept.Astronomy the Application-SpecificIntegrated electronics withtheSDDdetectorsand assembly definitionofthefront-end instrument, togetherwiththechainof the front-endelectronicsforLAD va. TheDPNCisleadingthedesignof departments oftheUniversityGene- entists fromtheDPNCandAstronomy The SwisseXTPteamcomprisessci- instruments. of eXTPbyaddingtheLADandWFM ly enhancedthescientificcapabilities European participationhassignificant- emy ofSciencessince2011.Thestrong aaEauto Jan Jan Data Evaluation Measurement Phase Construction Planning Time-Line on . 62:29502 . (2019) Sci . . ChinaPhys Jan Jan From . . . . 22 Dec 2022 22 Dec 2027 Dec 2027 21 Dec 2017 . , Mech . To . . . 2026 2035 2031 2021 .

tem permanentlydeployedin space. space weatheradvancewarningsys- commercial spacecrafts,oraspartofa es andfordeepspaceexploration ard devicefordeepspacehumanbas- developed, PAN can become astand- risk forhumanspacetravellers.Once ing andlong-termradiationhealth ing real-timeradiationhazardwarn- cisely andcontinuously, thusprovid- and compositionoftheseparticlespre- effectively. PAN canmonitortheflux etrating particlescannotbeshielded based. As indicated by the name, pen- which arebothspaceandground- senger approach,usingobservations a multi-wavelengthandmulti-mes- predictive spaceweathermodelsin in particular to thedevelopmentof tribution tospaceweatherstudies, trating particlesisalsoauniquecon- The precisemeasurementofpene- an intensivefluxofenergeticparticles. ities, inparticularthosethatproduce ing the physical process of solar activ- the Sun, which isessentialfor study- of energeticparticlesoriginatingfrom the spectrum,compositionandtiming It willprovidepreciseinformationof through theGalaxyandSolarsystem. origin ofGCRsandtheirpropagation to improveourunderstandingofthe the 100MeV/n-GeV/nregion,helping gap of galactic cosmic rays (GCRs) in cations. PAN willfillanobservation space, whichwillhavebroadappli- ticles (>~100MeV/nucleon)indeep composition ofhighlypenetratingpar ly measureandmonitortheflux cle detection technology to precise- PAN isaninnovativeenergeticparti- Purpose ofResearch Analyser Particle –Penetrating AN 5.13 only viable detection technique is with only viabledetection techniqueiswith MeV/n arehighly penetrating,thusthe Particles with energiesabove100 Past Achievements and Status

P - Wu X,etal Publications (P – – – – gia, theCzechTech. Univ. andCERN. sortium consistsofDPNC,INFNPeru- in threeyears(2020-2022).Thecon to developademonstrator(Mini.PAN) the EU H2020 FETOPEN programme nar Gateway. Currently, itisfundedby NASA scienceworkshopsfortheLu- PAN waspresented atboththeESAand several advancedtechnologies: PAN projectaddressesthisvisionwith able forlong-distancemissions.The posing amodularspectrometersuit- deep space radiation monitoring,pro- to fillthecurrentobservationalgapin a magneticspectrometer. PAN aims Planning Time-Line Construction

AN), Adv Fast T High-rate detectiontechnology Low massmagneticspectrometer µ Fine pitch(25 timing andchargemeasurements. photomultiplier readout,forboth on plasticscintillatorwithsilicon solar eventstobemeasured. particles duringeventhestrongest detectors, allowingenergetic using low-powerhybridactivepixel GeV/n rangeindeepspace. particles inthe100MeV/n-5 energy resolutionforenergetic detectors toreachunprecedented the aforementionedthinsilicon instrumented withatrackerusing position resolutionof2 by lownoiseASICs,toreacha m) silicon strip detectors read-out m) siliconstripdetectorsread-out . Space Res . ime-Of-Flight detector based ime-Of-Flight detectorbased Penetrating particle Analyzer (2019) PenetratingparticleAnalyzer . 63:2672-2682 µ m) and thin (150 m) andthin(150 From 002022 2020 082019 2018 µ m. .

To

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 Sketch oftheMini.PAN instrument. www.pan-space.eu Website Measurement Method Xin Wu (DPNC) Principal/Swiss Investigator(s) CERN, Switzerland Prague, CzechRepublic Czech Technical Univ. ofPrague, Perugia, Italy Istit. Naz.diFisicaNucleare (INFN), In cooperation with Geneva, Switzerland Dépt. Phys. Nucl. Institute Corp. (DPNC),Univ ­ . Geneva, 43

ASTROPHYSICS ASTROPHYSICS 44 MEMS mechanismtogetherwiththesupporting silicon structures thatallow theinnermirror to Development &construction ofinstruments quickly tiltby largeangles.Phototaken during Contribution totheAtmosphericMonitoring M. I.Panasyuk (Skobeltsyn Inst.Nucl.Phys.) System tothemissionscience ground seg- ment, andtothemissionproject office. Dept. Astronomy, Univ. Geneva (UNIGE), Space Research inSwitzerland 2018–2020 the MEMSmirror assemblyatCSEM. Industrial hardware contract(s) to Skobeltsyn Inst.NuclearPhysics, Swiss PrincipalInvestigator(s) www.isdc.unige.ch/jemeuso Principal Investigator(s) Versoix, Switzerland THALES Switzerland In cooperation with A. Neronov (UNIGE) Image credit: CSEM. Co-Investigator(s) E. Bozzo(UNIGE) Moscow, Russia Measurement Institute Website Method tion (LIC) and Laser Induced Damage tion (LIC)and Laser InducedDamage against the Laser Induced Contamina- and testedto verify itscompliance of themechanismhasbeen vibrated in phaseC/D.Atpresent,the core part toward a full space-qualifiable design ponents, withtheideaofprogressing ing realisedwithcommercial com- capabilities. The bread-board is be- against functionalandperformance by theendof2020thatcanbetested working versionoftheconceptdesign The goalofphaseB2istoproducea laser andallthecontrolelectronics. ical envelopehostingafunctional mirror systemincludingamechan- to produceabread-boardofthetilting by CSEMandTHALESSwitzerland in 2019,whenacontractwassigned tem inSwitzerlandenteredphaseB2 Development oftheEUSOlidarsys- veloped underSwissleadership. cated LaserPointingSystem(LPS)de- scope. This will bedoneusingadedi- wide field-of-viewoftheK-EUSOtele- ties ofcloudsanywherewithina40° tion andopticaltransmissionproper ity toprovidea3Dpictureofdistribu- novelty ofthelidarwillbeitscapabil- dar andinfraredcamera(IRCAM).The system whichwillincludeanovelli- a dedicatedatmosphericmonitoring ed. Such calibration will be done with detector whichwillneedtobecalibrat- phere asagianthigh-energyparticle K-EUSO willusetheEarth’s atmos- short time-scales.ofmicroseconds. mosphere, whiuchdevelopoververy cosmic rays(UHECR)intheEarth’s at- showers initiatedbyultra-high-energy orescent tracesofhigh-energyparticle the ISS.Thetelescopewillimageflu- telescope ontheRussiansegmentof wide field-of-view, nadir-looking UV ject toinstallalarge,2.5maperture, Space Observatory(K-EUSO),isapro- The KLPVE,theExtremeUniverse Purpose ofResearch (K–EUSO) Universe Space Observatory –Extreme LPVE 5.14

K - launched in2022-2023byNASA. EUSO telescope,EUSO-SPB2,tobe super-pressure, balloonversionofthe projects) ispreparingahigh-altitude tions oncollaborationinRussian-led SO collaboration(whichhasrestric- opment, theUSpartofJEM-EU- onboard theISS.Inaparalleldevel- tember 2019andiscurrentlyoperating SO, wassuccessfullylaunchedinSep- 2024. Aprototypetelescope,Mini-EU- with aforeseenlaunchdateof2023- and spaceexperimentsontheISS, grammes ofappliedscientificresearch the RussianLong-termandStagepro- operations. Theprojectisincludedin ergia company, responsiblefortheISS the RussianSpaceAgency, andtheEn- State Univ. (SINPMSU),, syn Inst.NuclearPhysics,Moscow EUSO, JEM-EUSO)ledbytheSkobelt- tions (JointExperimentsandMissions an internationalconsortiumofinstitu- The missionhasbeendevelopedby Past Achievements andStatus out inlate2020. mance testsoftheunitwillbecarried duced, anditisexpectedthatperfor boards havebeendesignedandpro- (LID) issues. The control electronics An introduction, Exp Adams J,etal Exp Adams J,etal Publications monitoring sy Time-Line Measurement Phase Construction Planning Data evaluation . Astron . 2015: 40,45 . . (2015) TheJEM-EUSOmission: (2015) Theatmospheric stem ofJEM-EUSOinstrument, . Astron . From 042028 2024 042030 2024 002020 2010 012023 2021 . 2015: 40,3 . To - deg unprecedented field-of-viewof2200 stars todetectEarth-likeplanetsinan stability ofthephotometricsignal a totalof26cameras,willanalysethe PLATO payload, whichencompasses planned forDecember2026.The PLATO mission beganwithalaunch 2017, thedevelopmentofESA’s After successfuladoptioninJune Past Achievements andStatus able zoneoftheirhoststars. stages, includingplanetsinthehabit- compositions, andevolutionaryages/ planets withknownmeandensities, alogue ofconfirmedandcharacterised age. PLATO will assemblethefirstcat- of theplanethoststar, includingits enabling theprecisecharacterisation to investigateseismicactivityinstars, stars. PLATO hasalsobeendesigned in thehabitablezonearoundsolar-like on thepropertiesofterrestrialplanets solar planetary systems, with emphasis find andstudyalargenumberofextra- Vision programme.Itsobjectiveisto dium-class mission in ESA’s Cosmic tions ofstars(PLATO) isthethirdme- The PLAnetaryTransits andOscilla- Purpose ofResearch Telescope the Mechanical of –The LATO Structure Unit Optical 5.15 stability. Theengineeringofthe tele- ronment with a budgetofmicrometer standing thelaunchandspace envi- mounts, whicharecapable of with- signing astablestructureand optical in PLATO ismainlydevotedtode- mance. Theinvolvementof UNIBE ing structuralthermo-opticalperfor ty oftheobservationwithoutstand- well askeyelementsforthestabili- and opticalmountingstructure,as and manufacturingofthetelescope UNIBE isresponsibleforthedesign bility isakeytechnicalchallenge. The requirementofphotometricsta- 2 .

P - Experimental Astronomy 38:249 Rauer H(2014) ThePlato2.0mission, Publications – – – – Major milestonesinclude: (TOU) isbeingconstructedatUNIBE. era model,theTelescope OpticalUnit validation campaignoftheSTMcam- PLATO camera system.Aspartofthe and performancequalificationofthe the mechanical,thermal,functional ing completion. They will be used for and EMbeganinparallelisnear ed in2019.ProductionoftheSTM type) werebuiltandsuccessfullytest- concept models(breadboardproto- Swiss andGermanindustries.Three a clusterofselectedpartnersfromthe manufacturing wassubcontractedto were realisedatUNIBEwhilethe nition ofthetelescopestructuralparts The conceptdesignanddetaileddefi- fully qualifiedinFebruary2020. scope’s opto-mechanicalgroupswere Data evaluation Phase Measurement Planning osrcin22 2025 2020 Construction ieLn From Time-Line

CAM STM/EM close-out, DMBBT Q1/Q2 2020:TOUS/SPDRs Manufacturing DMBB (DevelopmentBreadboard) Q1/Q2 2019:TOUS/SPDRs, PDR, S/CSRR Q3/Q4 2018:PayloadandS/S gineering, SystemSRR Q1/Q2 2018:SC/PayloadCo-En Jan Jan Jan . . . 2027 2027 2017 est Campaigns, L2 Nom (+2yr extension) Dec Dec . . open 2030/32 . . To operation 2030 - - Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 the responsibility ofUNIBE. PLATO telescope, designedandproduced under cess Model), oneofthestructuralparts From concept toreality: TheTOU tube(inpro- Rigo GmbH&Co. KG,Germany MECHA AG, EMPA, ColliniAG, Switzerland Industrial Hardware Contractto PLATO Telescope OpticalUnit(TOU) Structure Development &construction ofinstruments Measurement Method W. Benz(UNIBE) Swiss PrincipalInvestigator(s) Berlin, Germany H. Rauer, DLRBerlin, Principal Investigator(s) Bern, Switzerland Div. Space &Planetology, Univ. Bern(UNIBE), Institute 45

ASTROPHYSICS ASTROPHYSICS 46 Dépt. Phys. Nucl. Development &construction ofinstruments Nuclear Research Instituteof Poland(NCBJ), Max PlanckInst.Extraterr. Physics (MPE), POLAR andwillstudythepolarisation of www.unige.ch/dpnc/index.php?cID=888 Space Research inSwitzerland 2018–2020 POLAR-2 willbemore sensitive than transient events ingamma-rays. Sketch ofthePOLAR-2 instrument. Inst. HighEnergyPhysics (IHEP), Principal/Swiss Investigator(s) ­Corp. (DPNC),Univ Geneva, Switzerland In cooperation with Co-Investigator(s) N. Produit (DPNC) Warsaw, Poland Xin Wu (DPNC) M. Kole (DPNC) Measurement Beijing, China . Geneva, Germany Institute Website Method trophysics and willbecapableofis- important role inmulti-messengeras- weak GRBs.It willthereforeplayan POLAR-2 willbecapableofdetecting sitive instrumentinitsenergy range, eration. Furthermore,asthemost sen- measurements duringtwoyears ofop- of GRBs by performing polarisation mental questionsregarding the origin LAR-2 will answer several funda- es inthefield.ItisforeseenthatPO- capabilities basedonrecentadvanc- LAR-2 instrumentwiththerequired trial Physics(MPE),proposedthePO- Max Planck Institute for Extraterres- laboration andnewmembersfromthe leading membersofthePOLARcol- by theDPNCgroupandconsistingof An internationalcollaboration,led as welldetectingveryweakGRBs. precision polarisation measurements imeter capableofbothprovidinghigh warrant ahighprecisionGRBpolar with thediscoveriesmadebyPOLAR major advanceinthefieldtogether senger astrophysicshasstarted.This tion toGRBs,anewerainmulti-mes- gravitational waves and their connec- thermore, withtherecentdiscoveryof cision arerequiredinthefuture.Fur ments withasignificantlybetterpre- These resultsindicatethatmeasure- tion of the polarisation during a GRB. unexpected complexity in the evolu- overall low polarisation as well as an tronomy journal,whichindicatean cently publishedintheNatureAs- The firstresultsofPOLARwerere- ing theirorigin. swer fundamentalquestionsregard- ma-Ray Bursts(GRB)inordertoan- polarisation measurementsofGam- LAR wastoperformthemostdetailed Tiangong-2 Spacelab.Theaim of PO- collected dataduring6monthsonthe the successfulPOLARprojectwhich The POLAR-2projectisafollow-upof Purpose ofResearch Follow-up –The POLAR to OLAR-2 5.16

P - - Astronomy 3(3):258-264 Cosmic R Zhang SN,K to theCSSin2024. rent plan,POLAR-2willbelaunched ject isprogressingrapidly. Inthecur ESA PRODEX programme. The pro- by theSwissSpaceOfficethrough payload developmentissupported Swiss contributiontothePOLAR-2 lected inJuneforimplementation.The Space Agency(CMSA),andwasse- fairs (UNOOSA)andChina’s Manned by theUNOfficeforOuterSpaceAf- the ChinaSpaceStation(CSS)issued for theCallExperimentsonboard instrument wassubmittedin2018 A proposalregardingthePOLAR-2 Past Achievements andStatus UNOOSA GRB CSS CMSA Abbreviations K Astr Burgess JM,Kole M,etal Publications other instruments. tific potentialofbothPOLAR-2and ments, therebyincreasingthescien- for transienteventstootherinstru- suing alertswithpositioninformation Planning Time-Line Construction Measurement Phase Data Evaluation ole M,etal

ophysics 627:A105

ay Conf ole M,etal . (2019) Conf UN Offic Gamma-R Chinese Spac China . (IRC2019) ‘s Manned Space Agency e for OuterSpace Affairs . . (2019) Nature ay Bursts . Proc, 36 . (2019) Astronomy & . From 002024 2020 04>2026 2024 04>2026 2024 082019 2018 e Station . th Intl .

To - our placeinthisvastCosmos. vide uswithanewperspectiveon century astrophysicsandwillpro- – – – – clude: The main activities in this phase in- phase. 2018, LIFEiscurrentlyinafirststudy After anofficialkick-offmeeting in Past Achievements andStatus ical activity is a cornerstone of 21 dications ofhabitabilityandbiolog- of otherworldsandsearchingforin- standing the(atmospheric)diversity Detecting the nearest planets, under hood. in the immediate solar neighbour in the Milky Way and most likely also that rockyexoplanetsareubiquitous searches fromtheground,weknow and dedicated,long-termexoplanet Thanks toNASA’s Keplermission ets. of warm, terrestrial extrasolar plan- acterise the atmospheres of dozens for thefirsttime,todetectandchar mission thatwillallowhumankind, a roadmapforanambitiousspace develop thescience,technologyand and officiallykicked-offin2018to planets) is a project initiated in 2017 LIFE (LargeInterferometerForExo- Purpose ofResearch For Exoplanets Interferometer Large – IFE 5.17 maturity ofkey technologies Assessing the current statusand science objectives. science requirementsbasedon the Deriving afirstsetofmajor science objectivesforthemission. Formulating afirstsetofclear tors. expanding theteamofcollabora- technology developmentand ting interestinthescienceand Community buildingbygenera

L - st - - -

LIFE Abbreviations nulling interferometer, SPIE,10701, 107011l science withaspace-based mid-infrared Glauser AM,KitzmannD(2018) Exoplanet Quanz SP, Kammerer J,Defrère D, AbsilO, Publications – –

LIFE project. work whicharerelatedtothe technical aswellscientific Seeking fundingopportunitiesfor under cryogenicconditions. demonstrate thenullingtechnique experiment atETHZurichto Inititating anewlaboratory ment roadmap. drafting atechnologydevelop- required forthemissionand

Ex Large Interf oplanets erometer For

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 (LIFE) mission. for theLargeInterferometer For Exoplanets Artist‘s impression ofapossibleconcept www.life-space-mission.com Website phase. LIFE isinanearlymissiondevelopment Development &construction ofinstruments Measurement Method A. Glauser(ETHZurich) Co-Investigator(s) S. Quanz(ETHZurich) Principal/Swiss Investigator(s) LIFE Consortium In cooperation with Switzerland ETH Zurich,Zurich Institute 47

ASTROPHYSICS VIRGO TSI (Wm-2) SOLAR PHYSICS 1359 1360 1361 1362 48 European Space Res. &Tech. Centre (ESTEC), The latestversion ofthemanuallyde-trended 1998 VIRGO experiment onthe SoHOspacecraft Inst. Atmos.ClimateSci.(IAC), ETHZurich, Research basedonexisting instruments Space Research inSwitzerland 2018–2020 23/24 Minimum(189−daymean):1360.32Wm 22/23 Minimum(189−daymean):1360.42Wm World Radiation Center(PMOD/WRC), 2002 Total SolarIrradiance (TSI)time-series. Phys. Met. Observatorium Davos/ Inst. Royal Met. Belgique(IRMB), T. Appourchoux (CNRS,France) Principal/Swiss Investigator(s) B. N.Andersen (NSC,Norway) 2006 Nordwijk, TheNetherlands J.-P. Montillet (PMOD/WRC) W. Finsterle(PMOD/WRC) W. Schmutz(PMOD/WRC) Year 2010 In cooperation with Zurich, Switzerland Davos, Switzerland Brussels, Belgium Co-Investigator(s) www.pmodwrc.ch S. Dewitte (IRMB) -2 -2 2014 Measurement Institute Website Method 2018 NASA

ESA 1364 1365 1366 1367 VIRGO TSI (Wm-2), original scale original (Wm-2), TSI VIRGO algorithm developed by theETHZurich. First draftversion oftheVIRGOTSItime-series detrended withthemachine learning tween the two solar cycles with min- shows onlyaminimaldifferencebe- trend of the TSI. The current version Of particularinterestisthelong-term illustrates thecorrectedtime-series. by theETHZurich.Thefigurebelow algorithms iscurrentlybeingtested dation basedonmachinelearning method forcorrectingsensordegra- shown intheabovefigure.Anew tinuous time-seriesofTSIandSSI, VIRGO hasprovided the longestcon- Past Achievements andStatus upper atmosphereoftheEarth. el thechemistryanddynamicsin SSI databasewhichisusedtomod- (SSI) measurementscontributetothe ance. The spectral solar irradiance determine the Earth’s energy imbal- on terrestrialclimatechangeandto to estimateapotentialsolarinfluence (TSI, SSI).TSImeasurementsareused the Total andSpectralSolarIrradiance uous high-precisionmeasurementsof Observatory (SoHO)providescontin- onboard theSolarandHeliospheric al Oscillations(VIRGO)instrument The Variability ofIrradianceandGlob- Purpose ofResearch IRGO –Variability Irradiance of and Global Oscillations olar Physics6.1 6 -2

TSI [Wm ] 1363 1364 1365 1366 1367

S V 0020 0021 2020 2015 2010 2005 2000 Year L9, doi:10 implications for theTSIvariations, ApJ859: fundamental modesofoscillationsandits seismic radiusasmeasured from the Jain K,Tripathy SC,HillF(2018) TheSun‘s variations: II.TheSun,arXiv:2002 power spectrumofstellarbrightness Amazo-Gómez EM,etal Publications over the24years. version indicatesaslightdecrease ima in 1996,2009 and 2018.Thenew VIRGO TSI SoHO Abbreviations periods fr Time-Line Measurement Phase Data evaluation

. 3847/2041-8213/aac327 om theinflectionpointin and GravityOscillations V T Observ Solar andHeliospheric otal SolarIrradiance ariability ofSolarIrradiance atory . (2020)Rotation From 96ongoing 1996 96ongoing 1996 . 03455

To

uSTAR –Probing Solar X-ray Nanoflares 6.2 and currentlythereareabout20indi- were performedinSeptember2014, in June2012.Firstsolarobservations NuSTAR wassuccessfullylaunched Past Achievements andStatus million degreerange. extraordinary hottemperatureinthe gy tokeepthesolaratmosphereatits seen inX-raysprovideenoughener predicting thatmanytinyexplosions so-called “nanoflareheating”theory NuSTAR, wewillbeabletotestthe crease insensitivityprovidedby studies. With theextraordinaryin- the-art satelliteforsolarhardX-ray than RHESSI,thecurrentstate-of- NuSTAR is200times more sensitive points attheSun. physics mission,itoccasionallyalso 80 keV).WhileNuSTAR isanastro- in themedium-to-hardX-rayband(2- to achieveunprecedentedsensitivity optics andpixellatedX-raydetectors plorer satelliteusingtruefocussing Array (NuSTAR) isaNASASmallEx- The NuclearSpectroscopicTelescope Purpose ofResearch

-300 -200 Y [arcsec] -100

900 0 N 1000 >2.5 keV (5, 15, 30,50, 70,90%) X [arcsec] 1100 - RHESSI NuSTAR Abbreviations Kuhar M id Kuhar M,etal Harrison FA, etal Publications heating”. to searchforevidenceof“nanoflare and dataarecurrentlybeinganalysed cently recordedon20February2020, tions underbestconditionswerere- vidual solarobservingruns.Observa- Time-Line Data evaluation Measurement Phase . 6 . 1200

. etal Solar Spectr R T Nuclear Spectr . . (2018) Astrophys (2017) Astrophys elescope Array euven Ramaty HighEnergy after theflare peaktime. was stillongoing even well release of magneticenergy flare onsetrevealing thatthe was taken afulldayafterthe Å image.TheNusTAR image shown onanextreme UV171 NuSTAR, above 2.5keV, are Flare loopsasseenwith . (2013) Astrophys oscopic Imager From 04open 2014 02open 2012 oscopic . . J J . . Lett 856:L32 . J

. 770:103 . 835:1, To .

. Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 (typically 4-5MKduringnon-flaringtimes). outlines thelocationofhottestplasma coronal plasmaaround 1MK,theNuSTAR image in red. WhiletheEUVimagerepresents ‘cold’ Å)takenimage (around by 171 SDO/AIA shown bluish colors superposedonanextreme UV release): TheNuSTAR imageisrepresented by First NuSTAR imageoftheSun(NASApress www.astro-helio.ch/project/ Website ding ourSun. views onastrophysical X-ray objects inclu- hard X-ray bandopensupentirely new NuSTAR‘s unprecedented sensitivityinthe Research basedonexisting instruments Measurement Method M. Kuhar(FHNW) Co-Investigator(s) S. Krucker (FHNW) Swiss PrincipalInvestigator(s) F. Harrison(Caltech) Principal Investigator(s) Univ. Minnesota,USA Univ. Glasgow, UK UC SantaCruz,USA Caltech, USA In cooperation with Windisch, Switzerland Nordwestschweiz (FHNW), Inst. DataScience, Fachhochschule Institute 49

SOLAR PHYSICS SOLAR PHYSICS 50 CLARA was developed andconstructed by Illustration ofNorSat-1 withCLARAonboard. Research basedonexisting instruments Space Research inSwitzerland 2018–2020 World Radiation Center(PMOD/WRC), W. Finsterle(from 2020;PMOD/WRC) W. Schmutz(until2019; PMOD/WRC) Lab.Atmos.Space Physics (LASP), Phys. Met. Observatorium Davos/ S. Koller, D. Pfiffner(PMOD/WRC) M. Haberreiter, Harra,M.Gyo, L. Norwegian Space Center(NSC), PMOD/WRC from 2013 to2015 B. N.Andersen (NSC,Norway) B. Walter (SLF, Switzerland) Principal Investigator(s) T. Leifsen(UiO, Norway) In cooperation with G. Kopp (LASP, USA) Davos, Switzerland Co-Investigator(s) www.pmodwrc.ch Measurement Oslo, Norway Boulder, USA Institute Website Method and arelativestabilityof5mWm value ofabout1361Wm ous institutes,andhaveanaverage been conductedsince1979byvari- ance measurementsinspacehave the terrestrialclimate.Solarirradi- scales, itwillhaveadirecteffecton TSI. IftheTSIdoesvaryonlong-term Minimum andthe current levelof term changebetweentheMaunder variation ofTSI,specificallythelong- debate aboutanypossiblelong-term Currently, thereisalotofscientific of PMOD/WRCinsolarresearch. continues thelong-terminvolvement ments, VIRGOandPREMOS,CLARA with PMOD/WRC’s earlierinstru- (0.0004% oftheTSIperyear).Along Wm TSI withanuncertaintybetterthan0.4 science goalofCLARAistomeasure and precisionfromspace.Themain with the highest possible accuracy energy budget,itiskeytomeasureTSI For acorrectevaluationoftheEarth’s sential climatevariable(ECV). continuous measurementofthises- solute TSIradiometer, ensuringthe PMOD/WRC’s latestoperationalab- wegian micro-satelliteNorSat-1is CLARA instrument onboard the Nor input fromtheSuntoEarth.The Irradiance (TSI),whichistheenergy ometers tomeasuretheTotal Solar CLARA isanewgenerationofradi- Purpose ofResearch Radiometer Absolute on Lightweight –Compact LARA NorSat-1 6.3 this phase can be considered as not this phasecan beconsideredasnot the Earthincreased. Atthesametime, tury bothTSI and thetemperatureof a trend.However, intheearly20 even moresotheuncertainty ofsuch solar minimaintheTSIcomposite, i.e. achangebetweensubsequent cult todeterminealong-term trend, Despite variousattempts,itisdiffi- cycle byabout±0.6Wm varied inphasewiththe11-yearsolar al., 2016).Duringthese40years,TSI

-2 on an absolute irradiance level onanabsoluteirradiancelevel C -2 -2 (Prša, A. et (Prša,A.et (±0.04%). (±0.04%). th cen- -2 yr -1 -

indicates thattheearly20 The studybyEgorovaetal.(2018) anthropogenic climatechange. yet beingsignificantlyinfluencedby CLARA, 1360.18Wm August 2017.Thefirstlightvalueof started takingmeasurementson25 a successfulcommissioningphase, launched on14July2017andafter CLARA onboardNorSat-1was Past Achievements andStatus continuing tomonitorTSIfromspace. it clearlyindicatestheimportanceof to beindependentlyconfirmed,but possible. Thishypothesisstillneeds Maunder Minimumandthepresentis secular trendinTSIbetweenthe study furtherindicatesthatastrong by aconcurrentincreaseinTSI.This warming onEarthcouldbecaused information onboard NorSat-1. measurements aswellthepointing available pre-flight cavityalignment need tobecarefullyfilteredusing the ited. Therefore, the recent TSI data the two reaction wheels is now lim- ing performanceoftheplatform with As wastobeexpected,thefine-point - 2019. second “FirstLight”on8November reaction wheels,andCLARAsawits able pointingwasrestoredwithtwo efforts oftheNorSat-1teams,reason- was notoperational.Thankstothe was notfullystabilisedandCLARA During thistime,thesatelliteplatform Sun toconductsolarmeasurements. so thatCLARAcouldbepointedtothe had todevelopanewpointingscheme ly theplatformandoperationteams a spinning-wheelfailure.Subsequent- In May2018,thesatelliteexperienced VIRGO/SoHO missions. TIM/SORCE, PREMOS/ and 2018) confirmedTSIvaluesfromthe -2 (Walter etal., th century century S1743921319004617 Proc Walter, B 10 tion andcalibration,Metrologia 54,p radiometer: instrumentdesign,characteriza- The CLARA/NORSAT-1 solarabsolute Walter B doi: 10 The Astronomical Journal152(2):id Planetary Quantities:IAU2015 Resolution B3, Nominal Values for SelectedSolarand Prša A,HarmanecP, Torres G,etal Tucson, USA, NORSAT-1 /CLARA,SunClimateSymposium, (2020) Haberreiter M,FinsterleW, SchmutzW, etal feart Earth Science Vol early 20thcentury warming , Frontiers in and anthropogenic forcing agentstothe Schmutz W(2018) Contributionsofnatural Egorova T, Rozanov E,Arsenovic P, PeterT, Publications termine Earth’s EnergyImbalance. for futureabsoluteradiometerstode- demonstration andwillpavethe way urements willserveasatechnical the night-sideofEarth.Thesemeas- to the NorSat-1 orbit, only possible on tion attheendof2019,whichis,due ments oftheEarth’s outgoingradia- goal, CLARA started taking measure- In additiontoitsprimarymission Time-Line esrmn hs >Jun Measurement Phase Construction Planning aaeauto >Aug Data evaluation . 1088/1681-7575/aa7a63 . . IAU, 2020,pp 2018 . Latest TSIMeasurements from 3847/0004-6256/152/2/41 . . , P-LLevesque, GKopp, etal , B . 00206 . Andersen, A . 6:id . 358-360,doi:10 . 206, doi:10 . Beattie,etal From 042016 2014 032013 2013 . . 2017 2017 . . . 3389/ 41,7pp (2016) . 1017/ ongoing . 5, doi: . open (2017) . (2018) To . , .

Payload onNorSat-1, illustratingCLARAwiththeSunsensor. TRF UiO TSI NorSat-1 CLARA Abbreviations CLARA

Sun sensor Univ T R T Norw R Compact Lightw otal SolarIrradiance otal SolarIrradiance adiometer Facility adiometer ersity inOslo,Norway egian satellite Solar cell eight Absolute

GPSAntenna

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 51

SOLAR PHYSICS SOLAR PHYSICS 52 Development &construction ofinstruments Univ. Graz,Austria;Trinity College,Dublin N. Vilmer(LESIA);M.Piana(Univ. Genova) Leibniz-Institut fürAstrophysik Potsdam STIX isaSwiss-lead instrumentonboard A. Vernonig (UniGraz);P. Gallagher(TCD) Almatech Lausanne;ArtofTechnology; Space Research inSwitzerland 2018–2020 (AIP), Germany;CzechSpace Office, CZ; Inst. for DataScience, Fachhochschule J. Sylwester (SRC);O. Limousin(CEA); The STIXFlightModel before delivery LESIA, France; Univ. Genova, Italy SYDERAL SWISSSA,Switzerland, SRC, Poland;CEASacaly, France; G. Mann (AIP);F. Farnik (CSO); ESA’s Solar Orbitermission. Nordwestschweiz (FHNW), Principal Investigator(s) Industrial contract(s) to Windisch, Switzerland In cooperation with S. Krucker (FHNW) Co-Investigator(s) www.stix.i4ds.net Measurement to ESAin2017. Institute Website Method biter mission. in-situ instrumentsoftheSolar Or cial linkbetweentheremote and In thisway, STIXwillprovideacru- – – science goalswhichinclude: lar Orbitertoachievetwoofitsmajor plays a crucial rolein enabling So- By usingthissetofdiagnostics,STIX energy isreleasedduringsolarflares. trons thatareproducedasmagnetic MK) plasmaandacceleratedelec- provides information of heated (>10 spectroscopy, theSTIXinstrument Through hardX-rayimagingand tions. struments to perform joint observa- Solar Orbitercarriesasetof10in- the heliosphere?To achivethisgoal, How doestheSuncreateandcontrol central questionofheliophysics: collaboration thatwilladdressthe Solar OrbiterisajointESA-NASA SMEX mission. troscopic Imager(RHESSI)NASA Ramaty HighEnergySolarSpec- related tothatusedfortheReuven on theJapaneseYohkoh mission,and ly bytheHardX-rayTelescope (HXT) nique similartothatusedsuccessful- ter basedonaFourier-imaging tech- is ahardX-rayimagingspectrome- launched on9February2020.STIX board ESA’s SolarOrbitermission STIX isaSwiss-ledinstrumenton Purpose ofResearch –Spectrometer/TelescopeTIX for Imaging X-rays on Solar Orbiter 6.4

the Sun. tion oftheSolarOrbiterbackto Determining themagneticconnec space. transport intointerplanetary electrons attheSunandtheir Understanding theaccelerationof

S - - National ScienceFoundation(SNSF). (FHNW) issupportedbytheSwiss Fachhochschule Nordwestschweiz 2021. STIXscienceresearchatthe pletion ofthecruisephaseinOctober science missionwillstartaftercom- be operational.TheSTIXnominal a cruisephasewhereSTIXwillnot will lastfortwomonths,followedby STIX willstarton14April2020and February 2020.Thecommissioningof biter wassuccesfullylaunchedon9 to ESA in July 2017, and Solar Or The STIXFlightModelwasdelivered Solar Orbiter. as oneofthe10instrumentsonboard 2025. STIXwaspreviouslyselected sion ofESA’s CosmicVision 2015– lected asthefirstmedium-classmis- In October2012,SolarOrbiterwasse- Past Achievements andStatus STIX SMEX RHESSI HXT Abbreviations Krucker S,etal Publications Astr Data evaluation Measurement Phase Construction Planning Time-Line

ophysics, inpress

Imaging X Spectr Small Explor Solar Spectr R Har euven Ramaty HighEnergy . (2020)Astronomy & d X-ray Telescope ometer/Telescope for . -rays oscopic Imager ers (NASAmission) From 00open 2027 2020 2020 002014 2010 042017 2014 To

- Close-up view oftheSTIXFlightModel. Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 53

SOLAR PHYSICS SOLAR PHYSICS 54 Institut d‘Astrophysique Spatiale(IAS),France Royal Observatory Belgium(ROB) Space Research inSwitzerland 2018–2020 Centre SpatialedeLiège(CSL),Belgium Mullard Space Science Lab.(MSSL),UK Max PlanckInstitutf. Sonnensystem- World Radiation Centre (PMOD/WRC), Rutherford AppletonLab.(RAL),UK Phys. Met. Observatorium Davos / Artist's impression ofSolarOrbiter. University ofOslo(UiO), Norway Swiss Principal Investigator(s) D. Berghmans(ROB),Belgium forschung (MPS),Germany Principal Investigator(s) F. Auchère (IAS),France L. Harra(PMOD/WRC) L. In cooperation with Davos, Switzerland Image credit: ESA. Institute – – – mission whichare: ute tothegoalsofSolarOrbiter and SPICEwillsignificantlycontrib- nm and97.3-104.9nm.BothEUI EUV wavelengths from 70.4 nm - 79 aging spectrometer that operates at ends upinthesolarwind.Itisanim- lence anddensityoftheplasmathat composition, temperature, turbu- SPICE isdesignedtounderstandthe wind (seeRochusetal.,2019). where thestreamersfadeintosolar is largeenoughtoimagetheregion 110 km.Thefield-of-viewoftheFSI corresponds toapixelresolutionof of 0.5”.Attheperihelionposition,this coronal 17nmbandwitharesolution mospheric Lyman alpha band and the age thesolaratmosphereinchro- Imagers (HRI).ThetwoHRIswillim- Imager (FSI)andtwoHighResolution with threetelescopes-theFullSun atmosphere. Itisan instrument suite through differentlayersofthesolar dynamics andstructureoftheSun EUI isdesignedtounderstandthe science phasewillbegin. Towards the endof2021,thenominal instruments forcalibrationpurposes. out windowsfortheremotesensing ing thattimetherewillbefivecheck- sion willenteritscruisephase.Dur Following commissioning,themis- V fromCapeCanaveralon9Feb.2020. was successfullylaunchedonanAtlas controls the heliosphere. Solar Orbiter understand howtheSuncreatesand The mission’s over-arching goalsareto ments fortheSolarOrbitermission. Both EUIandSPICEarekeyinstru- Purpose ofResearch on Solar Orbiter and Instruments EUI PICE 6.5 energetic particles? How dosolareruptions produce heliospheric activity? How dosolartransientsdrive field originate? where doesthecoronalmagnetic What drivesthesolarwindand

S - in thepolesbehave. It isunknownhowthemagneticfields part ofthemissionlifetimeisalsokey. lar activitycycle,andhencethislatter gions intheSunastheyexplainso- telescopes. Thepolesareimportantre- the firsteverviewofsolarpolesby plane byupto33°.Thiswillprovide crease itsinclinationoutoftheecliptic wind. Thespacecraftwillslowlyin- ics ontheSuntothatseeninsolar to getinclosecorrelatethedynam- measurements aremade,soitisvital ish thefurtherawayfromSun that thesolarwindfluctuationsdimin- the solar wind on the disk. It is known spacecraft andobservethesourceof ure thesolarwindasitflowspast get closeintotheSunordermeas- A keyelementoftheorbitchoiceisto – tion datawith the doorsclosed. switched on,and havetakencalibra- and bothEUI and SPICEhavebeen Commissioning startedsuccessfully APCO, both managed by PMOD/WRC. SPICE Contamination Door (SCD) by was providedbyAlmatech, andthe SPICE SlitChangeMechanism (SCM) Structure (OBS). In addition, the responsible fortheEUIOpticalBench gether withAPCO,PMOD/WRCwas (LVPS) wasbuiltatPMOD/WRC.To- The SPICELowVoltage PowerSupply fully launchedinFebruary2020. into the . The mission success- the USinautumn2019forintegration ing. Thespacecraftwasshippedto to Germanyforspacecraft-leveltest- curred atStevenagebeforeshipping in 2017. Thereafter, integration oc- models weredeliveredtoAirbusDS Both theEUIandSPICEflight Past Achievements andStatus

Sun andtheheliosphere? and driveconnectionsbetweenthe How doesthesolardynamowork

Swiss Academies Communications, Vol. 15, Nr. 10, 2020 55 SOLAR PHYSICS

Abbreviations Publications

EUI Extreme Ultraviolet Imager Auchère F, et al. (2019) Coordination within FSI Full Sun Imager the remote sensing payload on the Solar HRI High Resolution Imager Orbiter mission, https://doi.org/10.1051/0004- LVPS Low Voltage Power Supply 6361/201937032 OBS Optical Bench Structure SCD SPICE Contamination Door Rochus P, et al. (2019) The Solar Orbiter EUI SCM Slit Change Mechanism instrument: The Extreme Ultraviolet Imager, SPICE Spectral Imaging of the Coronal https://doi.org/10.1051/0004-6361/201936663 Environment SPICE consortium (2019) The Solar Orbiter SPICE instrument: An extreme UV imaging spectrometer, https://doi.org/10.1051/0004- Co-Investigator(s) 6361/201935574 SPICE E. Buchlin, A. Gabriel, S. Parenti, J.-C Vial, M. Javier, E. Pariat (France) Time-Line From To M. Carlsson, V. Hansteen (Norway) W. Curdt, H. Peter, U. Schühle, L. Terica, Planning 2008 2010 R. Wimmer-Schweingruber, S. Solanki Construction 2010 2017 (Germany) Measurement Phase 2021 2029 M. Haberreiter (Switzerland) Data evaluation 2021 2030 M. Caldwell, R. Harrison, A. Giunta, N. Waltham, Sarah Matthews, G. Del Zanna, R. von Fay Siebenburgen (UK) W. Thompson, J. Davila, D. Hassler, C. de Forest, P. Chamberlain, P. Young (USA) J. Dudik, P. Heinzel (Czech)

EUI P. Rochus, A. Zhukov, F. Cerbeeck, K. Stegen, M. Mierla, S. Poedts, L. Rodriguez, T. van Doorsselaere (Belgium) E. Buchlin, S. Parenti, F. Delmotte (France) L. van Driel-Gesztelyi, S. Matthews, D. Long, N. Labrosse, Duncan MacKay (UK) U. Schühle, J. Büchner, L. Terica, S. Solanki, T. Wiegelmann, E. Marsch (Germany) M. Haberreiter (Switzerland) D. Seaton (USA) D. Williams (ESA)

