Geomicrobiology of Eukaryotic Microorganisms Geoffrey M

Total Page:16

File Type:pdf, Size:1020Kb

Geomicrobiology of Eukaryotic Microorganisms Geoffrey M This article was downloaded by: [The University of Manchester Library] On: 16 July 2012, At: 07:43 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Geomicrobiology Journal Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ugmb20 Geomicrobiology of Eukaryotic Microorganisms Geoffrey M. Gadd a & John A. Raven b a Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom b Division of Plant Sciences, College of Life Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, Scotland, United Kingdom Version of record first published: 13 Sep 2010 To cite this article: Geoffrey M. Gadd & John A. Raven (2010): Geomicrobiology of Eukaryotic Microorganisms, Geomicrobiology Journal, 27:6-7, 491-519 To link to this article: http://dx.doi.org/10.1080/01490451003703006 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Geomicrobiology Journal, 27:491–519, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 0149-0451 print / 1521-0529 online DOI: 10.1080/01490451003703006 Geomicrobiology of Eukaryotic Microorganisms Geoffrey M. Gadd1 and John A. Raven2 1Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom 2Division of Plant Sciences, College of Life Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, Scotland, United Kingdom and organic pollutant degradation. They may also result in adverse Eukaryotic microbes participate in many biogeochemical cy- effects when these processes are associated with the degradation cles, although quantifying their role is not easy, and the discussion of foodstuffs, natural products and building materials, including below comes generally to only qualitative conclusions. Eukary- wood, stone and concrete. otes lack a number of the biogeochemically important functions that are carried out only by archaea (e.g., methanogenesis), bac- Keywords algae, biogeochemical cycles, calcium carbonate, carbon, teria (the anammox chemolithotrophic denitrification reaction), fungi, geomycology, lichens, metalloids, metals, min- or archaea and bacteria (e.g., chemolithotrophy, diazotrophy, and erals, mycorrhizas, phagotrophs, phosphorus, protozoa, dissimilatory reduction of sulfate). Microbial eukaryotes have one saprotrophs, silica ancestral attribute, phagotrophy, which adds a novel link to food webs and thus modifies biogeochemical cycles, and have endosym- bioses as well as ectosymbioses which can recruit metabolism from archaeans (methanogenesis) and bacteria (chemolithotrophic sul- fide oxidation, diazotrophy). The ability of eukaryotes to carry INTRODUCTION out oxidative phosphorylation and the related respiratory car- Eukaryotes have a more restricted range of metabolic bon metabolism, and photosynthesis, as genetically integrated pro- processes encoded in their genomes that have major biogeo- cesses is an outcome of bacterial symbioses. The biogeochemical chemical consequences than do the Archaea and Bacteria importance of fungi is significant in several key areas. These in- clude organic and inorganic transformations, nutrient and ele- (Falkowski et al. 2008; Madigan et al. 2008). Some of these ment cycling, rock and mineral transformations, bioweathering, “deficiencies’ are compensated for by symbioses with Archaea mycogenic mineral formation, fungal-clay interactions, and metal- and, more usually, Bacteria. The extreme of this compensation fungal interactions. Although such transformations can occur in is seen in genetic integration into the eukaryote of the respi- both aquatic and terrestrial habitats, it is in the terrestrial environ- ratory reactions using O as the electron acceptor provided by ment where fungi probably have the greatest influence especially 2 when considering soil, rock and mineral surfaces, and the plant the proteobacterial mitochondrial ancestor, and of the oxygenic root-soil interface. Of special significance are the mutualistic sym- photosynthesis provided by the cyanobacterial plastid ancestor bioses, lichens and mycorrhizas. Geochemical transformations that (Mereschowsky 1905; Kowallik and Martin 1999). Such take place can influence plant productivity and the mobility and endosymbiosis was facilitated by a unique eukaryotic trait, speciation of toxic elements, and are therefore of considerable so- that of the endomembrane and cytoskeletal system permitting cioeconomic relevance. Some fungal transformations have benefi- Downloaded by [The University of Manchester Library] at 07:43 16 July 2012 cial applications in environmental biotechnology, e.g., in metal and phagotrophy and, more generally, endocytosis and exocytosis radionuclide leaching, recovery and detoxification, and xenobiotic and the especially geomicrobiological important possibility of intracellular biomineralization (Cavalier-Smith 1982; Maynard Smith and Szathmary´ 1995). The discussion that follows expands on all these points, Received 7 December 2009; accepted 2 February 2010. encompassing as many eukaryotic microbes and modes of GMG gratefully acknowledges financial support for his own re- search from the Biotechnology and Biological Sciences Research metabolism as possible, and attempting quantitation of the