The Analysis of Mixtures of Volatile Fatty Acids

Total Page:16

File Type:pdf, Size:1020Kb

The Analysis of Mixtures of Volatile Fatty Acids [II] THE ANALYSIS OF MIXTURES OF VOLATILE FATTY ACIDS BY F. V. GRAY From the Division of Biochemistry and General Nutrition of the Council for Scientific and Industrial Research, University of Adelaide, South Australia {Received 4 October 1946) In the course of investigating certain aspects of carbohydrate fermentation in the rumen of the sheep it became necessary to estimate the individual concentrations of formic, acetic, propionic and butyric acids in aqueous solutions containing all four components. Two main procedures are available for such analyses: the distillation method of Hillig & Knudsen (1942), which is based essentially on the classical Ducleaux (1874, 1900 a, b, 1908) procedure, and the method of Osburn, Wood & Werkman (1936) which involves partition of the acids between water and ether phases. In each of these methods formic acid is estimated by a separate procedure. Preliminary examination of the partition method proved its effectiveness for the assay of mixtures containing acetic, propionic and butyric acids except when one of the components constituted either a very large or a very small proportion of the mixture. As it was expected that such mixtures would be encountered, an improve- ment in the method was sought. No difficulties were experienced in the analysis of solutions prepared from mixtures of two acids, when one of them was present in much larger proportion than the other; but when analyses were made of mixtures containing known concentrations of three acids, the amounts of each, determined by the partition procedure, indi- cated that serious sources of error are inherent in the method. This is to be expected; the estimation involves essentially a calculation by difference and so in certain circumstances the implied error is large. Assuming, for example, an accuracy of + 0-5% in the titration of the acid content of the aqueous phase of each partition, and of ±o-i % in the titration of the original acid mixture, the theoretical maximum error involved in the estimation of propionic acid in a mixture containing acetic acid 1-5 g./l., propionic acid 0-25 g./l. and butyric acid 0-25 g./l. would be 67%; whereas, with the same manipulative accuracy, the maximum error involved in the estimation of this component of a binary mixture containing only acetic and propionic acids in the above concentrations would be reduced to 10%. If the concentration of butyric acid could be determined by a separate estimation with an accuracy of even 5 %, which may readily be accomplished, then, by applying the partition procedure and substituting the figure for butyric acid in solving the equations, the maximum error involved in the estimation of the propionic acid in the former mixture would be reduced to 19%. 12 F. V. GRAY It is clear, therefore, that the accuracy of the determination of the concentrations of each of three acids in a mixture should be very considerably increased if the concentration of one of them is determined by an independent method and the resulting data introduced prior to solving the partition equations. It is also clear that if such a combined procedure is to improve the precision of the method, the accuracy of the independent determination of the third acid must increase with the accuracy of the measurement of the partitions. The case for improved accuracy arising from the use of combined methods of this sort would apply equally well to both partition and distillation procedures, and so the method of distillation at constant volume (Hillig & Knudsen, 1942), or, since the collection of only one fraction of distillate would be necessary, the simpler semi- distillation procedure (Virtanen & Pulkki, 1928) could be adopted. In spite of the fact that the distillation constants of the acids are less widely different than are their partition constants, such a combination of a distillation method for acetic and propionic acids with separate independent estimations of formic acid and of butyric acid, may be preferred: partition calls for considerable quantities of very pure ether and a critical control of the temperature at which equilibrium is estab- lished, whereas the distillation procedure involves nothing other than simple, careful manipulation. EXPERIMENTAL A number of 3-acid mixtures containing acetic, propionic and butyric acids, and some 4-acid mixtures containing formic acid in addition, were made up from care- fully purified