Method Measurement

Industrial hardware contract(s) to APCO technologies Almatech

The Solar Orbiter PIs, project scientists and national agency visitors at the launch pad the morning Website of the launch (9th February 2020) at the Kennedy Space Center, Cape Canaveral. www.pmodwrc.ch SOLAR PHYSICS 56 MEFISTO facility for highlychargedionbeamsat The HeavyIonSensor(HIS)oftheSolar Wind Heavy IonSensors (HIS)duringcalibrationinthe www.ucl.ac.uk/mssl/research-projects/2020/ Development &construction ofinstruments Space Res. &Planet.,Phys. Inst.,Univ. Bern Space Research inSwitzerland 2018–2020 Southwest Research Institute,USA Mullard Space Science Lab.(MSSL), www.sci.esa.int/web/solar-orbiter Swiss PrincipalInvestigator(s) (UNIBE), Bern,Switzerland Univ. College,London,UK Principal Investigator(s) Plasma Analyser (SWA) In cooperation with Co-Investigator(s) C. J.Owen (MSSL) feb/solar-orbiter the Univ. ofBern. P. Wurz (UNIBE) A. Galli(UNIBE) Measurement Institute Website Method elements. solar windioncompositionforkey SWA willprovidemeasurementsof ing thebulkpropertiesofwind, about 34°.Inadditiontodetermin- tion ofSolarOrbitertoincrease vres willallowtheorbitalinclina- tional Venus gravityassistmanoeu- During theextendedmission,addi- equator. inclination of 25° relative to the solar AU fromtheSun,withanincreasing a distanceofbetween0.28and1.4 characterisation ofthesolarwindat of thesolarwind.Thiswillallow density, velocity, andtemperature) electron bulkproperties(including (HIS)) thatwillmeasuretheionand Sensor (PAS) and a Heavy Ion Sensor (EAS), aProtonandAlphaParticle sensors (ElectronAnalyserSystem payload, consistsofasuiteplasma (SWA) which is part of the science The Solar Wind Plasma Analyser and theSun’s magneticfield. sient interplanetary disturbances field, solar energetic particles, tran- lar wind, the heliospheric magnetic gain newinformationabouttheso- and remotesensingobservationsto The spacecraft will combine in-situ wind intotheinterstellarmedium. charged particlesblownbythesolar the heliosphere,vastbubbleof ine howtheSuncreatesandcontrols Solar Orbiter will be usedto exam- Purpose ofResearch WA –Solar Wind Plasma Analyser on Solar Orbiter 6.6 Construction Planning Time-Line esrmn hs Mar Measurement Phase aaeauto Mar Data evaluation

S From 072010 2007 002020 2010 . . 22 Dec 2020 2020 2030 To . 2027 Observations“ ESASP-600(2005)5 “The DynamicSun:Challengesfor Theoryand wind, Astrophys (2003) Geophys composition oftheJanuary6, 1997, CME, Verigin MI,Wilken B, (1998),Elemental E, NeugebauerM,Reiche KU, ScholerM, MA, LiviS,Managadze GG,Marsch E, Möbius F, GloecklerG,HeftiS,HsiehKC, Klecker B, Lee Balsiger H,BürgiA,CoplanMA,GeissJ,Gliem Grünwaldt H,HilchenbachM,Axford WI, Aellig MR,Kallenbach R,Hovestadt D, Wurz P, IpavichFM,GalvinAB, BochslerP, Publications to closeproximitytheSun. Cape Canaveralandisonitstrajectory 10 February2020at04:03UTCfrom lar Orbitersuccessfullylaunchedon C, N,OgroupandFe,SiorMg.So- are foundinthesolarwind,e.g. (HIS) withhighlychargedionsasthey We calibrated the HeavyIonSensor Past Achievements andStatus SW P HIS EAS Abbreviations W W AS urz P(2005)Solarwindcomposition, in urz P, BochslerP, Paquette JA,IpavichFM A

The calciumabundance inthesolar . Res Solar WindPlasmaAnaly Sensor Pr Heavy IonSensor Electr . Lett oton andAlphaParticle . J . 583:489-495 . on Analyser System 25:2557-2560 . . . 2, 1-9 ser

. acceleration insolarflares. for thefirsttimetoinvestigateparticle anisotropy ofsolarhardX-rayemission tors asSTIX,preciselyquantifyingthe MiSolFA willusesimilarphotondetec- FA willbeinanear-Earth orbit. cant orbitalinclination,whileMiSol- be veryclosetotheSunwithasignifi- different directions:SolarOrbiterwill nity to look at the same flare from two STIX willhavetheuniqueopportu- lar maximum(~2023),MiSolFaand Orbiter mission,duringthenextso- STIX instrumentontheESASolar Operating atthesametimeas Purpose ofResearch iSolFA Micro –The Solar-Flare Apparatus 6.7 and finegratingsalike. Success! Thefirst X-ray imagesoftheMoiré patternshow cleardarkandbrightstripesfrom coarse Time-Line Data evaluation Measurement Phase Construction Planning

M From 002023 2020 03open 2024 2023 2023 052019 2015 To STIX MiSolFA EM Abbreviations evaluation byNASA. Cubsat platformiscurrentlyunder A proposaltoobtainfundingforthe launch. ever usedtostudytheSun,closer els, bringingthefinestX-raygratings the QualificationandFlightMod- The final design will be built into qualification testswithflyingcolours. MiSolFA gratings passed the space The Engineering Model (EM)ofthe Past Achievements andStatus

Imaging X Spectr Mir Engineering M co SolarFlare Apparatus ometer/Telescope for -rays odel

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 www.misolfa.i4ds.net Website Paul Scherrer Institute(PSI),Switzerland Industrial Contractsto (30x20x10 cm,aso-called6-unitcubsat). trometer thatfitswithinamicro-satelite MiSolFA isacompact X-ray imagingspec- Development &construction ofinstruments Measurement Method E. Lastufka (FHNW),S.Krucker (FHNW) Co-Investigator(s) D. Casadei(FHNW) Principal Investigator(s) (GSFC), USA S. Christe,Goddard Space FlightCenter Atomique (CEA),France A. Meuris, Commissariatàl‘Énergie In cooperation with Nordwestschweiz (FHNW),Windisch,CH Inst. DataScience, Fachhochschule Institute be determined. size andlocationofsolarflare X-ray sources to When operatinginspace, MiSolFA willallow the measurement ofitsMoiré interference pattern. The MiSolFA EMisshown duringthefirst X-ray 57

SOLAR PHYSICS SOLAR PHYSICS 58 G, Kopp, Lab. Atmos.&Space Physics (LASP), A. Zhukov, Royal Observatory Belgium(ROB), Almatech Lausanne;dlabGmbH,Winterthur; from PMOD/WRC are preparing theinstrument facility attheUniversity Bern.Two engineers The DARA EQM/FSatthevibrationtesting Space Research inSwitzerland 2018–2020 World Radiation Center(PMOD/WRC), Phys. Met. Observatorium Davos / European Space Agency(ESA) Astorcast SA(else),Ecublens J.-P. Montillet (PMOD/WRC) W. Finsterle(PMOD/WRC) W. Schmutz(PMOD/WRC) Principal Investigator(s) Industrial contract(s) to In cooperation with Davos, Switzerland Co-Investigator(s) www.pmodwrc.ch Measurement for thetests. Institute Belgium Website Method USA tion of19hrs38 mins. full eccentricorbit whichhasadura- can bemaintained overalmostthe the measurementsofsolarirradiance from thislocationitisexpected that which alwaysfacestheSun, and the sun-facingocculterspacecraft The DARAinstrumentissituated on configuration. effectively representacoronagraph “large structure”inspace.Thiswill orbit, aconfigurationresembling fly togetherandcreate,forpartofthe ing mission.Apairofsatelliteswill world’s first precision formation fly- ration oftwoyears,andwillbethe PROBA-3 hasanominalmissiondu- urements. SI-traceability oftheirradiancemeas- ogenic radiometerwillguaranteefull DARA againstaNISTcalibratedcry- and highaccuracy. Thecalibrationof WRC toachievelong-termstability diometer developmentsatPMOD/ ter (ESR),comprisingthelatestra- ty electricalsubstitutionradiome- DARA isa3-channelactivecavi- TSI measurementssince1978. most seamlessseriesofspaceborne WRC’s futurecontributionstotheal- Board Autonomy)isoneofPMOD/ PROBA-3 mission(ProjectforOn- diometer (DARA) onboard the ESA activity. TheDigitalAbsoluteRa- in shortandlong-termsolarradiative indispensable tomonitorvariations Irradiance (TSI)measurementsare Continuous andpreciseTotal Solar bate. Earth’s climateisstillamatterofde- er or not such a trend could affect trend intheSun’s activityandwheth- existence of a potentially long-term for theEarth’s climatesystem.The The Sunistheprimaryenergysource Purpose ofResearch Radiometer Absolute on PROBA-3 –Digital ARA 6.8

D for mid-2022. At present,thelaunchisscheduled being abouttwoyearsinthefuture. over theyearswithlaunchalways of PROBA-3hasconstantlyslipped the endof2020.Theoverallschedule The deliveryoftheFMisplannedfor is foreseeninQ4of2020. (TRF) atLASPinBoulder, Colorado paign attheTSIRadiometerFacility at PMOD/WRC. A calibration cam- will becalibratedinfrontoftheSun writing in early 2020. Next, the FM (FM) isnearlycompleteatthetimeof of theSun.TheDARAflightmodel was readyin2019andtestedfront still pending.TheEQM/FShardware (EQM/FS) andADPMS(Qinetiq), Qualification Model/FlightSpare test betweentheDARAEngineering qualifications andthefinalinterface sentially completewithsomeofthe The instrumentdevelopmentises- Past Achievements andStatus TSI NIST FM/FS ESR EQM ADPMS Abbreviations Walter B, etal Publications Time-Line Construction Planning Data evaluation Measurement Phase

T National Inst Flight M Elec Engineering QualificationM Adv . (2017) Metrologia 54:674-682 otal SolarIrradiance . . Data&Power Manag SubstitutionRadiometer odel/Flight Spare end 2016 n 03mid2016 end 2013 . From Stand 022024 2022 2022 (EM) . &Technol end 2020 (EQM/FS) To . Sys odel . . . radiometers from 1 -15Dec.2019 attheGeminiObservatory inRuahnping (Yunnan Province, China). JTSIM-DARA (right-handsideoftracker ontheright)were calibratedagainst WRRtraceable reference SIAR radiometerdesignedbyCIOMP. of aJTSIM-DARAradiometer, anda of aspacestandardgroupwillconsist measurements. Thefirstrealisation improved long-termstabilityofTSI (WSG) locatedinDavos,toprovide ground-based World StandardGroup model on one satellite, similar to the radiometers ofadifferentmakeand inally) threeelectricalsubstitution is tooperateastandardgroupof(orig- and globalclimateresearch.Theidea ate andlong-termweatherforecasting ing atmosphericdataforintermedi- FY-3 satellite seriesincludecollect- CIOMP Institute.Keyaspectsofthe is acooperationwiththeChinese The JTSIM-DARA/FY-3E experiment ments since1978. series ofspaceborneTSImeasure- contributions tothealmostseamless sion isoneofPMOD/WRC’s future absolute radiometerontheFY-3E mis- the Earth’s climate. The JTSIM-DARA solar radiativeemissionvariationson the influenceofshortandlong-term ments areindispensabletoevaluate Continuous and precise TSI measure- Purpose ofResearch on FY-3E TSIM-DARA 6.9

J WRR SIAR JTSIM FY-3E DARA Abbreviations satellite. JTSIM solartrackingframeandFY-3E CIOMP (China)forintegrationonthe factured, calibratedanddeliveredto proto flightmodelhasbeenmanu- The JTSIM-DARATSIradiometer Past Achievements andStatus Time-Line Data evaluation Measurement Phase Construction Planning

Joint TSIM F Digital AbsoluteR W R Solar Irradianc engYun 3E adiometer orld Radiation Reference onitor From 042015 2014 01open 2021 2021 052018 2015 e Absolute adiometer To

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 JTSIM-DARA duringcalibrationinChina. www.pmodwrc.ch Website dlab GmbH,Winterthur, Switzerland Industrial hardware/software contract(s) to DARA TSIradiometer Development &construction ofinstrument(s) Measurement Method J.-P. Montillet (PMOD/WRC) W. Schmutz(ex-PMOD/WRC) Co-Investigator(s) W. Finsterle(PMOD/WRC) Swiss PrincipalInvestigator(s) W. Fang (CIOMP) Principal Investigator(s) China Chinese Met. Administration(CMA), China Physics (CIOMP)/ChineseAcad.Sci.(CAS), Changchun Inst.Optics,FineMechanics & In cooperation with Davos, Switzerland World Radiation Center(PMOD/WRC), Phys. Met. Observatorium Davos/ Institute 59

SOLAR PHYSICS 60 Space Research in Switzerland 2018–2020

7 Heliospheric Physics

7.1 IBEX – Interstellar Boundary Explorer HELIOSPHERIC PHYSICS

Purpose of Research Publications

The IBEX mission (NASA SMEX Galli A, Wurz P, Schwadron NA, Kucharek H, class) is designed to record energet- Möbius E, Bzowski M, Sokół JM, Kubiak MA, ic neutral atoms (ENA) arriving from Fuselier SA, Funsten H, McComas DJ (2017) the interface of our heliosphere with The downwind hemisphere of the heliosphe- the neighbouring interstellar medi- re as seen with IBEX-Lo during 8 years, um in an energy range from 10 eV Astrophys. J. 851: 16pp, doi: 10.3847/1538- to 6 keV. 4357/aa988f

This energy range is covered by two Galli A, Wurz P, Rahmanifard F, Möbius E, cameras, IBEX-Lo measuring from 10 Schwadron NA, Kucharek H, Heirtzler D, IBEX-Lo flight instrument in the MEFISTO ­calibration facility, Univ. Bern. eV to 2 keV, and IBEX-Hi measuring Fairchild K, Bzowski M, Kubiak MA, Kowals- from 500 eV to 6 keV. For each en- ka-Leszczynska I, Sokół JM, Fuselier SA, ergy channel a full-sky map is com- Swaczyna P, McComas DJ (2019) Model-free piled every half year, which allows maps of interstellar neutral hydrogen the study of the plasma physical pro- measured with IBEX between 2009 and 2018, cesses at the interface between the Astrophys. J, 871: 52, 18 pp., doi: 10.3847/1538- Institute heliosphere and the interstellar me- 4357/aaf737 Space Research and Planetology, dium, located at a distance of about Physics Inst., Univ. Bern (UNIBE), 100 AU. Rodríguez Moreno DF, Wurz P, Saul L, Bern, Switzerland Bzowski M, Kubiak MA, Sokół JM, Frisch P, Fuselier SA, McComas DJ, Möbius E, In cooperation with Past Achievements and Status Schwadron N (2013) Evidence of direct Southwest Res. Inst., Austin, USA detection of interstellar deuterium in the Lockheed Martin, Palo Alto, USA IBEX was successfully launched in local interstellar medium by IBEX, Astro- Space Res. Centre PAS., Warsaw, Poland October 2008 and brought into a high- nomy & Astrophysics 557: A125, 1-13, doi: Univ. New Hampshire, Durham, USA ly elliptical orbit around the Earth. In 10.1051/0004-6361/201321420 June 2011, the orbit was changed into Principal Investigator(s) an orbit that is in resonance with the D. McComas, Princeton Univ., Moon, which tremendously extends Abbreviations Princeton, USA the orbital lifetime of the IBEX space- craft and thus allows the mission to ENA Energetic Neutral Atom Swiss Principal Investigator(s) cover more than a of 11 IBEX Interstellar Boundary Explorer P. Wurz (UNIBE) years with a minimal fuel consump- IMAP Interstellar Mapping and tion. Acceleration Probe Co-Investigator(s) MEFISTO MEsskammer für Flugzeit- A. Galli (UNIBE) IBEX continues to take nominal InStrumente u. Time-Of-Flight measurements of ENAs originating Method from the interface region between our Measurement heliosphere and the surrounding in- Time-Line From To terstellar matter. Planning Jan. 2005 May 2006 Development & construction of instruments Construction Jun. 2006 Aug. 2008 We completed the ion-optical design, and par- Resources on the IBEX spacecraft are ticipated in development and manufacture of sufficient to continue operations for Measurement Phase Oct. 2008 ongoing the IBEX-Lo ENA camera. The entire IBEX-Lo several more years. Operations are Data evaluation Oct. 2008 ongoing calib. with ENAs over the full energy range, planned to enable an overlap with and all species of interest, was conducted. the Interstellar Mapping and Accel- aration Probe (IMAP) spacecraft of Industrial Hardware Contract to NASA to be launched in the second Sulzer Innotec half of 2024. Swiss Academies Communications, Vol. 15, Nr. 10, 2020 61

7.2 IMAP – Interstellar Mapping and Acceleration Probe HELIOSPHERIC PHYSICS

Purpose of Research Publications

The IMAP mission of NASA is a he- Fuselier SA, et al. (2009) The IBEX-Lo Sensor, liophysics mission that will simul- Space Science Review 146: 117-147. taneously investigate two important and coupled science topics in the McComas DJ, et al. (2018) Interstellar Mapping heliosphere: the acceleration of solar and Acceleration Probe (IMAP): A New NASA energetic particles and interaction of Mission, Space Science Review 214: 116, 55 pp, the solar wind plasma with the local doi: 10.1007/s11214-018-0550-1 interstellar medium. These science topics are coupled because particles Wurz P, (2000), Detection of Energetic Neutral accelerated in the inner heliosphere Particles, in The Outer Heliosphere: Beyond play crucial roles in the outer helio- the Planets, (eds. K. Scherer, H. Fichtner, and spheric interaction. Measured ener- E. Marsch), Copernicus Gesellschaft e.V., gy distributions of ENAs, solar wind Katlenburg-Lindau, Germany, 251-288. supra-thermal tails, pickup ions, and energetic particles disclose the phys- ical processes that control the accel- Abbreviations Caption text: see end of article. eration of suprathermal particles at 1 AU and within the heliosheath. ENA Energetic Neutral Atoms Institute IMAP Interstellar Mapping and Space Res. & Planetology, Physics Institute, IMAP was selected by NASA in 2018, Acceleration Probe Univ. Bern (UNIBE), Bern, Switzerland with a scheduled launch in October 2024. IMAP will be a Sun-tracking In cooperation with spin-stabilised satellite in orbit Time-Line From To Princeton University, Princeton, USA about the Sun-Earth L1 Lagrangian Southwest Research Institute, Austin, USA Planning Jan. 2018 Dec. 2018 point with a science payload of Univ. New Hampshire, Durham, USA Construction Jan. 2019 Aug. 2024 ten instruments. IMAP will also Los Alamos National Laboratory, USA continuously broadcast real-time in- Measurement Phase Dec. 2024 2029 situ data that can be used for space Data evaluation Dec. 2024 2030 Principal Investigator(s) weather prediction. Part of the D. McComas (Princeton Univ.) scientific instrumentation are ENA (Energetic Neutral Atoms) cameras Swiss Principal Investigator(s) for the observation of the interface P. Wurz (UNIBE) between the heliosphere and the interstellar medium. The University Co-Investigator(s) of Bern participates in the IMAP-Lo Caption text. Top panel: Oxygen fluences measu- A. Galli (UNIBE), J. Gasser (UNIBE) camera covering the energy range red at 1 AU by several instruments onboard ACE from 10 eV to 1 keV. with representative particle spectra obtained Method for gradual and impulsive SEPs, co-rotating inter- action regions (CIRs), anomalous cosmic rays Measurement (ACRs), and galactic cosmic rays (GCRs), and (top Past Achievements and Status panel inset) ion fluxes in the Voyager 1 direction Development & construction of instruments using in-situ observations from Voyager and We participated in the ion-optical design, remote ENA observations from Cassini and IBEX. Since the calibration of the IMAP-Lo Middle and lower panels: IMAP ion instruments development, and the manufacturing of ENA camera is one of our contribu- (SWAPI, CoDICE, HIT) and ENA Instruments the IMAP-Lo ENA camera. Moreover, we will tions to the IMAP project, we devel- (IMAP-Lo, -Hi, -Ultra) provide comprehensive ion perform the entire IMAP-Lo calibration with oped a novel Absolute Beam Monitor composition, energy, and angular distributions ENAs over the full energy range, and for all for all major solar wind species (core and halo), (ABM) for the precise determination interstellar and inner source PUIs, suprather- species of interest. of the flux of energetic neutral par- mal, energetic, and accelerated ions from SEPs, ticles of the neutral atom beam used CME-driven and CIR-associated interplanetary Website for the calibration. shocks, as well as ACRs. www.map.princeton.edu HELIOSPHERIC PHYSICS 62 Picture taken duringthethermalcycling testof the SXIsupportassemblybreadboard toverify Development &construction ofinstruments re-reinforced plasticandaluminium)atZHAW. Fachhochschule Nordwestschweiz (FHNW), W. Hajdas(Paul Scherrer Inst.,Switzerland) sci.esa.int//59138-science-objectives the durabilityofselectedmaterials(fib- Thermal designandradiatorassembly Space Research inSwitzerland 2018–2020 www.astro-helio.ch/project/sxi Swiss PrincipalInvestigator(s) G. Peikert (ZHAW, Switzerland) Space Acoustics, Switzerland H.-P. Gröbelbauer (FHNW) Univ. Leicester (UoL),UK Principal Investigator(s) Kögl Space, Switzerland Industrial contract(s) to Windisch, Switzerland In cooperation with Image credit: ZHAW. Inst. DataScience, S. Krucker (FHNW) Co-Investigator(s) S. Sembay(UoL) Measurement Institute Website Method software and data analysis team. software anddataanalysisteam. SMILE. FHNWisalsopartoftheSXI the SoftX-rayimager(SXI)onboard facturing oftheradiatorassembly sign includingthedesignandmanu- FHNW isinchargeofthethermalde- In collaborationwithSwissindustry, spheric physics. SMILE willrevolutionisemagneto- global andtime-dependentimages, with themagnetosphere.With these ture ofthesolarwind’s interaction sphere, thusrevealingtheglobalpic- movies fromoutsidethemagneto- novel approachwilltakeimagesand the Earth’s magnetosphere,SMILE’s observations fromwithinoraround en bysingleormulti-pointin-situ tospheric studiesweremainlydriv- netosphere. Whilepreviousmagne- dynamic interactionwiththemag- by measuringthesolarwindandits standing of the Sun-Earth connection aims tobuildamorecompleteunder Academy ofSciences(CAS).SMILE Space Agency(ESA)and the Chinese joint missionbetweentheEuropean sphere Link Explorer, or SMILE, is a The SolarwindMagnetosphereIono- Purpose ofResearch X-Ray –Soft XI Imager on SMILE 7.3