bio- Council, the Natural Environment Research Council, and British Nu- geochemical roles of eukaryotic microbes relative to those of clear Fuels plc. JAR gratefully acknowledges financial support from Archaea and Bacteria (Falkowski et al. 2008), as well as Metazoa the Natural Environment Research Council. The University of Dundee and embryophytic (“higher”) plants. The paper also touches on is a registered Scottish charity No. 015096. the intracellular biomineralization and the possibility of using Address correspondence to Geoffrey M. Gadd, Division of Molecular Microbiology, College of Life Sciences, University of eukaryotic microbes in global bioremediation of anthropogenic Dundee, Dundee, DD1 5EH, Scotland, United Kingdom. E-mail: environmental change, or biogeoengineering. There is particular [email protected] attention paid toward the end of the paper on the role of fungi in 491 492 G. M. GADD AND J. A. RAVEN weathering and decomposition, but also other significant roles benthic habitat also has photosynthetic macroalgae, sometimes of fungi in geomicrobiology. considered with microbes since they are disowned by some plant An important consideration is that the biogeochemical pro- biologists. cesses brought about by eukaryotic microbes do not necessarily Where do photosynthetic eukaryotic microbes fit qualita- directly contribute to the inclusive fitness of the responsible or- tively and quantitatively into the range of organisms with photo- ganisms, but rather are emergent outcomes of natural selection. chemical energy transduction mechanisms, i.e., photosynthetic Examples are some aspects of weathering, and some examples in the broad sense? There are a number of photosynthetic organ- of the extracellular precipitation of particulate minerals that isms among the Archaea and Bacteria. The rhodopsin-catalysed have no obvious skeletal role or modify the external environ- photochemical proton and chloride pumps in many Archaea ment in a way that increases fitness. An additional point is that and Bacteria, including one cyanobacterium (and one green the “obvious” evolutionary function of a given biogeochemical alga) is not energetically coupled to photosynthesis in the sense process for the causative organisms has rarely, if ever, been di- of net autotrophic fixation of carbon dioxide (Raven 2009a.b) rectly shown to increase inclusive fitness, however obvious it (Table 1). The same applies to the bacteriochlorophyll-based may seem that the function is subject to positive selection. photochemistry in aerobic anoxygenic photosynthetic bacteria The paper emphasizes the roles of eukaryotic microorgan- that are relatively common in the surface ocean, and to some isms relative to the roles of Archaea and Bacteria in the ocean obligately anaerobic photosynthetic bacteria (Raven 2009a). and other water bodies as well as in and on rocks, soils, and In these cases the photosynthetic energy conversion functions man-made structures, making quantitative comparisons wher- in an essentially chemoorganotrophic organism to spare the use ever possible. However, it is important to acknowledge that of respiratory substrates in energizing membrane transport and there is a poorly characterized habitat, the deep subsurface bio- phosphorylating ADP. Bacteriochlorophyll-based
Recommended publications
  • Limits of Iron Fertilization
    LIMITS OF IRON FERTILIZATION Anand Gnanadesikan1, John P. Dunne1 and Irina Marinov2 1: NOAA Geophysical Fluid Dynamics Laboratory, PO Box 308, Princeton, NJ 08542 [email protected], [email protected] 2: Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, [email protected] ABSTRACT Iron fertilization has been proposed as a cheap, controllable, and environmentally benign method for removing carbon dioxide from the atmosphere. While this is in fact the case in simple, 3-box models of the carbon cycle, more realistic models show that these claims fall short of reality. The fact that the efficiency of iron fertilization depends on the long term fate of the added iron and on the carbon associated with it makes tracking the effects of iron fertilization much more difficult and expensive than has been asserted. Additionally, advection of low nutrient water away from iron-rich areas can result in lowering production remotely, with potentially serious consequences. INTRODUCTION The idea of offsetting anthropogenic carbon dioxide emissions by fertilizing the ocean with iron has a number of superficially attractive features. A host of iron fertilization experiments have demonstrated that adding iron to surface waters leads to a local increase in productivity [see for example Coale et al., 1996]. Our own survey of the literature [Dunne et al. subm.] shows that this should be expected to lead to a local increase in particle export. It is claimed however, that this local increase in particle export would necessarily lead to an easily verifiable drawdown in atmospheric carbon dioxide. It is further claimed that the increase in export is controllable and environmentally benign, implying that the effects cease as soon as the fertilization stops.
    [Show full text]
  • Fertilizing the Ocean with Iron Is This a Viable Way to Help Reduce Carbon Dioxide Levels in the Atmosphere?