components. Partition constants of the pure acids between water and pure ether at 200 C. were determined; the findings were in accord with the constants reported by Osburn et al. (1933). In the first series of analyses the results from the partition method when applied to 3-acid mixtures containing acetic, propionic and butyric acids, were compared with those derived from solving partition equations after introducing the data obtained from a separate estimation of the concentration of butyric acid by the method of Kline (1934). The results of analyses of the 4-acid mixtures which contained formic acid are included in this series, the concentration of formic acid in the mixtures being determined by oxidation with mercuric oxide by a procedure slightly modified from that of Osburn et al. (1933), and the data so obtained sub- stituted in the partition equations. Several variables are encountered, among which the actual error of the titrations themselves, the influence on the partition exerted by the concentrations of the individual acids, and changes in the physical conditions under which the partitions are estimated, are probably the main contributors. The observed partitions differed from the theoretical by amounts varying between o and 0-5 %. The results from this first series, summarized in Table 1, showed quite definitely that under the conditions of this test, the combined procedure afforded a more accurate analysis when one of the acids was present in relatively high proportion. In the second series analysed, the results of a distillation procedure were compared with those from the partition method, each being used in conjunction with the Table I. Analysis of mixed fatty acids by two procedures present in mixtures Acids found in mixtures % error in each determination (€511.) Method used* Acetic Propionic Butyric Formic Acetic Propionic I Butyric Formic Acetic Propionic Butyric 0'147 0.147 = -47 0'525 1'44 0'240 0.240 0.480 * (a) Partition method for acetic, propionic and butyric acids. Separate method for formic acid. (6) Partition method for acetic and propionic acids. Separate methods for formic and butyric acids. 14 F. V. GRAY separate determination of butyric acid. The semi-distillation method was adopted, but only 50 ml. of the mixtures were distilled instead of the 200 ml. recommended by Virtanen & Pulkki (1928). The distillation constants were determined at known concentrations of approximately 0-2 g./ioo ml. for each acid. The results which are set out in Table 2 render it clear that the simpler manipulations involved in this distillation may, without loss of accuracy, be employed in place of the more exacting partition procedure. Table 2. Comparison between partition and semi-distillation methods Acids present in mixtures Acids found in mixtures % error in each Method (g./D determination used* Pro- Pro- Pro- Acetic pionic Butyric Acetic pionic Butyric Acetic pionic Butyric i'54 0-261 a 0194 0259 07 7-2 0-8 O b i'5S 0-170 0259 07 o-8 0-128 0-261 a O-I2O 218 0-262 62 o-s 0-4 O O j b 0-134 2-21 0-262 47 o-4 v N O 0 0 0128 G 3-13 a 0-131 OI72 313 23 SO b 0-127 0-176 313 o-8 2-8 0 * (a) Partition method for acetic and propionic acids. Separate method for butyric acid. (6) Semi- distillation method for acetic and propionic acids. Separate method for butyric acid. SUMMARY 1. The analysis of mixtures of acetic, propionic and butyric acids, in which one of the acids is present in either very large or very small proportions has been examined. 2. A combination of a separate method for butyric acid, with the partition method for acetic and propionic acids, provided more accurate estimations than those obtained directly from the application of the partition method to all three acids. 3. Semi-distillation proved a suitable alternative to partition in the combined procedure. The author is indebted to Mr H. R. Marston, Chief of the Division, for originally suggesting the problem and for his help and criticism. REFERENCES DUCLEAUX, E. (1874). Ann. chim. phys. [5], 2, 289. DUCLEAUX, E. (1900a). Traitf de Microbiologie, 3, 384. Paris: Masson et Cie. DUCLEAUX, E. (19006). Z. anal. Chem. 39, 376. DUCLEAUX, E. (1908). Z. anal. Chem. 47, 615. HILLIG, F. & KNUDSEN, L. F. (1942). J. Ass. Off. Agric. Chem. 25, 176. KLINC, L. (1934). Biochem. Z. 273, 1. OSBURN, O. L., WOOD, H. G. & WERKMAN, C. H. (1933). Industr. Engng Chem. (Anal, ed.), 5, 247. OSBURN, O. L., WOOD, H. G. & WERKMAN, C. H. (1936). Industr. Engng Chem. (Anal, ed.), 8, 270. VIRTANEN, A. I. & PULKKI, L. (1928). J. Amer. Chem. Soc. 50, 3138..