S - magnetosphere, SPIE:9905E,02R between thesolarwindandEarth‘s mission toinv Raab W, etal Publications SXI radiator. the Structural Thermal Modelofthe FHNW iscurrentlymanufacturing In collaborationwithSwissIndustry, mary DesignReview (PDR) in2019. SXI hassuccessfullypastthePreli- Past Achievements andStatus SXI SMILE CAS Abbreviations Time-Line Data evaluation Measurement Phase Construction Planning

. Soft X Ionospher Solar windM Chinese AcademyofScienc (2016) SMILE:ajointESA/CAS estigate theinteraction instrument side.Theradiator (shown ingreen) ismounted -Ray Imager places (lightgrey), andthere directly totheSXIdetectors. are two narrow cold fingers radiator asseenfrom the Current designoftheSXI to theinstrumentinfour e LinkExplorer connecting theradiator agnetosphere From 042027 2027 2024 2024 012023 2021 072020 2017 . To

es Swiss Academies Communications, Vol. 15, Nr. 10, 2020 63

7.4 SMILE – Solar Wind – Magnetosphere Interaction HELIOSPHERIC PHYSICS

Purpose of Research Abbreviations

The Solar wind Magnetosphere Ion- LIA Light Ion Analyser osphere Link Explorer (SMILE) mis- MIT Magnetosphere-Ionosphere- sion is a joint mission between the Thermosphere mission European Space Agency (ESA) and SMILE Solar Wind Magnetosphere the Chinese Academy of Sciences Ionosphere Link Explorer (CAS). SMILE aims to build a more complete understanding of the Sun- Earth connection by measuring the Publications solar wind and its dynamic interac- tion with the magnetosphere. Fuselier SA, Funsten HO, Heirtzler D, Janzen P, Kucharek H, McComas DJ, Möbius E, Moore SMILE will investigate the interaction between In particular, SMILE will investigate TE, Petrinec SM, Reisenfeld DB, Schwadron the solar wind with the terrestrial magneto­ sphere from an orbit that takes the spacecraft the dayside interaction and plas- NA, Trattner KJ, Wurz P (2010) Energetic even outside the magnetosphere into the solar ma reconnection processes taking neutral atoms from the Earth‘s subsolar wind. Image credit: ESA/ATG medialab. place there. It will investigate the magnetopause, Geophys. Res. Lett. 37: 13101, substorm cycles arising from distur- doi:10.1029/2010GL044140 bances of the magnetosphere by the solar wind, and it will investigate Petrinec SM, Dayeh MA, Funsten HO, Fuselier magnetic storms resulting from cor- SA, Heirtzler D, Janzen P, Kucharek H, onal mass ejections hitting the mag- McComas DJ, Möbius E, Moore TE, Reisenfeld netosphere. DB, Schwadron NA, Trattner KJ, Wurz P (2011) Neutral atom imaging of the magnetospheric We are participating with the Light cusps, J. Geophys. Res. 116: A7, CiteID A07203, Institute Ion Analyser (LIA) instrument to in- doi: 10.1029/2010JA016357 Physics Institute, Univ. Bern (UNIBE), vestigate the interaction of the solar Bern, Switzerland wind and magnetosheath under var- Wurz P, Balogh A, Coffey V, Dichter BK, ious conditions. Kasprzak WT, Lazarus AJ, Lennartsson W, In cooperation with McFadden JP (2007) Calibration Techniques, National Space Science Center (NSSC), in Calibration of Particle Instruments in Space Chinese National Space Science Centre, Past Achievements and Status Physics, (editors M. Wüest, D. S. Evans, R. von Chinese Academy of Sciences (CAS), Steiger), ESA Communications, ISSI Scientific China The LIA instrument is currently un- Report, SR-007, 117-276. der development, and is based on in- Principal Investigator(s) struments we developed earlier for L. Dai (NSSC) the Magnetosphere-Ionosphere-Ther- Time-Line From To mosphere mission (MIT) as well as Planning 2015 2017 Swiss Principal Investigator(s) the Chinese Mars Exploration Mis- P. Wurz (UNIBE) Construction 2017 2022 sion. Measurement Phase 2023 Co-Investigator(s) Data evaluation 2023 A. Galli (UNIBE)

Method Measurement

Development & construction of instruments Light Ion Analyser (LIA)

Website www.sci.esa.int/web/smile EARTH OBSERVATION, REMOTE SENSING 64 Use ofAPEXduringextensive measurement and duringairborneimagingcampaigns to Research basedonexisting instruments campaigns inthecalibrationhome base Space Research inSwitzerland 2018–2020 Vlaamse Instellingvoor Technologisch ESA/Earth Observation Envelope APEX inthecalibrationlaboratory. support EarthSystem Sciences. Principal/Swiss Investigator(s) Dept. Geography, Univ. Zurich Remote SensingLabs.(RSL) Onderzoek (VITO), Belgium M. E.Schaepman(RSL) In cooperation with Zurich, Switzerland Programme (EOEP) www.apex-esa.org Co-Investigator(s) B. Bomans(VITO) A. Hueni(RSL) Measurement ESA/PRODEX Institute Website Method borne andsatellite-basedsensors. calibrate andvalidateopticalair System Sciences,andtosimulate, source toanswerquestionsinEarth at aregionalscale,servingasdata to collectimagingspectroscopydata nm to2500nm.APEXisdesigned VITO, Belgium. ried outbyour partnerorganisation, abroad. General operationsarecar campaigns withpartnerinstitutes Switzerland andoccasional special the flightsforSwisspartners within algorithms. Inparallel,RSL manages since 2009usingthelatestprocessing low thereprocessingofdataacquired is beingcontinuouslyupdatedtoal- The processingandarchivingfacility phase oftheinstrument. persistent throughouttheoperational ing systemwhichisdesignedtobe tools are used for a versatile process- phisticated informationtechnology all APEXrawdataacquisitions.So- the processinganddistributionof database drivensystemsupporting ing Facility. Thelatterisauniversal, maintain theProcessingandArchiv- of products, and iv) to extend and the APEXinstrument,iii)generation value withinthecalibrationchainof management oftheproject,ii)added tasks, including:i)thescientific RSL isresponsibleforanumberof Past Achievements andStatus in theVNIR et al., 2015). It collects spectral data phase attheendof2010(Schaepman sortium and entered its operational programme by a Swiss-Belgian con- pement d’EXpériences scientifiques) PRODEX (PROgrammedeDévelop- iment) wasdevelopedunderthe eter APEX(AirbornePrismExper ESA’s AirborneImagingSpectrom- Purpose ofResearch Prism –Airborne Experiment PEX Sensing Remote Observation, arth 8.1 8

E A

SWIR rangefrom385 - - - 207-219 experiment (APEX),Rem applications withtheairborneprism radiometry measurements andEarthscience 5344-5352 imaging spectrometer APEX,Appl prism coatings onradiometryoftheairborne Hueni A,etal Geo calibration information system, IEEETrans Hueni A,etal Publications Prism Experiment-ImagingSpectr VNIR APEX Abbreviations Schaepman M,etal SWIR CHIME lite system. ment oftheupcomingCHIMEsatel- campaign tosupportthedevelop- APEX wasusedin2018anESA Time-Line Construction Planning Measurement Phase Data evaluation . Rem

.

. Sens . Visible andNear-Infrar Short W Imaging Mission Copernicus Hyper Airborne PrismExperiment . . (2014) Impactsofdichroic (2013) TheAPEX(Airborne . 51:5169-5180 . (2015) Advanced ave Infrared . Sens From 022010 2002 972000 1997 2011 2011 . . Environ spectral . Opt ometer) ed ongoing ongoing . 53: To . 158:

. erationally to carry outcalibration/ ESA FLEXsatellite. Itisalsousedop- idation activities fortheupcoming enhanced tosupportcalibration/val - SPECCHIO is currently being further oratories, UniversityofZurich. activities attheRemoteSensing Lab- is well-usedinresearchandteaching search institutionsworld-wideand SPECCHIO isinstalledinsome40re- chains. uncertainty vectorsandtraceability hours and to support the handling of tinous datastreamsduringdaylight ometric instrumentsdeliveringcon- cessing oftower-based spectroradi- to allowtheefficientstorageandpro- made tothesysteminpastyear velopment. Majorcontributionswere SPECCHIO remainsunderactivede- Past Achievements andStatus and promotionofbestpractice. superior reprocessing capabilities, to improvedrepeatabilityofresults, analysis activities,essentiallyleading of databutsupportscientistsin not onlyensurethelong-termstorage of aspectralinformationsystemwill laborative research.Thedevelopment tering bestpracticeprotocolsandcol- parameters andmetadata,thusfos- munity, aimstostandardisestorage tablished fortheremotesensingcom- A centralisedsystemforsuchdata,es- tems. and efficientmodellingofsuchsys- is seenasbeingkeytothesuccessful data andassociatedmetadata.This the organisedstorageofspectralfield have led to a burgeoning interest in ing thepredictionoffuturestates, of naturalsystemsovertime,allow- Scientific effortstoobservethestate Purpose ofResearch System Information PECCHIO –Spectral 8.2

S FLEX A APEX Abbreviations Australia Science Research Symposium, Melbourne, development for Australia , inGeospatial M (2012) Spectralinformation system Hueni A,ChisholmL Geosciences 37:861-873 distributed spectraldatabases,Computers & DataexchangeSchaepman M(2011) between Hueni A,M 35: 557-565 and datasharing,Computers &Geosciences SPECCHIO for improved longtermusability Itten K(2009)Thespectraldatabase Hueni A,Nieke J,Schopfer J,KneubühlerM, Publications www.specchio.ch. For furtherinformationpleasevisit: der fieldconditions. supporting its full functionality un- system ontheirpersonallaptop,thus which allowsanyonetorunthefull in 2015asavirtualmachineimage open sourceandwasmadeavailable remote sensing.SPECCHIOisalso within thedomainofEarthobserving vanced spectralinformationsystem SPECCHIO isatpresentthemostad- framework ofDigitalEarthAustralia. Australia startingin2020withinthe CHIO willbehostedbyGeoscience The AustralianinstanceofSPEC- and AVIRIS-ng instruments. trometer campaigns with the APEX validation forairborneimagingspec- VIRIS-ng

.

althus T, KneubuehlerM, . Fluor Generation Imaging Spectr Airborne Visible/Infrar Airborne PrismExperiment escence Explorer Mission , Suarez L, OngC,Wyatt, Suarez L, . ometer -Next ed

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 www.specchio.ch Website associated metadata. of spectralfieldandlaboratorydata and Spectral Information System for thestorage Development ofsoftware for Measurement Method N. Fox, National Physical Lab.,(NPL) M. Thankappan (GA) M. E.Schaepman(RSL) Chisholm(UoW,L. Australia) Co-Investigator(s) A. Hueni(RSL) Principal/Swiss Investigator(s) MetEOC (EMPIR) EcoSIS SENSECO COSTAction Geoscience Australia(GA) In cooperation with Zurich., Switzerland Dept. Geography, Univ. Zurich Remote SensingLabs.(RSL) Institute 65

EARTH OBSERVATION, REMOTE SENSING EARTH OBSERVATION, REMOTE SENSING 66 Space Research inSwitzerland 2018–2020 Astronomical Inst.,Univ. Bern (AIUB), Principal/Swiss Investigator(s) In cooperation with COST-G Consortium Co-Investigator(s) Bern, Switzerland www.cost-g.org U. Meyer (AIUB) A. Jäggi (AIUB) A. Jäggi Measurement Institute Website Method (IAG). International Associationof Geodesy products undertheumbrella ofthe tion ofgravity-derivedmasstransport realise along-awaitedstandardisa- EGSIEM initiative.COST-G aimsto combination prototypeserviceofthe tinues theactivitiesofscientific iable Gravity Fields (COST-G) con- The CombinationServiceofTime-Var ards. commonly agreedprocessingstand- on differentapproachesbutalso individual solutions which are based tions maybederivedbycombining to demonstratethatimprovedsolu- tific combinationservicewassetup Commission, a prototypeofscien- received fundingfromtheEuropean agement (EGSIEM)initiative,which vice forImprovedEmergencyMan- frame oftheEuropeanGravitySer times alsointermsofsignal.Inthe siderably intermsofnoiseandsome- ferent institutionsusuallydiffercon- earlier releases,thesolutionsofdif- icant improvementwithrespectto ly gravityfieldsrepresentsasignif- Although eachnewreleaseofmonth- monthly basis. data toderivemassvariationsona GRACE-FO Level-1Binstrument tions areprocessingtheGRACE/ FO), agrowingnumberofinstitu- by its Follow-On mission(GRACE- from space.Continuedmeanwhile mass variationsinthesystemEarth the-art techniquetogloballyobserve ,has beenestablishedasthestate-of- mate Experiment(GRACE)mission by theGravityRecoveryAndCli- as performedformorethan15years Ultra-precise inter-satellite ranging, Purpose ofResearch OST-G –Combination for Time-Variable Service Gravity Fields 8.3

C - - in thecourseofyear2020. to bereleasedonanoperational basis the GRACE-FOmissionare planned monthly gravityfields from dataof frame ofanESAinitiative.Combined sion as an operational product in the fields fromdataoftheSwarmmis- provides combinedmonthlygravity June 2017.Inaddition,COST-G also time periodbetweenApril2002and ty fieldscoveringtheentireGRACE of combinedGRACEmonthlygravi- COST-G hasprovidedafirstrelease and GRACE-FOproject. who aredirectlylinkedtotheGRACE tions ofPartnerAnalysisCenters, available solutionsornormalequa- makes useofexistingandpublicly Ranging (SLR).Inaddition,COST-G tracking (hl-SST)orSatelliteLaser GPS high-lowsatellite-to-satellite or fromnon-dedicateddatasuchas ellite-to-satellite tracking (ll-SST) GRACE orGRACE-FOlow-lowsat- iable gravityfieldmodels,e.g.from cessing standardstodelivertime-var apply agreed-uponconsistentpro- ing differentanalysismethodsbut COST-G analysis centers are adopt- from COST-G analysiscenters.The ing solutionsornormalequations of surfacemasschangesbycombin- coefficients and thereof derived grids both intermsofsphericalharmonic quality, robustness,andreliability global gravity models with improved ally provideconsolidatedmonthly gravity fields.COST-G willoperation- Field Service (IGFS) for time-variable Center of IAG’s International Gravity Geophysics (IUGG)asanewProduct International UnionofGeodesyand the 2019GeneralAssemblyof COST-G wasformallyestablishedat Past Achievements andStatus - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 67 EARTH OBSERVATION, REMOTE SENSING REMOTE EARTH OBSERVATION,

Publications Jean Y, et al. (2018) Combination of GRACE monthly gravity field solutions from Jäggi A, et al. (2019) European Gravity Service different processing strategies, J. Geod. 92: for Improved Emergency Management 1313-1328. (EGSIEM) – from concept to implementation, Geophys. J. Intl. 218: 1572-1590. Abbreviations Jäggi A, et al. (2020) International Combinati- on Service for Time-Variable Gravity Fields COST-G Combination Service for (COST-G), Intl. Assoc. Geodesy Symposia Time-Variable Gravity Fields Series, in press. EGSIEM European Gravity Service for Improved Emergency Meyer U, et al. (2019) Combination of GRACE Management monthly gravity fields on the normal GRACE Gravity Recovery And Climate equation level, J. Geod. 93: 1645-1658. Experiment GRACE-FO GRACE Follow-On

Greenland Ice Sheet

GFZ RL06 1000 CSR RL06 ITSG-Grace2018 COST-G 500

0

-500

Mass change [Gt] -1000

-1500

-2000

2002 2006 2010 2014 2018 Time [year]

GRACE-derived mass change time-series for the entire Greenland Ice Sheet (GIS) computed from gravity field solu- tions from different institutions and from the COST-G combined solution. Further analyses confirm a reduced noise level of the COST-G mass change time-series. For the entire GIS, but also for the majority of the individual GIS drai- nage basins, the COST-G mass change time-series show the lowest noise of all solutions used for the combination. EARTH OBSERVATION, REMOTE SENSING 68 Space Research inSwitzerland 2018–2020 Astronomical Inst.,Univ. Bern (AIUB), ESA‘s CPODQualityWorking Group Swiss PrincipalInvestigator(s) Principal Investigator(s) In cooperation with www.copernicus.eu J. Fernandez (GMV) Co-Investigator(s) Bern, Switzerland D. Arnold(AIUB) A. Jäggi (AIUB) A. Jäggi Measurement Institute Website Method Sentinel-3B Orbital Comparisons3DRMS(cm);External solutions vs. combined solution. 2015 and on 7 March 2017, respec- tinel-2B werelaunchedon22June twin satellitesSentinel-2AandSen- optical imageryforlandservices.The Sentinel-2 provideshigh-resolution RMS. an accuracy requirement of 5 cm 3D bit solutionsareexpectedtofulfill cial, non-time-criticalSentinel-1or April 2016,respectively. Theoffi- launched on3April2014and25 Sentinel-1A andSentinel-1Bwere ocean services.Thetwinsatellites and nightradarimageryforland Sentinel-1 providesall-weather, day needs oftheCopernicusprogramme. ellites aredevelopedforthespecific satellites. The so-called Sentinel sat- gramme consists of Earth observation The coreoftheCopernicuspro- ably manageourenvironment. standing of our planet and to sustain- a globalleveltoimprovetheunder vices delivernear-real-time dataon tu observations,theCopernicusser vation. Basedonsatelliteandin-si- European capacityforEarthObser gramme fortheestablishment of a istheEuropeanPro- Copernicus Purpose ofResearch Service Determination Orbit Precise pernicus 8.4

Co - - - - the CPODService. non-time-critical orbitsolutionsof quality andtoimprove the official, orbit solutionsareusedtocheckthe nation techniques.Thesealternative ent reduced-dynamicorbitdetermi- ware packagesandbasedondiffer with differentstate-of-the-artsoft- nel 1A/B,2A/Band3A/B,generated dependent orbitsolutionsforSenti- Group (QWG) regularly delivers in- Service, theCPODQualityWorking cise OrbitDetermination(CPOD) As partofESA’s Copernicus Pre- in theradialcomponent. fill an accuracy requirement of 2 cm Sentinel-3 orbitsolutions need toful- tively. Theofficial,non-time-critical 2016 andon25April2018,respec- nel-3B werelaunchedon16February satellites, Sentinel-3AandSenti- marine andlandservices.Thetwin optical, radarandaltimetrydatafor Sentinel-3 provideshigh-accuracy nel-2 orbitsolutions. ment hastobefulfilledfortheSenti- tively. Nostringentaccuracyrequire- - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 69 EARTH OBSERVATION, REMOTE SENSING REMOTE EARTH OBSERVATION,

Past Achievements and Status

Orbit solutions delivered by the members of the CPOD QWG are used for the validation of the non-time-critical orbit solutions on a regular basis. Every four months a so-called Regular Service Review (RSR) is performed. Orbit solutions from a selected time interval with- in the RSR period are compared to each other, to a combined solution and, in the case of Sentinel-3, to Sat- ellite Laser Ranging (SLR).