    380 Fertilizing the Ocean with Iron Is this a viable way to help reduce carbon dioxide levels in the atmosphere? 360 ive me half a tanker of iron, and I’ll give you an ice Twenty years on, Martin’s line is still viewed alternately age” may rank as the catchiest line ever uttered by a as a boast or a quip—an opportunity too good to pass up or a biogeochemist.“G The man responsible was the late John Martin, misguided remedy doomed to backfire. Yet over the same pe- former director of the Moss Landing Marine Laboratory, who riod, unrelenting increases in carbon emissions and mount- discovered that sprinkling iron dust in the right ocean waters ing evidence of climate change have taken the debate beyond could trigger plankton blooms the size of a small city. In turn, academic circles and into the free market. the billions of cells produced might absorb enough heat-trap- Today, policymakers, investors, economists, environ- ping carbon dioxide to cool the Earth’s warming atmosphere. mentalists, and lawyers are taking notice of the idea. A few Never mind that Martin companies are planning new, was only half serious when larger experiments. The ab- 340 he made the remark (in his Ocean Iron Fertilization sence of clear regulations for “best Dr. Strangelove accent,” either conducting experiments he later recalled) at an infor- An argument for: Faced with the huge at sea or trading the results mal seminar at Woods Hole consequences of climate change, iron’s in “carbon offset” markets Oceanographic Institution outsized ability to put carbon into the oceans complicates the picture.
    [Show full text]
  • Marine Ecology Progress Series 601:77
    Vol. 601: 77–95, 2018 MARINE ECOLOGY PROGRESS SERIES Published August 9 https://doi.org/10.3354/meps12685 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Remarkable structural resistance of a nanoflagellate- dominated plankton community to iron fertilization during the Southern Ocean experiment LOHAFEX Isabelle Schulz1,2,3, Marina Montresor4, Christine Klaas1, Philipp Assmy1,2,5, Sina Wolzenburg1, Mangesh Gauns6, Amit Sarkar6,7, Stefan Thiele8,9, Dieter Wolf-Gladrow1, Wajih Naqvi6, Victor Smetacek1,6,* 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany 2MARUM − Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 3Biological and Environmental Science and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia 4Stazione Zoologica Anton Dohrn, 80121 Naples, Italy 5Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway 6CSIR National Institute of Oceanography, 403 004 Goa, India 7National Centre for Antarctic and Ocean Research, 403 804 Goa, India 8Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany 9Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, 07743 Jena, Germany ABSTRACT: The genesis of phytoplankton blooms and the fate of their biomass in iron-limited, high-nutrient−low-chlorophyll regions can be studied under natural conditions with ocean iron fertilization (OIF) experiments. The Indo-German OIF experiment LOHAFEX was carried out over 40 d in late summer 2009 within the cold core of a mesoscale eddy in the productive south- west Atlantic sector of the Southern Ocean. Silicate concentrations were very low, and phyto- plankton biomass was dominated by autotrophic nanoflagellates (ANF) in the size range 3−10 µm.
    [Show full text]
  • Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
    Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer).
    [Show full text]
  • Geoengineering Research Under U.S. Law
    Geoengineering Research Under U.S. Law Rob James Pillsbury Winthrop Shaw Pittman LLP Geoengineering: The Legal Challenges of Climate Mitigation LACBA Environmental Law 34th Annual Spring Super Symposium March 18, 2021 2020-21 has been an (involuntary) geoengineering experiment .2020 tied 2016 as the warmest year on record .Less sulfate pollution, more warming (a “reverse volcano”) .CO2 emissions are down, but expected to bounce back with post- pandemic economic activity .“Clean air warms the planet a tiny bit, but it kills a lot fewer people with air pollution.” Legal precursors . Weather modification—permits, practices as well as litigation o 27 OKLA. L. REV. 409 (1973) o Friedrich et al. PNAS (2020) . Studies of hurricane diversion (and accompanying ethical dilemmas) . Geoengineering, adaptation, and climate change . Unspeakable for years? o “[Adaptation is] a kind of laziness, an arrogant faith in our ability to react in time to save our own skin.” Al Gore, EARTH IN THE BALANCE (1992) Legal precursors . Royal Society (2009) and other studies . Bipartisan Policy Center, 2011 (Dole, Daschle, Mitchell, Baker) . Individual experiments . Debates in international forums . But what is the legal framework? . And what are the legal exposures and benefits? Government activity . March 5, 2021 – DOE Secretary Granholm approves $24 million for direct air capture research . Appropriations Act of 2020—$4 million for NOAA’s Office of Oceanic and Atmospheric Research (OAR) to investigate “Earth’s radiation budget” and “solar climate interventions” o NOAA is currently working with Arizona company to advance study of stratosphere . Carbon capture and sequestration tax credit (IRC, 26 U.S.C. § 45Q) . California Low Carbon Fuel Standard (LCFS) .