Recommended publications
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Fatty Acids: Essential…Therapeutic
    Volume 3, No.2 May/June 2000 A CONCISE UPDATE OF IMPORTANT ISSUES CONCERNING NATURAL HEALTH INGREDIENTS Written and Edited By: Thomas G. Guilliams Ph.D. FATTY ACIDS: Essential...Therapeutic Few things have been as confusing to both patient and health care provider as the issue of fats and oils. Of all the essential nutrients required for optimal health, fatty acids have not only been forgotten they have been considered hazardous. Health has somehow been equated with “low-fat” or “fat-free” for so long, to suggest that fats could be essential or even therapeutic is to risk credibility. We hope to give a view of fats that is both balanced and scientific. This review will cover the basics of most fats that will be encountered in dietary or supplemental protocols. Recommendations to view essential fatty acids in a similar fashion as essential vitamins and minerals will be combined with therapeutic protocols for conditions ranging from cardiovascular disease, skin conditions, diabetes, nerve related disorders, retinal disorders and more. A complete restoration of health cannot be accomplished until there is a restoration of fatty acid nutritional information among health care professionals and their patients. Fats- What are they? Dietary fats come to us from a variety of sources, but primarily in the form of triglycerides. That is, three fatty acid molecules connected by a glycerol backbone (see fatty acid primer page 3 for diagram). These fatty acids are then used as energy by our cells or modified into phospholipids to be used as cell or organelle membranes. Some fatty acids are used in lipoprotein molecules to shuttle cholesterol and fats to and from cells, and fats may also be stored for later use.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • On the Protective Effect of Omega-3 Against Propionic Acid-Induced Neurotoxicity in Rat Pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery
    El-Ansary et al. Lipids in Health and Disease 2011, 10:142 http://www.lipidworld.com/content/10/1/142 RESEARCH Open Access On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups Afaf K El-Ansary*, Sooad K Al-Daihan and Amina R El-Gezeery Abstract Backgrounds: The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective: To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods: 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-a, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain’s tissue of different groups. Results: The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function.
    [Show full text]
  • Methods of Extraction, Refining and Concentration of Fish Oil As a Source of Omega-3 Fatty Acids
    Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 645 Transformation and agro-industry Review article Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega 3 Jeimmy Rocío Bonilla-Méndez,1* José Luis Hoyos-Concha2 1 Researcher, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-5362-5950 2 Lecturer, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-9025-9734 Editor temático: Miguel Ángel Rincón Cervera (Instituto de Nutrición y Tecnología de los Alimentos [INTA]) Date of receipt: 05/07/2017 Date of approval: 15/03/2018 How to cite this article: Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 645-668. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684 This license allows distributing, remixing, retouching, and creating from the work in a non-commercial manner, as long as credit is given and their new creations are licensed under the same conditions. * Corresponding author. Universidad del Cauca, Facultad de Ciencias Agrarias. Vereda Las Guacas, Popayán, Colombia. 2018 Corporación Colombiana de Investigación Agropecuaria Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 Abstract Fish oil is an industrial product of high nutritional methods, there are new technologies with potential value because of its Omega-3 polyunsaturated fatty to be applied on fish oil.