The Astronomical Institute of the (AIUB) is contrib- uting two solutions, a reduced-dy- namic solution without explicit modelling of non-gravitational forc- es (see solution labelled AIUB in the figure on the opposite page) and a fully dynamic solution relying on a more detailed force model (solution Artist‘ impression of the Sentinel-3B satellite. Image credit: ESA. labelled AING). The RSR analyses confirm that the quality of the de- livered AIUB solutions is among the Publications best of all solutions contributing to the CPOD QWG. Montenbruck O, Hackel S, Jäggi A (2018) Precise orbit determination of the Sentinel-3A The AIUB solutions are in particular altimetry satellite using ambiguity-fixed GPS making use of single-receiver ambi- carrier phase observations, J. Geodesy. 92: guity resolution techniques which 711-726. are based on the GPS products of the Center for Orbit Determination in Schaer S, Villiger A, Arnold D, Dach R, Prange Europe (CODE) hosted at AIUB. Be- L, Jäggi A (2020) The CODE ambiguity-fixed sides precise GPS satellite orbits and clock and phase bias analysis products and clock corrections, the CODE product their properties and performance, J. Geodesy., portfolio includes a new signal-spe- submitted. cific GPS satellite phase bias prod- uct. Abbreviations Due to the demonstrated significant improvements of orbit quality when CODE Center for Orbit Determination performing single-receiver ambiguity in Europe resolution, the official CPOD solu- CPOD Copernicus Precise tion has been upgraded to make use Orbit Determination of the CODE products since spring CPOD QWG CPOD Quality Working Group 2020. (CPOD QWG) EARTH OBSERVATION, REMOTE SENSING 70 Improvement oftheAPEXsensormodeland system). Calibrationsupportfor new CWIS-II Establishment ofuncertainty budgetsup- port withinspectraldatabases(SPECCHIO test ofnew spectralcalibrationmethods. Research basedonexisting instruments Space Research inSwitzerland 2018–2020 Industrial hardware contract(s) to imaging spectrometer (builtin Dept. Geography, Univ. Zurich, collaboration withNASA/JPL). National Physical Lab.(NPL) Remote SensingLabs.(RSL) Principal Investigator(s) M. E.Schaepman(RSL) Swiss Investigator(s) In cooperation with Zurich., Switzerland Co-Investigator(s) www.meteoc.org A. Hueni(RSL) Measurement N. Fox (NPL) NASA/JPL Institute Website Method UK validation network for the upcoming ly existingflux towerstoserveasa currently being deployed on main- tems. FLoXspectroradiometers are estimates inspectralinformation sys- implement automateduncertainty cence willbeusedasacase study to measure sun-inducedplant fluores- An in-situinstrumentdesignedto system. the SPECCHIOspectralinformation cessing andstoragesystemssuchas the supportofuncertaintyinpro- once moretofurtherworktowards in theupcomingMetEOC-4project Climate). Thiscapacitywillbeused trology forEarthObservationand jects (MetEOC-1 and MetEOC-2; Me- (NMIs) hasbeenbuiltupinpastpro- to NationalMeasurementInstitutes and calibrationatalevelapplicable The capacitytoworkonuncertainty Past Achievements andStatus monitoring oftheEarthSystem. budgets, supportinghigh-precision ble measurementswithuncertainty efforts aregearedtoprovidetracea- II imagingspectrometer. Allthese tional calibrationofthenewCWIS- be establishedtoenabletheopera- mation System,asimilarsystemwill Based ontheAPEXCalibrationInfor – – ated uncertaintybudgetsinclude: satellite basedproductswithassoci- Key aspectstovalidatedairborneand Purpose ofResearch MRP MetEOC-3 MetEOC-4 /EMPIR 8.5

on systems. budgets withinspectralinformati through supportinguncertainty spectral groundcontrolpointdata Paving thepathwaytotraceable accuracy. ve bothcalibrationspeedand ric calibrationmethodstoimpro- Improvement ofspectro-radiomet

E - - - MetEOC Publications Flux tower FLoX FLEX EMRP APEX Abbreviations Earth Obs considerations, IEEEJ spectroscopy cross-validation –some D, SchaepmanM(2017) Fieldandairborne Hueni A,DammKneubuehlerM,Schläpf Spectrometer APEX,Appl on radiometryoftheAirborneImaging ME (2014) Impactsofdichroic prismcoatings Hueni A,Schlaepfer D, JehleM,Schaepman CWIS-II bration andvalidationmethods. the systemandaidprobabilisticcali- propagation ofuncertaintywithin instrument levelwillenablethe Uncertainty budgetsdefinedatthe provided bytheFLoXinstruments. cess andqualitycontroldiurnaldata dated to automatically ingest, pro- The SPECCHIOsystemisbeingup- satellite mission. ESA FLEX(FluorescenceExplorer)

NMI SPECCHIO

. Remote Sensing10:1117-1135

CO Observ Fluor Fluor Pr Eur Spectr Compact Wide-S Airborne PrismExperiment Spectral Inf National M and Climate M etrology for Earth Observation ogramme 2 exchange opean Metrology Research escence Box instrument escence Explorer ometer ation stationtotrack . SelectedTopics Appl easurement Institute ormation System . Opt wath Imaging . 53:5344-5352 .

er .

.

– – – The maincomponentsofARESare: Sciences. questions withintheEarthSystem ty topredominantlyaddressresearch ARES isanairborneresearchfacili- Purpose ofResearch Research System –Airborne FacilityRES Earth for the 8.6 chiving facilities. payload specificprocessingandar acceptance testsandestablishmentof ponents, airworthiness certifications, and software,integrationofthecom- purchase/development ofhardware the ARESinfrastructure,including The goalofthisprojectistoestablish

giving attitudeand control andnavigationalsystem A flightmanagement,instrument multispectral LiDAR, of animagingspectrometer(IS),a An instrumentpackageconsisting during flightperiods. An aircraft,leasedorcontracted data products. an automatedgeorectificationof positional informationallowing grammetric camera(hpPC). and ahigh-performancephoto-

A

- VITO CWIS-II AVIRIS-ng APEX Abbreviations page: https://ares-observatory.ch ther informationisontheARESweb- operational servicein2021-2022.Fur It isexpectedthatCWIS-IIwillenter AVIRIS_ng sensorwithNASA/JPL. in collaborationwithVITOandthe ing conductedwiththeAPEXsensor imaging campaignsarecurrentlybe- struction atNASA/JPL.Airborne sensor headiscurrentlyundercon- The CWIS-IIimagingspectrometer Past Achievements andStatus ARES Time-Line Construction Planning Data evaluation Measurement Phase

Onderzoek (VIT Vlaamse Instellingv Spectr Compact Wide-S Imag Airborne Visible/Infrar f Airborne R Airborne PrismExperiment or theEarthSystem . Spectr ometer esearch Facility . -next generation From 02- - 2022 2022 082021 2018 072018 2017 O), Belgium operations. ARES duringair wath Imaging oor Techn ed To

.

- Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 www.ares-observatory.ch Website the ISincollaboration withUZH NASA/JPL for thedevelopment of Industrial hardware contract(s) to Measurement Method R. Veron (EPFLENAC), G.Mariethoz (UniL) A. Wüest (EAWAG), M.Hoelzle(UniFr) K. Schindler(IGP),B. Buchmann(EMPA) S. Seneviratne (IAC), N.Buchmann(IAS) A. Hueni(RSL),R.Furrer (UZH) Co-Investigator(s) M. E.Schaepman(RSL) Principal/Swiss Investigator(s) tre, Univ. Lausanne(UniL) (UniFr); Inst.desDynam.delaSurface Terres- EMPA; EAWAG; EPFLENAC; Univ. Fribourg Inst. Geodesy&Photogramm.(IGP, ETHZurich) Inst. AgriculturalSciences (IAS,ETHZurich) Inst. Atmos.ClimateScience (IAC, ETHZurich) Institute for Mathematics (UZH) ETH Zurich In cooperation with Zurich, Switzerland Dept. Geography, Univ. Zurich, Remote SensingLabs.(RSL) Institute 71

EARTH OBSERVATION, REMOTE SENSING EARTH OBSERVATION, REMOTE SENSING 72 Fraunhofer Inst.HighFrequency Physics & Space Research inSwitzerland 2018–2020 MEMPHIS sensorinstalledonboard a Radar Techniques (FHR), Germany Principal/Swiss Investigator(s) Dept. Geography, Univ. Zurich, E. Méndez (RSL) DomÍnguez Remote SensingLabs.(RSL) armasuisse, Switzerland C–160 Transall airplane In cooperation with Zurich, Switzerland Co-Investigator(s) D. Henke (RSL) D. Small(RSL) Institute receiving antennas insingle-pass of thesignals recorded withthefour focused aftertomographic processing gen (Germany).The3Dimages were Hinwil (Switzerland)andMemmin - The datasetswereacquired over baseline cross-track interferometry. antennas, enablingsingle-pass multi- was equippedwithfourreceiving SAR systematKa-band.Thesensor FHR’s MEMPHISsensor, apulsed were recordedwithFraunhofer In 2012and2013,variousdata-sets Past Achievements andStatus change detectiontasks. LiDAR methodstoimproveSAR approaches, andwell-established bine advantagesofboth2DonlySAR high resolutionSARimagerytocom- ing the properties of 2D and 3D very a three-stagemethodcomplement- with 3DSARimagery, wedesigned order toperformchangedetection terers withintheresolutioncell.In layover anddetectmultiplescat- TomoSAR also permitstoresolve ter andheightinformation. allows theanalysisofboth,backscat- SAR), generatesa3Dpointcloudthat known astomographicSAR(Tomo - ture inelevation.Thisconfiguration, by extensionofthesyntheticaper data: SARsensorsprovide3Dimages ly duetothelimitedavailabilityof aperture radar (SAR) imagery, main- information containedinsynthetic ods donotexploitthepotentialof3D ric processing. However, these meth- optical imagesafterphotogrammet- performed onlywithLiDARdataor Traditionally, 3D change detection is man activityandforestmonitoring. applications in urban studies, hu- pands thescopeofchangedetection Information on3Dstructuresex- Purpose ofResearch Radar Tomography Aperture –Synthetic ARCD for Applications Detection Change 8.7

S - detection purposes. dium densityurbanareasfor change mographic SARdata acquired inme- demonstrating theperformanceofto- This workprovidesfirstreferences ter differenceonly. tained whenexploitingthebackscat- factor 1.2incomparisontothatob- field, kappafurtherimprovedbya ed bymeansofaconditionalrandom and height differences were exploit- 3D approaches.Whenbackscatter a factor 1.7 in comparison to common son toestablished2Dmethodsandby improved byafactor2.1incompari- showed thatthekappacoefficient In globalterms,numericalevalution and someotherexistingapproaches. assessment oftheproposedmethod ground truth,weperformedquality stages. Afterlabellingasynthetic ing themapsfromtwoprevious nal 3D change map derived after fus- In thethirdstage,wecomputedafi- means ofaconditionalrandomfield. ference inbackscatter and height by we combinedinformationofthedif- rive thecorrespondingchangemap by tallobjectsusing3Dimages.To de- Second, wedetectedchangescaused space ofthesingle-lookimages. detecting changesattheresolution by presenceofimageartifactswhile ing modetoreduceerrorscaused single-look andmultisquintprocess- ing a2Dapproachthatexploitsboth targets withlowverticalextentus- First, wedetectedchangescausedby stages: mode. Themethodconsistedofthree Vannes, France, 22-24 May 2019 Urban Remote SensingEvent (JURSE), for changedetectionapplications,Joint (2019) M Geosci VHR SARimagechangedetection,IEEETrans back-projection tomographicframework for Small D Méndez DomínguezE,Magnard C,Meier E, Publications incoming targets.Red voxels: leavingtargets. SAR tomography. Changemapoverlaid onthereference 3DamplitudeSARimage.Green voxels: Detection ofthemovement ofacrane(top)andtheconstruction ofanew building(bottom) using éndez DomínguezE,SmallD, Henke D Synthetic aperture radartomography . Remote Sensing57:4470-4484 . , SchaepmanME,Henke D(2019) A . . .

TomoSAR SAR MEMPHIS Abbreviations

R S Interf M M T omographic Synthetic Aperture ynthetic Aperture Radar adar onopulse High-resolution ulti-frequency Experimental erometric SAR

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 SAR_Lab www.geo.uzh.ch/en/units/rsl/research/ Website Airborne SARsensors Research basedonexisting instruments Measurement Method 73

EARTH OBSERVATION, REMOTE SENSING EARTH OBSERVATION, REMOTE SENSING 74 Development &construction ofinstrument(s) Inst. AppliedPhys. (IAP),Univ. Bern(UNIBE), Development ofon-board andon-ground Airbus Space andDefence, UKandSpain Space Research inSwitzerland 2018–2020 calibration facility atTK Instruments,UK. MWS on-board targetinthethermal Industrial hardware contract(s) to Swiss PrincipalInvestigator(s) calibration equipment M. Kotiranta (UNIBE) In cooperation with TK Instruments,UK TK Instruments,UK Co-Investigator(s) Bern, Switzerland A. Murk (UNIBE) IABG, Germany IABG, Germany Measurement Institute Method tion targetstobeexceeded. performance of the on-board calibra- the ICIantennadesign,allowing signed aswedgedcavitiesmatchedto ture. Theseon-groundtargetsarede- genic orvariablebrightnesstempera- providing sceneswithaneithercryo- performance ofICIpriortolaunchby will beusedtoverifytheradiometric body calibrationtargetsforICI.They velopment oftwoon-groundblack- The IAPisalsocontributingtothede- calibration targetsofMWSandICI. mental verificationoftheon-board tromagnetic design and the experi- Univ. Bernisresponsiblefortheelec- tion oftheinstruments.TheIAPat for theaccurateradiometriccalibra- blackbody targetswhicharerequired component ofMWSandICIaretheir GHz tocharacteriseiceclouds.Akey frequencies between175GHzand670 while theICIradiometerswillcover temperature andhumidityprofiles, and 230GHztomeasureatmospheric wave radiometersbetween23GHz (MetOp-SG). MWSincludesmicro- Meteorological OperationalSatellites ments forthesecondgenerationof Ice Cloud Imager (ICI) are two instru- The Microwave Sounder (MWS) and Purpose ofResearch Calibration Targets for and– MWS Instruments ICI etOp 8.8

ICI on-ground calibrationtargetsduring integrationatIABG,Germany. M foreseen in2021and2022. MetOP-SG programmearecurrently in 2020.Thefirsttwolaunchesofthe ly testedin2019,withfurthertesting on-board targets were also successful- (PFM) modelsoftheMWSandICI engineering (EM)andproto-flight cessfully characterisedin2019.The ground calibrationtargetswassuc- tively. TheRFperformanceoftheon- in JanuaryandApril2018,respec- tion targets were successfully passed the on-boardandon-groundcalibra- The CriticalDesignReviews(CDR)of Past Achievements andStatus Technol Schr Noordwijk, NL Sensors &Rem Murk A,etal Publications Time-Line Measurement Phase Construction Planning öder A,etal . 7:677-685 . (2019) 6thWorkshop onAdv . . SensingInstr . (2017), IEEETrans .

From 082020 2018 062018 2016 032015 2013 . , ESTEC, , ESTEC, . THzSci To . RF RF .

Swiss Academies Communications, Vol. 15, Nr. 10, 2020 75

9 Comets, Planets

9.1 ROSINA Analysis and Data Archiving COMETS, PLANETS COMETS,

Research and Status measured throughout the whole mis- sion, are now freely available to all interested amateurs and experts The Rosetta spacecraft spent 2 years around the world at the following in the close vicinity of comet 67P/ web address: https://archives.esac. Churyumov-Gerasimenko before the esa.int/psa. mission ended on 30 September 2016 with a soft landing on the comet’s surface. During that time, ROSINA Publications carried out a wealth of measure- ments, the analysis of which is ongo- Altwegg K, et al. (2020) Evidence of ing. The abundance of data continues ammonium salts in comet 67P as explanati- to reveal key aspects about the nature on for the nitrogen depletion in cometary of the comet’s near-nucleus gas envi- comae, Nature Astronomy: 1-8, https://doi. ronment and the ices contained in its org/10.1038/s41550-019-0991-9 nucleus (Rubin et al., 2019). For in- stance, a sizeable number of organic, Hänni N, et al. (2019) Ammonium salts as a oxygen-bearing molecules have been source of small molecules observed with identified in the of the comet high-resolution electron-impact ionization Rosetta OSIRIS Wide Angle Camera image of comet (Schuhmann et al., 2019). mass spectrometry, J. Phys. Chem. A 123 (27), 67P/Churyumov-Gerasimenko on 9 Sep. 2016. Image https://doi.org/10.1021/acs.jpca.9b03534 credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/ A recent and remarkable finding re- LAM/IAA/SSO/INTA/UPM/DASP/IDA. veals the presence of ammonium Rubin M, et al. (2019) Elemental and salts and explains the deficiency of molecular abundances in comet 67P/ nitrogen in comets observed to date Churyumov-Gerasimenko, Monthly Notices of Institute (Altwegg et al., 2020). As with many the Royal Astronomical Society 489: 594-607, Space Res. & Planetary Sci., Inst. Phys., other investigations, these conclu- https://doi.org/10.1093/mnras/stz2086 Univ. Bern (UNIBE), Bern, Switzerland sions were supported by accompany- ing laboratory calibrations using the Schroeder IR, et al. (2019) A comparison In cooperation with flight spare instruments of ROSINA between the two lobes of comet 67P/ ESA, MPS, TUB, BIRA, CESR, CNRS, (Hänni et al., 2020). Furthermore, Churyumov-Gerasimenko based on D/H LATMOS, IPSL, LMM, UMich, SwRI

Schroeder et al., (2019) reported no ratios in H2O, MNRAS 489: 4734-4740, https:// statistically significant difference in doi.org/10.1093/mnras/stz2482 Principal/Swiss Investigator(s) the deuterium-to-hydrogen ratio in K. Altwegg (UNIBE) the water originating from the two Schuhmann M., et al. (2019) Aliphatic and lobes of the comet (see Figure). This aromatic hydrocarbons in comet 67P/Churyu- Co-Investigator(s) is consistent with both parts having mov-Gerasimenko seen by ROSINA, H. Balsiger (UNIBE), J.-J. Berthelier (LATMOS), formed in the same region in the pro- Astronomy & Astrophys., https://doi. C. Briois (CNRS), M. Combi (UMich), B. Fiethe toplanetary disc before their colli- org/10.1051/0004-6361/201834666 (TUB), S. Fuselier (SwRI), T.I. Gombosi (UMich), sional merger. K.C. Hansen (UMich), E. Kopp (UNIBE), A. Korth (MPS), U. Mall (MPS), H. Rème (CNRS), M. Rubin All these results bear witness to the Abbreviations (UNIBE), H. Waite (SwRI), P. Wurz (UNIBE) richness of the ROSINA dataset. The analysis is ongoing and there are still ROSINA Rosetta Orbiter Spectrometer Research based on existing instruments numerous key questions to be ad- for Ion and Neutral Analysis Rosetta ROSINA dressed. The ROSINA datasets have therefore been fully incorporated Time-Line From To Industrial hardware contract(s) to into ESA’s Planetary Science Archive Contraves (RUAG) Space, APCO, Montena, etc. Planning 1995 1996 and NASA’s Planetary Data System. All measurements, from raw format Construction 1996 2002 Website to higher level data products, includ- Measurement Phase 2014 2016 www.space.unibe.ch/research/research_ ing densities of individual gases Data evaluation 2014 ongoing groups/rosina COMETS, PLANETS north poleofMars begantothaw. They are pictured As northernspringbegins,dunesofsandnearthe here inlateMay 2019 by theCaSSISinstrumenton CaSSIS imageofdefrosting sanddunesonMars. 76 M.R. El-Maarry, E.Hauber, Wray Hansen,J.J. C.J. UNIBE developed andbuiltCaSSISwithparts M. Massironi, A.S.McEwen, C.Okubo,P. Wajer, Development &construction ofinstrument(s) Astronomical Observatory ofPadova, Italy J.C. Bridges,S.Byrne,V. DaDeppo,S.Debei, N. Mangold, L. Marinangeli,N. Mangold,W.J. L. Markiewicz, Space Research Centre inWarsaw, Poland A. Ivanov, Keszthelyi, L. R.Kirk,Kuzmin, P. Tornabene Orleanski,A.Pommerol, L.L. Space Res. &PlanetarySci.,Inst.Phys., Space Research inSwitzerland 2018–2020 supplied by Italy, PolandandHungary. G. Cremonese (Co-PI),M.Banaskiewicz, Univ. Bern(UNIBE),Bern,Switzerland Industrial hardware contract(s) to ESA‘s ExoMars Trace GasOrbiter. Principal/Swiss Investigator(s) Space Switzerland), Zurich RUAG (now Thales-Alenia www.cassis.unibe.ch In cooperation with N. Thomas(UNIBE) Co-Investigator(s) Measurement Institute Website Method defining newlanding sites. will playarole incharacterisingand rope andthe United States. CaSSIS stimulate explorationplans inEu- The discoveryofmethanehas helped driven byEMTGOdiscoveries. ty ofnewcandidatelanding sites 3. Searchforandhelpcertifythesafe- gases. for theoriginand/orreleaseoftrace mulate andtestspecifichypotheses ority on imaging these regions to for realised), CaSSISwillplacetoppri- discoveries aremade(ifthatgoalis (perhaps totensofkm).Oncethese gases backtotheirsourceregions pheric dynamicsinordertotracethe discover tracegasesandstudyatmos- EMTGO experimentsaredesignedto ments totesthypotheses. tion asdeterminedbyotherexperi- 2. Map regions of trace gas origina- Mars. the surface structure in key places on used toderive3Dinformationabout release. Thestereocapabilityisbeing haps linkedtomethaneformationor ours indicate active processes, per on Mars.Unusualorchangingcol- concerning activesurfaceprocesses needed totestspecifichypotheses itises listsofobservationtargets The scienceteamcompiles and prior that mightberelatedtotracegases. stand thebroadrangeofprocesses and sinksinordertobetterunder possibly relatedtotracegassources 1. Imageandanalysesurfacefeatures objectives. ing systemhasthefollowingmain launched inMarch 2016. Theimag- Trace GasOrbiter(EMTGO)mission CaSSIS is onboard ESA’s ExoMars Purpose ofResearch aSSIS Colour –The Imaging System and Surface Stereo 9.2

C - - - - and JezeroCrater. landing sites such asOxiaPlanum are beingusedto characterise future revealing detailsofthesurfaceand The fullcolourobservationsarealso resolution havebeenconstructed. which digitalterrainmodelsathigh date. Theseincludestereopairsfrom has acquiredover10,000imagesto be fullyfunctionalinMarsorbitand The instrumenthasbeenshownto Past Achievements andStatus EMTGO CaSSIS Abbreviations Res the southpolarice capofMars , Geophys G (2019) Timescalesoftheclimaterecord in Simioni E,SuttonSS,Tulyakov S,Cremonese Bec Science Reviews 212:1871-1896 Trace GasOrbiterCaSSISImager,Space performance andcalibrationoftheExoMars R Space Science Reviews 212:1897-1944 (CaSSIS) for theExoMars Trace GasOrbiter, Colour andStereo Surface ImagingSystem Thomas N,and60colleagues (2017) The Publications Time-Line Planning Data evaluation Apr Measurement Phase Construction oloff V erra P, SoriMM,ThomasN,Pommerol A, . Letts

. , and24colleagues (2017) On-ground . 46:7268 Ex Imaging S The ColourandSter oMars Trace GasOrbiter . ystem Apr Oct From 08>2022 2018 . . . 21 Oct 2010 2018 21 Nov 2013 . eo Surface >2020 . . To . 2013 2015 .

backshell, usedtoprotect thelanderduringdescent, are alsomarked. Imagecredit: ESA/Roscosmos/CaSSIS. the bluishcoloured solarpanelsofInSightstandoutagainstthered colour ofMars. Theheatshield, released by InSightjustbefore landing,andthe its retro rockets justbefore touchdown. The colour capabilityoftheCaSSISimageshows InSightasabrighterdotinthecentre ofthedarkpatch,while An area ofabout2.25kmxintheElysium Planitiaregion isshown intheimage.Adarkapron ofmaterialwas produced whenthelanderfired November 2018. TheInSightmissionisdesignedtostudytheinteriorofMars andincludesaseismometerexperiment towhichETHZurichcontributed. The CASSISimageshows apanchromatic channelimageoftheInSightlandingsiteonMars. NASA’s InSightLanderarrived onthesurface ofMars on26 Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 77

COMETS, PLANETS COMETS, PLANETS 78 Work onbothexpts, hasstartedandinitialde- Development &construction ofinstrument(s) signs are beingprepared for approval by ESA. (LAM), A.Kereszturi (RCAES),M.Grabe(DLR), Space Res. &Planet.,Phys. Inst.,Univ. Bern, Preliminary designoftheCoCacamerasystem. DLR Inst.PlanetaryRes., Berlin,Germany U. Mall (MPS),M.Steller(IWF)andothers. H. Michaelis (DLR), L. Lara (IAA), L. Jorda Lara(IAA),L. H. Michaelis(DLR),L. Lab. d‘Astrophysique, Marseille, France Space Research inSwitzerland 2018–2020 Inst. Weltraumforschung, Graz,Austria DLR Inst.for Aerodynamics &Flow Inst. deAstro. deAndalucia,Spain Wigner Inst.,,Hungary Technology, Göttingen,Germany Principal/Swiss Investigator(s) www.cometinterceptor.space (UNIBE), Bern,Switzerland M. Rubin (MANiaC,UNIBE), N. Thomas(CoCa,UNIBE), In cooperation with Co-Investigator(s) Measurement Institute Website Method comet reservoirs. reveal thepropertiesof different and chemical signatures that could The aim will beto search forphysical at 1P/Halley. at 67P/Churyumov-Gerasimenko and to thedetailedobservationsobtained terceptor mission will be compared The informationfrom the CometIn- – – include thefollowing: The specificgoalsoftheprogramme entific return. imise costswhilemaximisingthesci- Bern inanapproachdesignedtomin- consortium ledbytheUniversityof Both instrumentswillbebuiltbya ments onboard the main spacecraft. Coma) are two of the principal instru- (Mass AnalyserforNeutralsina CoCa (CometCamera)andMANiaC (JAXA), andperformafastfly-by. pan AerospaceExplorationAgency sub-spacecraft fromESAandtheJa- then besenttotheobject,deploytwo Solar System.Thespacecraftwill an interstellarobjectenterstheinner a DynamicallyNewComet(DNC)or Lagrangian point(L2)andwaituntil Comet Interceptorwillbesenttoa together withAriel. be launchedasasecondarypayload at 150MEuro).Themissionisdueto tor asitsfirstF-classmission(capped has recently selected Comet Intercep- The EuropeanSpaceAgency(ESA) Purpose ofResearch Interceptor for Comet and MANiaC oCa 9.3

on ofaDNC’s iceswithMANiaC. T with CoCa. T o obtainthechemicalcompositi- o imagethenucleusofaDNC

C sion. and IcyMoonsExplorer(JUICE)mis- instrumentonESA‘sJupiter and read-outwillbederivedfromthe used forCaSSISwhilethedetector left. Thetelescopeisbaseduponthat CoCa camerasystemisshownonthe A preliminarydesigndrawingofthe sign. ities and provisional spacecraft de- consideration thespacecraftcapabil- being developed.Thesewilltakeinto tailed preciserequirementsarenow ments havebeenperformed and de- Initial designsforthetwoinstru- or early2022. of themissiontargetedforlate2021 Phase Aisjuststartingwithadoption Past Achievements andStatus JUICE DNC MANiaC JANUS CoCa Abbreviations wait, Nature Communications10:5418 Space Agency’s CometInterceptor liesin Snodgrass C,JonesGH(2019) TheEuropean Publications Time-Line Planning Construction Data evaluation Measurement Phase

Coma M Jupiter andIcyM Undique Scrutator Jo Dynamically Ne Comet Camera ass Analyser for Neutralsina vis, AmorumacNatorum From 002022 2020 082032 2028 032026 2023 012035 2031 w Comet oons Explorer . To

Swiss Academies Communications, Vol. 15, Nr. 10, 2020 79

9.4 MINPA – Mars Ions and Neutral Particles Analyser COMETS, PLANETS COMETS,

Purpose of Research Past Achievements and Status

The Mars Global Remote Sensing Or- MINPA combines, for the first time, biter and Small Rover mission, also the capability to record plasma ions known as Huoxing-1, is a mission as well ENAs. For the plasma ions, currently implemented by China to MINPA performs full-sky observa- send a spacecraft to Mars (Huoxing tions resolved in energy, angle (ele- simply means Mars in Chinese). vation and azimuth) and species.

The mission consists of an orbiter, a Charge conversion technology, de- lander and a rover. The mission is veloped by the University of Bern, is planned to be launched in July 2020. used for the registration of ENAs with The scientific instruments on the or- the ionised particles being analysed biter are: by the ion optical system of the ion Integration of the MINPA flight instrument, for the measurement. Chinese Mars Global Remote Sensing Orbiter and Small Rover mission, into the MEFISTO calibration – Medium Resolution Camera facility for calibration with ions and ENAs. (MRC) with a resolution of 100 m MINPA has been successfully built from a 400 km orbit. and calibrated. – High Resolution Camera (HRC) with a resolution of 2 m from a 400 km orbit. Publications – Mars Magnetometer (MM). – Mars Mineral Spectrometer Galli A, Wurz P, Barabash S, Grigoriev A, (MMS), to determine mineral Gunell H, Lundin R, Holmström M, Fedorov A Institute composition. (2006) Energetic hydrogen and oxygen Phys. Inst., Univ. Bern (UNIBE), – Orbiter Subsurface Radar (OSR). atoms at the nightside of Mars, Space Bern, Switzerland – Mars Ion and Neutral Particle Science Rev. 126: 267-297. Analyser (MINPA). In cooperation with Galli A, Wurz P, Kallio E, Ekenbäck A, National Space Science Center, NSSC The University of Bern is participat- Holmström M, Barabash S, Grigoriev A, Chinese National Space Science Centre, CAS ing in the MINPA instrument to study Futaana Y, Fok M-C, Gunell H (2008) The China the interaction of the solar wind/ tailward flow of energetic neutral atoms Mars atmosphere by measuring the observed at Mars, J. Geophys. Res. 113: E12012, Principal Investigator(s) ion and energetic neutral atom (ENA) doi:10.1029/2008JE003139 A. Zhang (NSSC) environment at Mars. Wurz P, (2000) Detection of Energetic Neutral Swiss Principal Investigator(s) Particles, in „The Outer Heliosphere: Beyond P. Wurz (UNIBE) Time-Line From To the Planets“, (eds. K Scherer, H Fichtner, and E Marsch), Copernicus Gesellschaft e.V., Co-Investigator(s) Planning 2017 2018 Katlenburg-Lindau, Germany, 251-288. A. Galli (UNIBE) Construction 2019 2019

Measurement Phase 2020 Method Data evaluation 2021 Abbreviations Measurement

ENA Energetic Neutral Atom Development & construction of instrument(s) MEFISTO MEsskammer für Flugzeit- Mars Ions and Neutral Particles Analyser InStrumente u. Time-Of-Flight (MINPA) MINPA Mars Ions and Neutral Particles Analyser Website www.en.wikipedia.org/wiki/Mars_Global_Re- mote_Sensing_Orbiter_and_Small_Rover COMETS, PLANETS 80 Artistic impression ofInsightonitslandingsite. Development &construction ofinstruments Electronics box, includinginstrument power P. Lognonné(Inst.Physique duGlobe,Paris) J. Clinton,D. Mance, J.tenPierick,P. Zweifel Center Nationald‘ÉtudesSpatiales(CNES), conditioning andacquisition, andcontrol Jet Propulsion Lab.(JPL),Pasadena, USA Space Research inSwitzerland 2018–2020 Inst. Physique duGlobe,Paris, France electronics for theSEISinstrument. Imperial College,London,England Industrial hardware contract(s) to SYDERAL SWISSSA,Switzerland Swiss PrincipalInvestigator(s) Inst. Geophysics, ETHZurich MPS, Göttingen,Germany Principal Investigator(s) D. Giardini (ETHZurich) www..ethz.ch In cooperation with Zurich, Switzerland Image credit: NASA Co-Investigator(s) Toulouse, France Measurement Institute Website Method in Toulouse, France. (Center National d’EtudesSpatiales) strument isunder theleadofCNES in Pasadena,USA,andthe SEIS in- SA’s Jet Propulsion Laboratory (JPL) The missionisunderthelead ofNA- – – – – as follows: main science objectives are defined composition oftheplanetMars.The through theinteriorstructureand measuring seismicwavestravelling periment forInteriorStructure)is The SEIS instrument (Seismic Ex- – – – The threeinstrumentsare: look attheplanet’s internalactivity. Mars totakethefirst-everin-depth three instrumentsonthesurfaceof The InSight Lander has deployed the planet’s core,,andcrust. ness, densityandoverallstructureof this enditisstudyingthesize,thick- of theprocessesthatshapedMars.To our knowledgeoftheearliesthistory InSight’s mainobjectiveistoimprove Purpose ofResearch SeismicEIS –InSight for Interior Structure Experiment 9.5

and theimpactrateatMars. the presentleveloftectonicactivity structure ofthemantle.Determine Determine thecompositionand structure ofthecrust. Determine thethicknessand the core. and physicalstate(liquid/solid)of Determine thesize,composition, Mars. interior structureandprocessesof through investigationofthe evolution oftheterrestrialplanets Understand theformationand planet. ting thewobblyrotationof The RISEexperimentforcalcula interior toitssurface. the heatflowfromplanet’ The HP3instrumenttoquantify . ring seismicwavesofMartian The SEISinstrumentformeasu

S s

- - the InSightmission, andprovidekey catalogue forMars, acriticaltargetfor a comprehensive high-qualityevent The goalofthisserviceisto create mic eventsaswellmeteor impacts. tion oflocalseismicityand teleseis- event detectionandthecharacterisa - cludes bothautomaticandreviewed SEIS data.TheMarsquakeServicein- ing acatalogueofseismiceventsfrom the MarsquakeServicethatisbuild- tute ofGeophysicsareresponsiblefor dynamics Group(SEG)attheInsti- (SED) andtheSeismologyGeo- The SwissSeismologicalService tion withtheSEISinstrument. CNES (Toulouse, France) for integra- (Switzerland), andwasdeliveredto factured bySYDERALSWISSSA ered missioncritical.Itwasmanu- ment, theelectronicboxisconsid- As SEISisanInSightcoreinstru- cludes: sition andcontrolelectronics. It in- Box which consists of the data acqui- rich) wasinchargeoftheElectronics The InstituteofGeophysics (ETH Zu- seismometer. independent 3-axisshortperiod(SP) (VBB) obliqueseismometer, andan mechanism: a 3-axis very broad-band assemblies mountedonalevelling bly comprisesoftwo3-axialsensor trol electronics.Thesensorassem- tether, andtheacquisitioncon- sensor assembly, thewindshield,a The SEISinstrumentconsistsofthe – – –

ment. nics forthewholeSEISinstru- configuration andre-centering. mechanism aswellthesensor The powerconditioningelectro control theinstrument’ The controlelectronicswhich of housekeepingsignals. sensor outputchannelsandaset continuously acquirestheseismic The acquisitionelectronicswhich s levelling - and recording Mars earthquakes. struments are currentlyoperating The InSightlander andtheSEISin- months lateron26November 2018. 5 May2018,withaMarslanding six April 2018. The launch took place on ment wasperformedatthe endof nia. Afinalcheck-upofthe instru- launch padinVandenberg, Califor moved fromLockheedMartintothe in March2018.The spacecraft was craft wassuccessfullycompleted test oftheinstrumentsonspace- and levelling).Theintegration ment processes(sensorre-centering ware withrespecttocertaininstru- SEIS isusedtovalidateflightsoft- Launch Operations)process.Simu- port theATLO (Assembly, Test and was integrated on the lander to sup- flight softwarevalidation.TheQM is usedintheSpacecraftTest Labfor and JPL/LockheedMartin.TheELM (Simu-SEIS) weredeliveredtoCNES el (ELM)andahardwaresimulator tion model(QM),anelectricalmod- the flightelectronics,aqualifica- instrument integration.Apartfrom in March2017toCNESforfurther Box flighthardware)wasdelivered Swiss contribution(theElectronics Under a challenging schedule, the the NASADiscoveryProgramme. by NASAin2012theframeof The InSightmissionwasselected Past Achievements andStatus ture. characterising theplanetarystruc- teams engagedinmodellingand of Geophysicshaveactiveresearch physics Group(EEG)attheInstitute ploration andEnvironmentalGeo- Furthermore, the SEGandEx- terisation oftheMartianseismicity. analytical techniques for the charac- The groupisdevelopingdedicated crustal anddeep-structuremodels. input forthedevelopment of - Simu-SEIS SEIS QM InSight Ebox Abbreviations s41561-020-0539-8 13: 205-212,https:/ (2020) (2020) Giardini D, LognonnéP, Banerdt WB, etal https://doi mission onMars, Nat Banerdt WB, Smrekar SE,BanfieldD, etal Publications SEIS Ebox QMRandom Vibration Tests.

Initial r The seismicityofM

. org/10 Har Structur Seismic Experimentf Qualification M and HeatT Seismic Inv Interior Explorationusing Electr esults from theInSight dware simulator . 1038/s41561-020-0544-y onics box /doi e . Geosci . org/10 ransport estigations, Geodesy ars, Nat odel . . 13, 183-189, 1038/ or Interior . Geosci

. .

.

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 https://doi seismic data,Nat and anelasticstructure ofMars from InSight Lognonné P, Banerdt WB, Pike WT, etal (2020) Time-Line Measurement Phase Construction Planning Data evaluation Constraints ontheshallo . org/10 . . 1038/s41561-020-0536-y Geosci . 13:213-220, From 002012 2010 08>2020 2018 08>2020 2018 022018 2012 w elastic To .

81

COMETS, PLANETS COMETS, PLANETS 82 obs. ofMartian rocks, surfaces, andsamples. Germany, Austria,TheNetherlands,Belgium, Development &construction ofinstrument(s) and 15otherscientistsfrom Canada,France, N. Kuhn,(Univ. Basel);K.Foelmi †,E.Verrec- High Res. Imaginginstr. for colour close-up T. Fayon Bontognali,M.Josset,L. (Co-I;SEI); SYDERAL SWISSSA;e2v(fundedby CNES) F. Westall (Co-PI;CNRS,Orléans,France) TAS-CH; CSEM;FisbaAG; Petitpierre SA; Space Research inSwitzerland 2018–2020 Illustration oftheExoMars Rover 2022: United Kingdom,Italy, andRussia Industrial hardware contract(s) to Space ExplorationInstitute(SEI), B.A. Hofmann(Co-PI;NHM,Bern) cia, S.Erkman(Univ. Lausanne); Principal/Swiss Investigator(s) L. Diamond(Univ.L. Bern) Neuchâtel, Switzerland In cooperation with Co-Investigator(s) Image credit: ESA. www.space-x.ch J.-L. Josset(SEI) J.-L. Measurement Institute Website Method CLUPI tions. brate imagesduringscience opera- bration targetisusedtocolour cali- increase thescientificreturn. Acali- to sendaflexibleamountof data and binning, windowing,andz-stacking perform auto-exposure, auto-focus, (red, green,andblue).CLUPIcanalso detector withthreelayersofpixels with colourimagingachievedusinga 16 from about11cmtoinfinity(about The imagerhastheabilitytofocus ing itssensorandfocusmechanism. micro-technical innovationsregard- system oflessthan1kg,withspecific efficient andhighlyadaptiveimaging – – are: The two main scientific objectives would getusingahand-lens. formation similartowhatgeologists servations, soastoobtainvisualin- specifically designed for close-up ob- ful high-resolutioncolourcamera ESA ExoMarsRover2022,isapower of thePasteurPayloadonboard The CLosue-UP Imager (CLUPI), part Purpose ofResearch Imager for ExoMars RoverCLose-UP 2022 – LUPI 9.6

Identification ofbiosignatures: habitability: Geological contextforestablishing · · · · µ

m/pixel at20cmfromthetarget), carbonaceous biosignatures). of carbon(EXMlookingfor Observation ofconcentrations tures. Observation ofstructuralfea to interpretehabitability that couldprovideinformation secondary alterationfeatures) structures/textures (primaryor Identification ofeventual Identification ofthelithologies. C is a miniaturised, low-power, . - - – – out specificscienceoperations: freedom ofthedril,CLUPIwillcarry rover’s mobility and thedegreesof view. Taking advantageofboththe to observeinthreedifferentfieldsof drill boxoftheroverandusemirrors CLUPI willbeaccommodatedonthe – – – – and softwareupdate. 2020, includingcomplementarytests ment willbeachievedbytheendof The CLUPIFlightModeldevelop- Past Achievements andStatus Time-Line Data evaluation Measurement Phase Construction Planning

biosignatures. sing thepotentialpreservationof be establishedaswellapprai the geologicalhistoryoftargetsto possible alterations,etc.,toallow on rocktextureandstructure, to obtaingeologicalinformation Close-up observationofoutcrops, Geological environmentsurvey of therover. for theareaimmediatelyinfront below theMartiansurface. collected bythedrillupto2m Drilled coresampleobservation deposited fines). Drill holeobservation(with the soil. on themechanicalpropertiesof variations, andobtaininformation potential colourandtextural generated moundoffineswith monitor theprocess,observe Drilling operationobservation,to Drilling areaobservation. From 032010 2003 032026 2024 2023 2023 2011 2020 To , - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 83 COMETS, PLANETS COMETS,

A science validation phase with op- Publications eration preparation is planned until the launch which has been recent- Josset J-L, et al. (2017) The Close-Up Imager ly postponed to August - September (CLUPI) on board the ESA ExoMars Rover: 2022 with an arrival on Mars in April Objectives, description, operations, and 2023. science validation activities, Astrobiology 17: 595-611.

Vago J, et al. (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover, Astrobiology 17: 471-510. CLUPI Flight Model: Testing at ESA/Estec during imaging of a .