    [Show full text]
  • Formic Acid Acetic Acid Propionic Acid Butyric Acid Valeric Acid Caproic
    Organic Acids: Formic acid Citric acid Acetic acid Malic acid Propionic acid Benzoic acid Butyric acid Tartaric acid Valeric acid Caproic acid Oxalic acid Lactic acid Organic Bases: Pyridine Imidazole (solid) Benzimidazole Aniline TEA (tri-ethyl amine) Histidine Nitroaniline Imidazole (dissolved) Amino bases/ Nucleotides ממסים אורגניים (מכילים קשר פחמן-מימן): :(Organic Solvents (contains carbon-hydrogen bond Xylene DMF Hexane Parafine oil Ethylacetate Formamide IPA Piperidine Trizol/Trireagent Butanol SDS (solid) Acetone PMSF (Phenylmethanesulfonyl fluoride) Methanol Tween PFA RNA / DNA (kit parts that contains thioisocyanate) Toluene BME (beta mercaptoethanol) DMSO Ethylenglycol Ethanol Halogenated Organic Solvents (contains F, Cl, Br, I): ממסים אורגניים הלוגניים (מכילים F, Cl, Br, I) Chloroform (CHCl3) Methylene chloride Vinyl chloride Tetrafluoroethylene (CF2 =CF2) Trichloroethylene (CHCl=CCl2) Bromoethane Tert-Butyl bromide חומרים אנאורגניים (חומרים שהם לא חומצה/בסיס אנאורגני) Inorganic Materials (are not inorganic acid/base) LiCl Salts (such as MgCl2, CaCl) Hydrogen peroxide (H2O2) Metals (Cu, Pb, Na etc.) Ammonium thiocyanate (NH4SCN) Sodium Azide (NaN3) Ammonium azide (NH4N3) בסיסים אנאורגניים :Inorganic Bases NH3 NaOH NH4OH Ba(OH)2 NaOH (dissolved) Ca(OH)2 KOH (dissolved) CaCO3 KOH חומצות אנאורגניות: :Inorganic Acids Boric acid (H3BO3) Hydrochloric acid (HCl) Hydrofluoric acid (HF) Nitric acid (HNO3) Hydrobromic acid (HBr) Phosphoric acid (H3PO4) Perchloric acid (HClO4) Sulfuric acid (H2SO4) Hydroiodic acid (HI) Cytotoxic materials:
    [Show full text]
  • Production of Butyric Acid and Hydrogen by Metabolically Engineered Mutants of Clostridium Tyrobutyricum
    PRODUCTION OF BUTYRIC ACID AND HYDROGEN BY METABOLICALLY ENGINEERED MUTANTS OF CLOSTRIDIUM TYROBUTYRICUM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoguang Liu, M.S. ***** The Ohio State University 2005 Dissertation committee: Approved by Professor Shang-Tian Yang, Adviser Professor Barbara E Wyslouzil Adviser Professor Hua Wang Department of Chemical Engineering ABSTRACT Butyric acid has many applications in chemical, food and pharmaceutical industries. The production of butyric acid by fermentation has become an increasingly attractive alternative to current petroleum-based chemical synthesis. Clostridium tyrobutyricum is an anaerobic bacterium producing butyric acid, acetic acid, hydrogen and carbon dioxide as its main products. Hydrogen, as an energy byproduct, can add value to the fermentation process. The goal of this project was to develop novel bioprocess to produce butyric acid and hydrogen economically by Clostridial mutants. Conventional fermentation technologies for butyric acid and hydrogen production are limited by low reactor productivity, product concentration and yield. In this project, novel engineered mutants of C. tyrobutyricum were created by gene manipulation and cell adaptation. Fermentation process was also optimized using immobilizing cells in the fibrous-bed bioreactor (FBB) to enhance butyric acid and hydrogen production. First, metabolic engineered mutants with knocked-out acetate formation pathway were created and characterized. Gene inactivation technology was used to delete the genes of phosphotransacetylase (PTA) and acetate kinase (AK), two key enzymes in the acetate-producing pathway of C. tyrobutyricum, through homologous recombination. The metabolic engineered mutants were characterized by Southern hybridization, enzyme assay, protein expression and metabolites production.