CLUPI (in the circle) on the ExoMars Rover 2022 during tests. Image credit: Airbus. COMETS, PLANETS 84 Development &construction ofinstrument(s) Space Res. &Planet.,Phys. Inst.,Univ. Bern, LASMA for thedirect measurements ofthe WaveLab Eng.AG; Montena Technology SA Inst. Space Research, IKI,Moscow, Russia elemental composition ofsolidmaterials Space Research inSwitzerland 2018–2020 www.en.wikipedia.org/wiki/Luna-Glob www.en.wikipedia.org/wiki/Luna_27 Industrial hardware contract(s) to Swiss PrincipalInvestigator(s) (G. Managadze, A.Chumikov) (UNIBE), Bern,Switzerland LASMA EngineeringModel. Principal Investigator(s) P. Wurz (Co-PI,UNIBE) In cooperation with nanoTRONIC GmbH G. Managadze (IKI) Co-Investigator(s) R. Fausch (UNIBE) M. Tulej (UNIBE) P. Wurz (UNIBE) Measurement Institute Website Method LASMA Abbreviations bos-Grunt mission. instrument thatwaspartofthePho- instrument isacopyoftheLASMA will launchin2025.TheLASMA for early 2022, and Luna-Resurs The launchofLuna-Globisforseen 2017. gration onthespacecraft in Autumn strument hasbeendeliveredforinte- development, andtheLASMAin- The spacecraft is currently under Past Achievements andStatus 12 soilsamples. topic analysiswillbeperformedon na-Resurs only).Elementalandiso- and fromthesub-surface(Lu- vicinity ofthespacecraftlandingsite lected fromthelunarsurfacein mental analysis of soilsamplescol- landers, andwillperformdirectele- part of the scientific payload of both Laser AblationMassSpectrometer, is na-Glob andLuna-Resurs.LASMA,a the lunarSouthandNorthPoles,Lu- launch two lunar landers to land near The RussianSpaceAgencywill Purpose ofResearch Soils on Lunar of Composition Chemical The – ASMA Luna-Resurs and Luna-Glob 9.7 Time-Line Data evaluation Measurement Phase

L Spectr Laser AblationM ometer From 022024 2022 2022 2022 ass To Research 46:408-422 surface andtheatmosphere , SolarSystem planetary science: Investigation ofthe (2012) Fernandes VA, Chumikov A,Managadze G Geoanal of extraterrestrial materials,Geostand gation ofthecomposition andmorphology miniature instrumentsuitefor insituinvesti- Piazza D, ThomasN,Wurz P(2014) A Tulej M,RiedoA,NeulandMB, Meyer S,LasiD, ments 75(5):1314-1322 planetary rover, Review ScientificInstru- time-of-flight massspectrometer for (2004) Rohner U, Whitby J,Wurz P, BarabashS Publications W urz P, AbplanalpD, Tulej M,Iakovleva M, Mass spectrometric analysis in A highlyminiaturisedlaserablation . Res . 38:441-466 . .

. .

spheric research. on anearlierdesignusedforstrato- 2018. TheNGMSdesignisbased spare model(FS)wasfinishedinlate ished bytheendof2017,flight model (PFM)oftheNGMSwasfin- is forseenfor2025.TheProto-flight velopment. LaunchofLuna-Resurs instruments arecurrentlyunderde- Luna-Resurs spacecraftandscientific Past Achievements andStatus sity ofBern. sis. NGMSisprovidedbytheUniver (NGMS), for detailed chemical analy- aration, andamassspectrometer chromatograph forchemicalpre-sep- material fromthesoilsample,agas ferential analysertoreleasevolatile The GC-MS consists of a thermal dif- the sub-surfacebymeansofadrill. the spacecraftlandingsiteandfrom samples collectedinthevicinityof gations ofthevolatilecontentsoil lander, willperformdetailedinvesti- of thescientific payload ofthis eter complex,GC-MS,whichispart gas-chromatography mass spectrom- lunar South Pole, Luna-Resurs. The launch alunarlandertolandnearthe The RussianSpaceAgencywill Purpose ofResearch GMS – Volatiles in Lunar Soils from on Luna-Resurs 9.8 Time-Line Data evaluation Measurement Phase

N From 052027 2025 2025 2025 To - GC-MS Abbreviations Sp W 126-133Science 111: for theLuna-Resurs mission,Plant investigate volatile speciesinthelunarsoil chromatograph –massspectrometer to Szopa C,Tulej M(2015) Prototype ofthegas Coscia D, Gerasimov M,LasiD, SapgirA, Hofer Wurz L, P, BuchA,CabaneM,CollP, doi: 10 the lunarregolith, IEEEAerospace Conf spectrometer for investigation ofvolatiles in (2018) Gruber M,LasiD, ZimmermannC,GerberT Fausch RG,Wurz P, Tulej M,JostJ,GublerP, Publications NGMS the investigation oflunarvolatiles , Planet (2012) urz P, AbplanalpD, Tulej M,LammerH . Science 74: 264-269

A neutralgasmassspectrometer for . Flight electronics ofGC-mass

1109/AERO Neutral GasM spectr Gas chr . 2018 . ometer omatography mass . 8396788 .

ass Spectrometer . Sp .

. , 1-13,

.

Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 for delivery toRoskosmos. flight-spare (right)incleanroom atUNIBEready NGMS proto-flight instrument(left)and www.en.wikipedia.org/wiki/Luna_27 Website EMPA Dübendorf Industrial hardware contract(s) to volatiles NGMS tomeasure chemicalcomposition of Development &construction ofinstrument(s) Measurement Method R. Fausch (UNIBE) M. Tulej (UNIBE) Co-Investigator(s) P. Wurz (UNIBE) Swiss PrincipalInvestigator(s) M. Gerasimov (IKI),P. Wurz (Co-PI, UNIBE) Principal Investigator(s) France (M.Cabane,D. Coscia) Univ. Pierre etMarie Curie,Paris, (M. Gerasimov, A.Sapgir, D. Rodinov) Inst. Space Research, IKI,Moscow, Russia In cooperation with (UNIBE), Bern,Switzerland Space Res. &Planet.,Phys. Inst.,Univ. Bern, Institute 85

COMETS, PLANETS COMETS, PLANETS 86 Max-Planck-Inst. Sonnensystemforsch. (MPS), Development &construction ofinstrument(s) RUAG Space (Now Thales-Alenia Space Swit- Space Res. &Planet.,Phys. Inst.,Univ. Bern, UNIBE developed andbuiltBELAwithparts Cassidian Optronik, Germany;CRISA,Spain Instituto deAstrofisica deAndalucia(IAA), zerland); SYDERALSWISSSA;FISBA Optik; Katlenburg-Lindau/Göttingen, Germany Space Research inSwitzerland 2018–2020 30 leadinggeophysicists from Europe DLR Institutefor PlanetaryRes. (DLR), BELA integratedinflightconfiguration Industrial hardware contract(s) to supplied by GermanyandSpain. Swiss PrincipalInvestigator(s) Berlin-Adlershof, Germany (UNIBE), Bern,Switzerland H. Hussmann(Co-PI,DLR) N. Thomas(Co-PI,UNIBE), www.bela.space.unibe.ch Principal Investigator(s) In cooperation with N. Thomas(UNIBE) Co-Investigator(s) on thespacecraft Granada, Spain Measurement Institute Website Method BELA will – – – – iment aretomeasure: The scientificobjectivesoftheexper a smaller involvement from Spain. is ajointSwiss-Germanprojectwith BepiColombo LaserAltimeter(BELA) Purpose ofResearch Altimeter Laser BepiColombo – ELA 9.9 before usinggravity anomaliesforthe tions togravity mustfirstberemoved data becausetopographical contribu- ed forareductionofthegravity field face. Thetopography is furtherneed- tonics, andtheageofplanet sur explorations of thegeology, thetec- rain models that allow quantitative phy isneededtodevelopdigitalter physical, andchemical.Thetopogra- ration ofthesurface,geological, dinate systemforanydetailedexplo- detic networkwillprovidethecoor The referencesurfacesandthegeo- al deformations. extend intothemeasurementsoftid- surface morphologyandgeology, and tion, interiorstructureexploration, figure andgravityfielddetermina- will covertheproblemsofplanetary and scientificcapability. Thesynergy full useofpresent-daytechnology the synergybetweenthesewillmake instruments intheirownright,only imaging.Althoughstand-alone age, incorporatingradioscienceand larger geodesyandgeophysicspack-

the poles. permanently shadedcratersnear and albedovariations,alsoin Surface roughness,localslopes T prominent topographicfeatures. accurately measuredpositionsof geodetic networkbasedon the referencefiguresanda T surfaces. establish accuratereference Figure parametersofMercuryto opographic variationsrelativeto idal deformationsofthesurface.

B form an integral partof a - - - - ment computerandpowersupply. ics boxwhichalsohousesthe instru- flight electronicswithinan electron- range isperformedusing time-of- photodiode detector. Conversion to a before collectiononanavalanche fer opticcontaininga1064nmfilter The lightthenpassesthroughatrans- protected byanovelreflectivebaffle. a 20cmberylliumtelescopewhichis baffle. Thereturnpulseiscapturedby before exiting to the planet through a beam expandertocollimatethe 1064 nm.Thelaserpassesthrougha ter producinga50mJlaserpulseat The instrument comprises a transmit- and thedisturbingpotential. between themotionoftidalbulge the planetbymeasuringtime-lag strain therheologyofinterior tions, itwillevenbepossibletocon- relocations. Underfavourablecondi- ence packagewillmeasurethemass tion ofthesurfacewhileradiosci- contribute by providing the deforma- of theinteriorstructure.BELAwill further constraintsonglobalmodels radio scienceinstrumentwillplace mations measuredbyBELAandthe science experiment,thetidaldefor which willbeprovidedbytheradio In additiontothemomentsofinertia mean internalmodel). sential fortheconstructionofaHer Mercury) andthecrustaldensity(es- struction ofthethermalhistory thickness (essentialfortherecon- would includethelithosphereelastic for the lithosphere. Examples here and withthehelpofaflexuremodel mittance analysisbetweenthetwo sphere andcrustpropertiesbyanad- with gravitydatawillconstrainlitho- tures. Theuseoftopographytogether investigation ofsub-surfacestruc- - - Swiss Academies Communications, Vol. 15, Nr. 10, 2020 87 COMETS, PLANETS COMETS,

Past Achievements and Status Publications Time-Line From To Planning 2004 2008 The instrument was successful- Gunderson K, Thomas N (2010) BELA receiver Construction 2008 2016 ly integrated on the spacecraft and performance modeling over the BepiColombo Measurement Phase 2025 2027 launched in 2018. The post-launch mission lifetime, Planetary and Space commissioning was fully success- Science 58: 309-318. Data evaluation 2025 2028 ful and the spacecraft is now on its way to Mercury. A paper describing Seiferlin K, et al. (2007) Design and manufac- the instrument in detail is being pre- ture of a lightweight reflective baffle for the pared for Space Science Reviews. BepiColombo Laser Altimeter, Optical Engineering 46(4): 043003-1.

Abbreviations Thomas N, et al., (2007) The BepiColombo Laser Altimeter (BELA): Concept and baseline design, BELA BepiColombo Laser Altimeter Planetary and Space Science 55: 1398-1413.

The BELA system on the bench (without cabling). The transmitter comprises the LHB (laser head box), the beam expander and the LEU (laser electronics unit). The receiver comprises the RTL (receiver telescope), the avalanche photodiode (APD), and associated electronics. The electronics unit (ELU) houses boards for the rangefinder, the on-board computer and the power supply. COMETS, PLANETS 88 Development &construction ofinstrument(s) Space Res. &Planet.,Phys. Inst.,Univ. Bern, EMPA, Rekolas, SulzerInnotec,SWSTech AG Inst. FisicadelloSpazioInterplanetari(IFSI), A. Vorburger (UNIBE),D. Gamborino(UNIBE) Participation intwo instruments:SERENA/ Kiruna, Sweden (S.Barabash,M.Wieser) Space Research inSwitzerland 2018–2020 The STROFIOinstrument(partofSERENA www.solarsystem.nasa.gov/missions/ STROFIO onMPO, andMPPEonMMO Swedish Space Research Inst.(SSRI), www.sci.esa.int/web/ Industrial hardware contract(s) to Southwest Research Inst.(SWRI), S. Orsini (IFSI),S.Barabash (SSRI) Rome, Italy(S.Orsini, A.Milillo) Swiss PrincipalInvestigator(s) San Antonio,TX,USA(S.Livi) experiment) onBepiColombo. (UNIBE), Bern,Switzerland Principal Investigator(s) www.serena.iaps.inaf.it bepicolombo/in-depth In cooperation with Co-Investigator(s) P. Wurz (UNIBE) Measurement Institute Website Method BepiColombo. of thesixmainscientificgoals,setfor substantially contributetothreeout With thesetwoinstruments,wewill trometer. a sensitiveneutral gas massspec- position ofMercury’s exospherewith mental, chemical,andisotopiccom- (MPO) spacecrafttomeasuretheele- lombo/Mercury PlanetaryOrbiter second instrumentisontheBepiCo- ing ofthespacearoundMercury. The Energetic Neutral Atom (ENA) imag- biter (MMO) spacecraft to perform lombo/Mercury MagnetosphericOr mass spectrometerisontheBepiCo- ment oftwomassspectrometers.One Colombo mission with the develop- national collaboration,intheBepi- We areparticipating,withinaninter additional year. year with a possible extension of an at theearliest,andwilllastforone the dataphasewillstartlatein2026, transfer takinguntillate2025.Thus on the way to Mercury, with the launched on20October2018,andis BepiColombo was successfully mission. is expectedfromsuchanexploratory and thereforeahighscientificreturn Mercury isalargelyunknownplanet cause ofobservationaldifficulties, exploration ofplanetMercury. Be- named BepiColombo,forthedetailed has defined the Cornerstone Mission, The EuropeanSpaceAgency(ESA) Purpose ofResearch –Analysing and MPPE Exosphere the TROFIO from BepiColombo Onboard 9.10 Time-Line Data evaluation Measurement Phase

S From 062030 2028 2026 2026 To - - doi: 10 magnetosphere, J (2019) 164: 1-13 simulation ofMercury‘s exosphere, Icarus Wurz P, LammerH(2003)Monte-Carlo 10 observations, Ann calculation tointerpret MESSENGER Mercury‘s sodiumexosphere: Anabinitio Gamborino D, Vorburger A,Wurz P(2019) Publications rival inlate2025. way to Mercury, with an expected ar The BeiColombospacecraft is onits Past Achievements andStatus SERENA MIP STROFIO MPO MPPE MMO ENA Abbreviations W

urz P, GamborinoD, Vorburger A,Raines JM . 5194/angeo-2018-109 A

Heavy ioncomposition ofMercury‘s . 1029/2018JA026319 .

Emitted NaturalAbundanc Sear Experiment M M M Analy Miniatur Energetic NeutralAtom spectrOmeter Start fr ercury PlanetaryOrbiter ercury PlasmaParticle ercury Magnetospheric Orbiter . ch Exopheric Refilling and Geophys . Geophys ser om aRotating FIeldmass e IonPrecipitation . Res . 37:455-470, doi: . 124:10pp,

es

- experiment and the NIM instrument tion forthis experiment. ThePEP University ofBernisCo-PI institu- Physics isthePIinstitution, andthe The SwedishInstitutefor Space periments fortheJUICEmissions. is oneofthe10selectedscienceex- prime wasselectedinJuly2015.PEP November 2014,andtheindustrial mission was adopted byESAin implementation phase.TheJUICE The JUICEmissioniscurrentlyinthe Past Achievements andStatus system in2030. 2022 andwillarriveintheJupiter JUICE isscheduledforlaunchinMay disc. its moonsfromtheprotoplanetary during theformationofJupiterand chemical andphysicalprocesses turn willprovideinformationonthe surfaces of these moons, and that in will derivethecompositionof composition of the atmospheres we thermal ionpopulation.Fromthe pheres oftheicymoonsandtheir composition oftheneutralatmos- eter (NIM)willmeasurethechemical The NeutralandIonMassspectrom- mal energiestobeyondMeV. moons intheenergyrangefromther in Jupiter’s magnetosphere and its tions ofneutrals,ions,andelectrons, (PEP) investigatesallparticlepopula- The ParticleEnvironmentPackage phasis onthemoonGanymede. in greatdetail,withparticular em- moons (Europa,Ganymede,Callisto) sion toexploreJupiteranditsicy the JUICEmissionasanL-classmis- The EuropeanSpaceAgencyselected Purpose ofResearch EP and NIM on JUICE 9.11

P - Cerubini R,JostB PFM NIM JUICE Abbreviations 13 pp,doi:10 exosphere environment , J 3D-modeling ofCallisto‘s surface sputtered A, Rubin M,BarabashS,Wurz P(2019) ström HIM,Galli M,LammerH,Lichtenegger V Callisto‘s Exosphere, Icarus262:14-29 Mousis O(2015) Monte-Carlo Simulationof V Galli A Publications 2020. ery tothespacecraftplannedforlate development areongoingwithdeliv- PEP sublimation, Icarus291:36-45 water ice: radiolysis, sputtering,and (2017) Time-Line Planning aaeauto Jan Data evaluation Jan Measurement Phase Construction orburger A,PflegerM,LindkvistJ,Holm- orburger A,Wurz P, LammerH,BarabashS,

0.2 to10keV electrons interactingwith . , Vorburger A,Wurz P, Pommerol A, . 1029/2019JA026610 Pr P spectr Neutral andIonM Jupiter andIcyM article Environment Package oto-Flight Model , PochO, Tulej M,ThomasN ometer Mar Oct . Geophys From . . . 2030 Jul 2030 . 21 Feb 2012 21 Jun 2014 . oons Explorer ass . Res 2036 . . 2033 . To . 2021 2014 . 124: Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 is ontheleft,sensorinmiddle. riment ontheESAJUICEmission.Electronic box PFM oftheNIMspectrometer ofthePEPexpe- www.sci.esa.int/web/juice Website EMPA Dübendorf Industrial hardware contract(s) to NIM andPEPonJUICE Development &construction ofinstrument(s) Measurement Method A. Galli,N.Thomas,M.Tulej, A.Vorburger (UNIBE) Co-Investigator(s) P. Wurz (UNIBE) Swiss PrincipalInvestigator(s) P. Wurz (Co-PI,UNIBE) S. Barabash(PI;IRF, Sweden) Principal Investigator(s) Univ. Wales Aberystwyth, Wales, UK Finnish Met. Inst.,Helsinki,Finland Katlenburg-Lindau, Germany Max-Planck-Inst. f. Sonnensystemforschung, App. Phys., Lab.,JohnHopkinsUniv., Laurel, USA Swedish Space Res. Inst.,Kiruna,Sweden In cooperation with (UNIBE), Bern,Switzerland Space Res. &Planet.,Phys. Inst.,Univ. Bern, Institute 89

COMETS, PLANETS COMETS, PLANETS 90 Space Res. &Planet.,Phys. Inst.,Univ. Bern, Instituto deAstrofisica deAndalucia(IAA), www.dlr.de/pf/desktopdefault.aspx/tabid- The Range FinderModule (RFM)test-board. Space Research inSwitzerland 2018–2020 DLR Institutefor PlanetaryRes. (DLR), Industrial hardware contract(s) to Thales-Alenia Space, Switzerland SYDERAL SWISSSA,Switzerland Swiss PrincipalInvestigator(s) Chiba InstituteofTechnology, Berlin-Adlershof, Germany (UNIBE), Bern,Switzerland 10617/18438_read-43017 Principal Investigator(s) H. Hussmann(DLR), In cooperation with N. Thomas(UNIBE) N. Thomas(UNIBE) Co-Investigator(s) Granada, Spain Measurement Institute Website Method Japan The – – – – – pute: laser altimeter, andareusedtocom- only immediatescienceresultfroma shape. Thesethreequantitiesarethe the laserpulseenergyand of-flight ofthelaserpulse,aswell The rangefindermeasuresthetime- try. will mostlybeconstructedbyindus- for BepiColombo.Therangefinder has beensuccessfullyimplemented ative oftheBELArangefinderwhich altimeter system.Thiswillbeaderiv- rangefinder electronicstothelaser University ofBernwillcontributethe onboard ESA’s JUICEmission.The of theJovianmoon,Ganymedefrom GALA will measure the topography Purpose ofResearch on JUICE Ganymede Altimeter Laser – ALA 9.12 matched filtering canbeapplied. significant because modifieddigital improvement ofthedetection limit is pulse shapes even duringflight.The and socanbeadaptedtoexpected The systemisfullyprogrammable flight analysis. pulse detectionandpulse/timeof the detectorisdigitisedpriorto be usedforGALA.Thesignalfrom pulse repetitionfrequency(30Hz)to and has been adapted for the higher processing moduleforlaseraltimetry (RFM) isanoveltypeofdigitalsignal

mined fromthepulseshape. inside thelaserfootprint,deter The roughnessofthesurface shot-to-shot altitudedata). The slopeofthesurface(from laser wavelength. The albedoofthesurfaceat (taking intoaccountorbitaldata). The topographyofthesurface above thesurface. The altitudeofthespacecraft

BELA Range Finder Module G - JUICE GALA RFM BELA Abbreviations ment electronicsunit. after systemintegrationintheinstru- time ofwritingbeingtestedbyDLR C/D. The RFMflight unit isat the The instrumentiscurrentlyinPhase Past Achievements andStatus Time-Line Planning Construction Data evaluation Measurement Phase

R Jupiter andIcyM Ganymede LaserAltimeter BepiColombo LaserAltimeter ange FinderModule From 052033 2025 082021 2018 012035 2031 022017 2012 oons Explorer To Swiss Academies Communications, Vol. 15, Nr. 10, 2020 91

9.13 SWI – Submillimeter Wave Instrument on JUICE COMETS, PLANETS COMETS,

Purpose of Research of the instrument in a thermal-vac- uum chamber. Optical hardware for The JUpiter ICy moons Explorer the instrument flight model was de- (JUICE) is an L-class mission of the livered to the Max Planck Institut für ESA Cosmic Vision 2015-2025 pro- Sonnensystemforschung (MPS) in gramme to investigate Jupiter and its the first quarter of 2020. Galilean satellites as planetary bod- ies and potential habitats for life. The instrument critical design re- view was passed successfully in The Submillimeter Wave Instrument April 2019, and the JUICE mission is (SWI) on JUICE will study the chem- scheduled for launch in 2022. ical composition, wind speeds and temperature variability of Jupiter’s at- Engineering model of SWI Telescope and mosphere, as well as the exosphere Abbreviations Receiver Unit in the thermal vacuum chamber at MPS. and surface properties of its icy moons. EM Engineering Model JUICE Jupiter and Icy Moons Explorer SWI consists of two heterodyne re- SWI Submillimeter Wave Instrument ceivers tunable between 530-625 GHz and 1080-1280 GHz. It includes a steerable off-axis telescope with a Publications Institute 29-cm aperture and different high Inst. Applied Physics, Univ. Bern (UNIBE), resolution and broadband spectrom- Jacob K, et al. (2019) Transmission and Bern, Switzerland eters. reflection characterization of polarizing beam splitters at submillimeter wavelengths, In cooperation with The Institute of Applied Physics, IEEE Trans. THz Sci. Technol. 9: 3, 272-281. MPS, Germany University of Bern, is responsible for Omnisys Instruments, Sweden the optical design of the instrument Jacob K, et al. (2019) Radiometric performance LERMA, France and the development of the optical of the 530 to 625 GHz receiver unit of the RPG, Germany components for the receiver unit. submillimetre wave instrument on JUICE, Int. NICT, Japan This includes the corrugated feed Symp. Space THz Technol., Gothenburg, CBK, Poland horn of the 600-GHz receiver, several Sweden. focusing reflectors, a polarising beam Principal Investigator(s) splitter and in particular, the on- Kotiranta M, et al. (2018) Optical design and P. Hartogh (MPS) board blackbody calibration target. In analysis of the Submillimeter-Wave addition, the Institute of Applied Instrument on JUICE, IEEE Trans. THz Technol. Swiss Principal Investigator(s) Physics is conducting radiometric 8: 6, 588-595. A. Murk (Co-I, UNIBE) performance tests of the SWI receiver unit. Co-Investigator(s) Time-Line From To M. Kotiranta (UNIBE) Planning 2010 2012 K. Jacob (UNIBE) Past Achievements and Status Construction 2013 2020 Method Building of optical hardware for the Measurement Phase 2030 2033 Measurement instrument structural thermal mod- Data evaluation 2030 2036 el and engineering model (EM) was Development & construction of instrument(s) completed in 2019 and the perfor- Optics design, optical components, calibrati- mance of the 600-GHz channel of the on unit, instrument testing receiver unit EM was characterised. A Martin-Puplett Interferometer was Industrial hardware contract(s) to developed to allow radiometric tests Micos Engineering, Switzerland LIFE SCIENCE Ghent Univ., Lab.Protein Biochem.Biomol.Eng., 92 Inst. Medical Eng.,School Eng. &Architecture, Vrije Univ. Brussel,Lab.StructuralBiology, and-medical-engineering/weltraumbiologie KU Leuven &VIB, Dept.Molec. Microbiol., forschung/kompetenzzentren/bioscience- Space Research inSwitzerland 2018 –2020 www.hslu.ch/de-ch/technik-architektur/ Lucerne Univ. Appl.Sci.&Arts(HSLU) Dept. Bioeng.Sci.,Brussels,Belgium Industrial hardware contract(s) to: R. Willaert(Vrije Univ. Brussel) P. Van Dijck(KULeuven &VIB) Lab. Molecular CellBiology, B. Devreese (Univ. Gent) Principal Investigator(s) Hergiswil, Switzerland Swiss Investigator(s) In cooperation with RUAG Space, Nyon Co-Investigator(s) Leuven, Belgium Ghent, Belgium Measurement M. Egli(HSLU) Institute Website Method

oxide levelswhich arenecessaryto monitor pH,oxygen andcarbondi- temperature and flow-rate,aswell control growth parameters such as This hardwarewillmonitor and that allowscontinuouscultivation. in a custom-made space bioreactor Yeast cultivation willbeperformed works. tion networks,andmetabolicnet- networks, protein-protein interac- regulatory networks,gene duction pathways,transcriptional metabolism, (stress)signallingtrans- fluences globalregulationofenergy lead toinsightintohowgravityin- process the-omicsdata.Thiswill evisiae willbeset-upinaddition,to A networkbiologymodelforS.cer lyse thesamples. analysis methodswillbeusedtoana- ics andgenomics,specificcell fluxomics, transcriptomics,proteom- ous -omics technologies, such as, fect ofmicrogravity. Therefore,vari- proach willbeusedtoassesstheef- An integrative-experimentalap- shock inmicrogravity. by applyingheataswellosmotic growth andinducedstressresponses effect ofmicrogravityonyeast visiae willbeusedtoinvestigatethe In theproposedexperiment,S.cere- ground. not the case when cultivated on the under microgravity whereas that is more, S.cerevisiaegrowsinclusters nificant numberofgenes.Further ment haveshownachangeofsig- simulated microgravityenviron- ae. Previousstudiesconductedina cell strain,Saccharomycescerevisi- physiological functionsoftheyeast gate theeffectofmicrogravityon The goaloftheprojectistoinvesti- Purpose ofResearch east Bioreactor Experiment Bioreactor east Science ife 10.1 10

L Y - - weltraumbiologie -and-medical-engineering/ kompetenzzentren/bioscience architektur/forschung/ www.hslu.ch/de-ch/technik- found onourwebsite: established. Furtherdetailscanbe for thehardwaredevelopmentare phase wherescientificrequirements The projectiscurrentlyinthedeltaB Past Achievements andStatus (shock), filtratedandfixed. matically withdrawn,treated growth. Thesampleswillbeauto- achieve asteady-stateandstable Time-Line Construction Planning Data evaluation Measurement Phase From 052026 2025 032024 2023 052022 2015 032014 2013 To bolic Flightandthe71 OW – Cartilage ExpOsed to Weightlessness to ExpOsed OW –Cartilage 10.2 In thecontextof3 Past Achievements andStatus to mechanicalforces. membrane andareknowntorespond ions, suchascalcium,acrossthecell ion channelsallowtheexchangeof properties ofacell.Mechanosensitive largely determinesthemechanical migration, anddifferentiation lar functions,includingproliferation, toskeleton isinvolvedinmanycellu- thought toplayakeyrole.Thecy- mechanosensitive ionchannelsare mechanisms, thecytoskeletonand are notfullyunderstood.Amongother force sensing (mechanotransduction) the molecularmechanismsofcellular lage homeostasis. However, to date, mechanical stimuliforadequatecarti- ly believedthatchondrocytesrequire chanical loadingpatterns,itisgeneral- cells arefrequentlyexposedtome- nance, and degradation. Since these laginous matrixsynthesis,mainte- Chondrocytes areresponsibleforcarti- joints andalloweffortlessmovements. which linethearticulatingbonesin cells foundinarticularcartilage, Chondrocytes arethesoleresident Purpose ofResearch the cell membrane and the voltage the cellmembraneandvoltage ic Flight,wemeasuredthefluidityof

C st rd ESAParabol- SwissPara- were acquired. vimentin) andmicroscopicimages the cytoskeleton(microtubulesand ly stained for two protein members of flight. Thesamplesweresubsequent- over thecourseofa31-parabola chemically fixcellsat7timepoints novel hardwarewhichallowedusto bolic flight.Forthiswedevelopeda changes duringthecourseofapara- ton inprimaryarticularchondrocytes Flight, weexaminedifthecytoskele- Throughout the71 a sensorformechanosensation. sume thationchannelscouldserveas to alteredgravity, itisreasonabletoas- potential changewasfastinresponse conditions. Becausethemembrane is alsochangedunderalteredgravity largely determinedbyionchannels, that themembranepotential,whichis cluding ionchannels.We alsofound function of membrane proteins, in- are knowntogreatlyinfluencethe pendent. Themembraneproperties articular chondrocytesisgravityde- the membranefluidityinprimary membrane potential.We noticedthat across thecellmembrane,termed Time-Line Construction Planning aaeauto Jun Data evaluation Jun Measurement Phase Image credit: R.Sablotny. 3rd Flight Campaign. weightlessness duringthe Simon Wüest floating in Aug Jan st ESA Parabolic ESAParabolic From . . . 21 Mar 2018 21 May 2019 2018 2019 . 21 Jul 2017 present . 2018 To . 2019 Swiss AcademiesCommunications,Vol. 15, Nr. 10,2020 www.hslu.ch/spacebio Website Measurement Method C. Giger-Lange(HSLU) F. Ille(HSLU) M. Egli(HSLU) Co-Investigator(s) S. Wüest (HSLU) Principal/Swiss Investigator(s) Stuttgart, Germany F. Kohn, Univ. Hohenheim In cooperation with Hergiswil, Switzerland Lucerne Univ. Appl.Sci.&Arts(HSLU) Inst. Medical Eng.School&Architecture, Institute 93

LIFE SCIENCE LIFE SCIENCE 94 www.innovation.uzh.ch/en/cluster/space-avi- Measurements inmicrogravity duringthe71st ation/spacehub/Topics/Space-Life-Science/ The samplingwas performed onexisting Research basedonexisting instruments Space Research inSwitzerland 2018 –2020 UZH Space Hub,Univ. Zürich(UNIZH), ESA Parabolic FlightCampaign2019. hardware from previous parabolic Integrative SpinalResearch ISR, Balgrist University Hospital, Principal Investigator(s) P. Schweinhardt (UNIZH) Image credit: Novespace. J. Swanenburg (UNIZH) A. Langenfeld (UNIZH) Zurich, Switzerland Spinal-Health.html flightcampaigns. Co-Investigator(s) Measurement Institute Website Method The 71 Past Achievements and Status vature. sors wereusedtoassesslumbarcur myography (EMG).Two distancesen- was recorded using surface electro- versus abdominis, and psoas muscles the erector spinae, multifidi, trans- bra. Inaddition,muscleactivityof uring spinalstiffnessoftheL3verte- motor controlwasassessedbymeas- ing parabolicflights.Lumbarspinal ent gravityconditionsobtaineddur motor control changes during differ complished bymeasuringlumbar crogravity conditions.Thiswasac- change fromearthtohyper-, andmi- spinal motor control causedbythe termine theresponse of thelumbar The objectiveofthisstudywastode- pain problemforastronauts. tant steptowardssolvingtheback- weightlessness couldbeanimpor mal gravity, hypergravityand stabilisation mechanismsundernor A betterunderstandingofthespine pain inastronautsisstillunknown. on Earth.Theexactcauseofback pain, justlikethepopulationback half ofastronautssufferfromback effects ontheirhealth.Morethan lessness. Thesehavetosomeextent, adaptations oftheirbodyinweight- nauts experience various changes / adapted tothisconstantforce.Astro- fore, thehumanbodyisoptimally overcome theforceofgravity. There- movement wemake,haveto gravity or gravitation. With every Everything onEarthissubjectto Purpose ofResearch on Spinal Changing of Gravity Stiffness he Effect 10.3 Our team was represented by six test (3 in total), 30 parabolas were flown. Bordeaux, France. During each flight took placefrom20to24May 2019in paign withtheAirbusA310 ZERO-G

T st ESAparabolicflightcam------EMG Abbreviations ce 89(6):563-568 Aerospace Medicine andHumanPerforman- during 0-1.8ginduced by parabolicflight, stiffness inprone anduprightpostures Schweinhardt P, Humphreys BK(2018) Spinal S 455-461 healthy young adults,Eur position andaxialloadonspinalstiffnessin Swanenburg J(2020)Influence ofbody SchweinhardtHäusler M,HofstetterL, P, Publications ture. and flatteningofthelumbarcurva- an increaseinactivityofallmuscles, led toadecreaseinspinalstiffness, the lumbarcurvature.Hypergravity muscle activity, andaflatteningof crogravity, an increase in multifidi an increase in spinal stiffness in mi- during hypergravity. We observed crogravity anddecreasedstiffness creased spinal stiffness during mi- First preliminary results showanin- verse events. worked well,andtherewerenoad- ure allsixparticipants.Allsystems We wereabletosuccessfully meas- one after the other during each flight. persons. Two subjectsweremeasured Time-Line Data evaluation Measurement Phase Construction Planning wanenburg Langenfeld J,Meier ML, A,

. Electr . omyography . From SpineJ 092020 2019 2019 2019 2016 2016 072018 2017 . 29(3): To Swiss Academies Communications, Vol. 15, Nr. 10, 2020 95

11 Swiss Space Industries Group SWISS SPACE INDUSTRIES GROUP SWISS SPACE

Scientific, Industrial and Economic curity system, are just some exam- Importance of the Institutional ples of important space programmes Space Sector in which Swiss manufacturers have played a major role. There is hardly The world is a strate- a current European mission which gically important growth sector of does not incorporate Swiss technol- high value-creating potential and ogy. None of this would be possible great economic importance. While without Switzerland’s early com- the commercial sector is becoming mitment to ESA, right from day one. stronger and private initiatives are ESA’s ambitious programmes enable creating increasing impact, truly sci- Swiss space companies to acquire the entific endeavours are still firmly in expertise that underpins its excellent the hands of large institutions such as reputation and promising position in the European Space Agency (ESA). the global growth market for space For Europe to compete globally and technology. Strengthening and fur- IASI-Ng MDE. Image credit: SYDERAL SWISS SA. to secure a leading position, the avail- ther expanding this position has to able resources must be efficiently de- be the goal in the coming years. This ployed and activities pooled, tasks means not only overcoming techno- which are handled by ESA. logical and economic challenges but also dealing with difficult political ESA coordinates and promotes the de- issues. The leading players – science, velopment of European space tech- politics and industry – have to work nology and ensures that the invest- seamlessly together. ment made goes to the lasting benefit of all Europeans. The EU aims to uti- lise the benefits of its in Engagements within the Space its security, environment, transport, Industry economic and social policy. ESA has an annual budget of about five billion Swissmem unites the Swiss electrical euros. Switzerland contributes around and mechanical engineering indus- 170 million francs annually. As a re- tries and associated technology-ori- sult, funds flow into research and en- ented sectors. The space industry is able Swiss scientists to participate in an important division among them. significant ESA missions, while the International competitiveness is not manufacturers benefit as suppliers to guaranteed despite having ESA mem- the research sector or directly through bership. The ability to compete inter- contracts awarded by ESA. nationally is not a matter of course, it Contact must be worked on. Having a location Swiss Space Industries Group (SSIG) that is able to compete is the basis of Swiss Collaboration success. Swissmem is committed to President Swiss companies and the qualities of O. Henin While the Swiss space market cannot Switzerland as a center of industry SYDERAL SWISS SA match the biggest European coun- and research. Continuous ground- tries for size, it can definitely keep work has made Swissmem into a Secretary General up with them in terms of quality and center of strategic commercial and R. Keller (SSIG) innovation. For instance, the Ariane employer skills. This allows the as- and launchers, Galileo, MetOp sociation to represent the concerns of Swissmem or Electra, the space astrometry mis- the sector to politicians, national and Pfingstweidstr. 102, sion Cheops or the Sentinel satel- international organizations, repre- PO Box, 8037 Zurich, lites for Copernicus, Europe’s Global sentatives of employees and the pub- Switzerland Monitoring for Environment and Se- lic. Apart from this, Swissmem offers www.swissmem.ch/ssig SWISS SPACE INDUSTRIES GROUP 96 Clemessy (Switzerland) AG, www.clemessy.ch ViaSat AntennaSystems SA,www.viasat.com Art ofTechnology AG, www.art-of-technology.ch Cosylab Switzerland GmbH, www.cosylab.ch shirokuma GmbH,www.shirokuma-gmbh.ch SYDERAL SWISSSA,www.syderal.swiss nanoTRONIC GmbH,www.nanotronic.ch Franke IndustrieAG, www.industech.ch Space Research inSwitzerland 2018–2020 Orolia Switzerland SA,www.orolia.com FAES-PWR ESTECHAG, www.estech.ch 3D PRECISIONSA,www.3dprecision.ch GF CastingSolutions,www.gfcs.com SAPHYRION Sagl,www.saphyrion.ch icotec AG, www.icotec-medical.com Thales AleniaSpace Schweiz AG, SWISSto12 SA,www.swissto12.ch Synopta GmbH,www.synopta.ch RUAG Schweiz AG /RUAG Space, Altmatech SA,www.almatech.ch Schurter AG, www.schurter.ch www.apco-technologies.com WEKA AG, www.weka-ag.ch Blösch AG, www.bloesch.ch Fisba AG, www.fisba.ch APCO Technologies SA www.thalesgroup.com www.ruag.com/space CSEM, www.csem.ch SSIG Members satellites. OPTEL-µ® -theThalesAlenia Space Switzerland opticalcommuncation down-link terminalfor small brings togethervirtuallyallthestra- of innovation.Spaceengineering ity. Spaceresearchisadrivingforce tise, flexibilityandon-timereliabil- market bydeliveringquality, exper in the fiercely competitive European earn themselvesameritedhighplace ticipate invariousESAprojectsand ic instruments.Ourcompaniespar for propulsionenginesandscientif- space transporters,andcomponents ing: structures for rockets, satellites, all areasofspacebusiness,includ- dustry, anddevelopsolutionsfor eted, competitiveSwissspacein- prominent roleinthebroadlyfac- and engineeringcompaniesplaya vironment. These manufacturers petitive Swissspacetechnologyen- volved inthewide-ranging,com- companies thataresignificantlyin- within Swissmem.SSIGincludes is organisedasatechnologygroup SSIG (SwissSpaceIndustriesGroup) Industries Group The Specialists:SSIG,Swiss Space to successfullymeetnewchallenges. maintain their ability tocompeteand ented serviceswhichhelpthemto companies numerouspractice-ori- - - lenges arisinginthespacesector. vative solutionstothecomplexchal- bles the companiestoprovideinno- spectrum ofexpertknowledgeena- additive manufacturing.Thisbroad tion technology, materialscienceand thermodynamics, tribology, informa- optics, precision mechanics, aero and knowledge inthefieldsofelectronics, of expertise.Thisincludesspecialist help tocreateahighlydiversestore range of disciplines and therefore grounds, butalsorepresentawide of educationalandtrainingback- not onlycomefromabroadspectrum The employeesofthesecompanies, pertise tothecompaniesconcerned. systems andcontributespecialistex- production ofspacecomponentsand tive jobsinthediverseareasof university graduateswhofindattrac- also indirectlyconnected.Manyare thousands ofotherprofessionalsare Switzerland intheSpacesector, but currently engage~1000employeesin The SwissSpacecompaniesofSSIG Jobs andTraining innovative andattractiveemployer. fore standsoutasafuture-oriented, tegic technologies.Thesectorthere- Werner Schmutz Thomas Schildknecht Martin Rubin Nicolas Produit Stéphane Paltani Axel Murk Säm Krucker R Jean-Luc Josset Adrian Jäggi Andreas Hueni Daniel Henke Louise Harra M Adrian Glauser V Andrea Fischer Wolfgang Finsterle Carlo F Luigi Ferraioli Laurent Eyer Marcel Egli Emanuelle David Rolf Dach Enrico Bozzo Willy Benz Marc Audard Authors ist of 12 olker Gass aoul Keller argit Haberreiter

errigno L

PMOD AIUB Univ Gene Univ IAP FHNW S SEI, Neuchatel AIUB RSL RSL PMOD PMOD ETH Zurich,Zurich SSC, EPFL ISSI, Bern PMOD Univ ETH Zurich,Zurich Univ HSLU EPFL AIUB Univ WP Univ wissmem, SSIG , Univ. Bern,Bern /PI, Univ. Bern,Bern , Univ. Zurich,Zurich , Univ. Zurich,Zurich . Geneva, Geneva . Geneva, Geneva . Geneva, Geneva . Geneva, Geneva . Bern,Bern . Geneva, Geneva , Bern , Bern , Bern , Lausanne va Obs.,Geneva , Hergiswil /WRC, Davos /WRC, Davos /WRC, Davos /WRC, Davos , Windisch , Lausanne Peter Wurz Simon Wüest Xin Wu Nicolas Thomas Jaap Swanenburg

WP HSLU Univ WP Univ /PI, Univ. Bern,Bern /PI, Univ. Bern,Bern . Geneva, Geneva . Zurich,Zurich , Hergiswil

LIST OF AUTHORS Swiss Academies Communications, Vol. 15, No. 10, 2020