    [Show full text]
  • Pervaporation Study of Propionic Acid with Ethanol Using Heterogeneous Catalyst in Integrated Esterification- Pervaporation System
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.1 pp 148-162, 2017 Pervaporation study of Propionic Acid with Ethanol using heterogeneous catalyst in integrated Esterification- Pervaporation system AnuragTiwari*1, AmitKeshav1, ShubhankarBhowmick2 1Department of Chemical Engineering, National Institute of Technology, Raipur (C.G.) India. 2Department of Mechanical Engineering, National Institute of Technology, Raipur (C.G.) India. Abstract : Pervaporation can be used to enhance the yield of esterification reactions via selective removal of water from the product mixture. Esterification of propionic acid with ethanol over the ion exchange resin, Dowex 50Wx8-400 and sulfuric acid with and without pervaporation has been studied. Various parameters such as, catalyst loading (0.05 to 0.25 mL using H2SO4 and 7.11 to 27.11 g using Dowex 50 Wx8-400), effect of molar ratio (1:1 to 1:2.5), and temperature (40 to 70oC) were analyzed. The change in standard enthalpy and entropy of the reaction under same condition were estimated to be 36.07 kJ mol-1 and 127.53 J mol-1 K-1. Characterization analysis of ion exchange resin was performed using scanning electron microscope (SEM-EDEX) and X-ray differaction (XRD).Using pervaporation-assisted esterification 68% enhancement in the conversion of ethyl propionate was achieved. Keywords : Dowex 50Wx8-400, pervaporation, batch esterification, propionic acid, ethanol. Introduction Process intensification involves imperatives like make it small, combine and use of alternative driving forces. Pervaporation used as the emerging separation techniques based on the principles of process intensification. Phase change through membrane is employed for separation of components present in low concentration in the feed streams.
    [Show full text]
  • Effects of Free Fatty Acids on Propionic Acid Bacteria P Boyaval, C Corre, C Dupuis, E Roussel
    Effects of free fatty acids on propionic acid bacteria P Boyaval, C Corre, C Dupuis, E Roussel To cite this version: P Boyaval, C Corre, C Dupuis, E Roussel. Effects of free fatty acids on propionic acid bacteria. Le Lait, INRA Editions, 1995, 75 (1), pp.17-29. hal-00929416 HAL Id: hal-00929416 https://hal.archives-ouvertes.fr/hal-00929416 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1995) 75, 17-29 17 © Elsevier/INRA Original article Effects of free fatty.acids on propionic acid bacteria P Boyaval 1, C Corre 1, C Dupuis 1, E Roussel 2 1 Laboratoire de Recherches de Technologie Laitière, INRA, 65, rue de St Brieuc, 35042 Rennes Cedex; 2 Standa-Industrie, 184, rue Maréchal-Galliéni, 14050 Caen, France (Received 10 May 1994; accepted 21 November 1994) Summary - The seasonal variations in milk fat composition, especially du ring the grazing period, often lead to poor eye formation in Swiss-type cheese. The influence of free fatty acids on the grow1h and metabolism of the dairy propionibacteria has been studied in this work. Linoleic (C1B:2), laurie (C12:0), myristic (C14:0) and oleic acids (C1B:1) inhibited the growth and acid production of P treudenreichii subsp shermanii in the reference medium.
    [Show full text]
  • Short Chain Fatty Acids and Colon Motility in a Mouse Model of Irritable Bowel Syndrome Ilnar F
    Shaidullov et al. BMC Gastroenterol (2021) 21:37 https://doi.org/10.1186/s12876-021-01613-y RESEARCH ARTICLE Open Access Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome Ilnar F. Shaidullov1 , Dina M. Sorokina1, Farit G. Sitdikov1 , Anton Hermann2, Sayar R. Abdulkhakov1 and Guzel F. Sitdikova1* Abstract Background: Irritable bowel syndrome (IBS) is defned as a multifactorial disorder associated with visceral hypersen- sitivity, altered gut motility and dysfunction of the brain-gut axis. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. Short chain fatty acids (SCFAs) induce both inhibitory and stimulatory action on colon motility, however, their efects on the IBS model were not investigated. The aim of our study was to investigate the level of SFCAs in feces and their efects on colon motility in a mouse model of IBS. Methods: IBS model was induced in mice by intracolonic infusion of 1% acetic acid during the early postnatal period. Mice colon hypersensitivity was assessed by the threshold of the abdominal withdrawal refex in response to colorectal distention. Colon contractility was studied using proximal colon specimens in isometric conditions. Transit rates were assessed by the pellet propulsion in the isolated colon. Concentrations of SCFAs in feces were measured using gas–liquid chromatography. Results: The concentration of SCFAs in feces of IBS model mice was higher compared to the control group. Visceral sensitivity to colorectal distension and colonic transit rate were increased indicating IBS with predominant diarrhea. The frequency and amplitude of spontaneous contractions of proximal colon segments from IBS mice were higher, but carbachol induced contractions were lower compared to control.
    [Show full text]
  • Butyric Acid and Hydrogen Production by Clostridium Tyrobutyricum ATCC 25755 and Mutants
    Enzyme and Microbial Technology 38 (2006) 521–528 Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants Xiaoguang Liu, Ying Zhu 1, Shang-Tian Yang ∗ The Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH 43210, USA Received 19 April 2005; received in revised form 29 June 2005; accepted 8 July 2005 Abstract Clostridium tyrobutyricum produces butyric acid, acetic acid, hydrogen and carbon dioxide as its main fermentation products. In this work, mutants with inactivated pta gene, encoding phosphotransacetylase (PTA) and ack gene, encoding acetate kinase (AK), were studied for their potential to improve butyric acid production in the fermentation. PTA and AK are two key enzymes in the acetate-producing pathway. PTA and AK activities in the pta-deleted mutant (PPTA-Em) were reduced by 44% and 91%, respectively, whereas AK activity in the ack-deleted mutant (PAK-Em) decreased by 50%. Meanwhile, the activity of butyrate kinase (BK) in PPTA-Em increased by 44% and hydrogenase activity in PAK-Em increased by 40%. As compared with the wild type, the specific growth rate of the mutants decreased by 32% (from 0.28 to 0.19 h−1) because of the impaired PTA-AK pathway. Meanwhile, butyric acid production by these mutants was improved greatly, with higher butyric acid yield (>0.4 g/g versus 0.34 g/g) and final concentration (43 g/L versus 29 g/L), which also indicated that the mutants had better tolerance to butyric acid inhibition. However, acetate production in the mutants was not significantly reduced even though more butyrate was produced from glucose, suggesting the existence of additional acetate forming pathway in C.
    [Show full text]
  • Valproic Acid, a Mood Stabilizer and Anticonvulsant, Protects Rat
    FEBS Letters 542 (2003) 74^78 FEBS 27183 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Valproic acid, a mood stabilizer and anticonvulsant, protects ratprovided cerebralby Elsevier - Publisher Connector cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition Mi Ra Jeonga, Ryota Hashimotoa, Vladimir V. Senatorova, Koichiro Fujimakia, Ming Rena, Min Soo Leeb, De-Maw Chuanga;Ã aMolecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bldg. 10, Rm. 4C-206, 10 Center Dr MSC 1363, Bethesda, MD 20892-1363, USA bDepartment of Psychiatry, College of Medicine, Korea University, Seoul 136-701, South Korea Received 15 March 2003; revised 27 March 2003; accepted 28 March 2003 First published online 11 April 2003 Edited by Jesus Avila phylaxis for both manic and depressive phases of this mood Abstract We studied the neuroprotective e¡ects of valproic acid (VPA), a primary mood stabilizer and anticonvulsant, in disorder. Despite intensive research, the mechanisms under- cultured rat cerebral cortical neurons (CCNs). CCNs underwent lying the therapeutic e¡ects of VPA remain obscure. Since spontaneous cell death when their age increased in culture. As clinical e⁄cacy for VPA requires chronic treatment, it has shown by mitochondrial activity and calcein-AM assays, treat- been postulated that drug-induced changes in gene expression ment of CCNs with VPA starting from day 9 in vitro markedly are required for its therapeutic actions [3]. Recently, VPA was increased viability and prolonged the life span of the cultures. reported to directly inhibit histone deacetylase (HDAC) at The neuroprotective action of VPA was time-dependent and therapeutic levels (with an IC50 = 0.4 mM), causing histone occurred at therapeutic levels with a maximal e¡ect at about hyperacetylation [4,5].
    [Show full text]