    [Show full text]
  • Iron Fertilization: a Scientific Review with International Policy Recommendations
    Iron Fertilization: A Scientific Review with International Policy Recommendations By Jennie Dean* TABLE OF CONTENTS INTRODUCTION ................................ ....... .322 I. CLIMATE CHANGE AND THE OCEAN ......................................... 322 A . D escribing the problem ................................................................ 322 B. Identifying a potential solution .................................................... 323 II. IRON FERTILIZATION EXAMINED ............................................... 326 A . Potential benefits .......................................................................... 326 B . Potential problem s ........................................................................ 328 C. Synthesis and suggested action .................................................... 333 III. IRON FERTILIZATION AND INTERNATIONAL LAW ................. 334 A . Introduction .................................................................................. 334 B. Coverage under pollution and dumping regulations ..................... 334 C. Coverage under biological conservation regulations .................... 336 D. Coverage under global climate change mitigation regulations ..... 338 IV. RECOM M ENDATION S ..................................................................... 339 A . Suggested modifications ............................................................. 339 B . F easibility ..................................................................................... 340 C O N C L U SIO N ...............................................................................................
    [Show full text]
  • Thick-Shelled, Grazer-Protected Diatoms Decouple Ocean Carbon
    Thick-shelled, grazer-protected diatoms decouple SEE COMMENTARY ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current Philipp Assmya,b,1, Victor Smetacekb,c,1, Marina Montresord, Christine Klaasb, Joachim Henjesb, Volker H. Strassb, Jesús M. Arrietae,f, Ulrich Bathmannb,g, Gry M. Bergh, Eike Breitbarthi, Boris Cisewskib,j, Lars Friedrichsb, Nike Fuchsb, Gerhard J. Herndle,k, Sandra Jansenb, Sören Krägefskyb, Mikel Latasal,m, Ilka Peekenb,n, Rüdiger Röttgerso, Renate Scharekl,m, Susanne E. Schüllerp, Sebastian Steigenbergerb,q, Adrian Webbr, and Dieter Wolf-Gladrowb aNorwegian Polar Institute, 9296 Tromsø, Norway; bAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; cNational Institute of Oceanography, Dona Paula, Goa 403 004, India; dStazione Zoologica Anton Dohrn, 80121 Napoli, Italy; eDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, 1790AB, Den Burg, Texel, The Netherlands; fDepartment of Global Change Research, Instituto Mediterraneo de Estudios Avanzados, Consejo Superior de Investigaciones Científicas–Universidad de las Islas Baleares, 07190 Esporles, Mallorca, Spain; gLeibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany; hDepartment of Geophysics, Stanford University, Stanford, CA 94305; iHelmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany; jThünen Institute of Sea Fisheries, 22767 Hamburg, Germany; kDepartment of Marine Biology, Faculty Center of Ecology, University of Vienna, 1090 Vienna,
    [Show full text]
  • Ocean Fertilization the Potential of Ocean Fertilization for Climate Change Mitigation
    Report to Congress Ocean Fertilization The potential of ocean fertilization for climate change mitigation Requested on page 636 of House Report 111-366 accompanying the fiscal year 2010 Consolidated Appropriations Act (P.L. 111-117). 1 Executive Summary Page 636 of House Report 111-366 that accompanies the Consolidated Appropriations Act of 2010 (Public Law 111-117) calls for the National Oceanic and Atmospheric Administration (NOAA) to “provide a report on the potential of ocean fertilization for climate change mitigation” to the House and Senate Committees on Appropriation within 60 days of enactment of the Act. Climate change mitigation includes any efforts to reduce climate change including reducing emissions of heat-trapping gases and particles, and increasing removal of heat-trapping gases from the atmosphere. The oceans contain about 50 times as much carbon dioxide (CO2) as the atmosphere, comprising around 38,118 billion metric tons of carbon compared to 762 billion metric tons in the atmosphere. What allows the oceans to store so much CO2 is the fact that when CO2 dissolves in surface seawater, it reacts with a vast reservoir of carbonate ions to form bicarbonate ions. This reaction effectively removes the dissolved gas form of CO2 from the surface water, allowing the water to absorb more gas from the overlying air. This process, in combination with large-scale ocean circulation, has resulted in the transfer of between a quarter and a third of human-induced emissions of CO2 from the atmosphere into the ocean since the beginning of the industrial revolution. Ocean biology enhances the ocean’s ability to absorb CO2 from the atmosphere as follows: plants in the ocean, mostly microscopic floating plants called phytoplankton, absorb CO2 and nutrients when they grow, packaging them into organic material.
    [Show full text]
  • 1 a 0 Or Calmnity
    Ocean Fertilization: Ecological Cure or Calmnity By Megan Jacqueline Ogilvie B.S. Environmental Science Sweet Briar College, 2002 SUBMITTED TO THE PROGRAM IN WRITING AND HUMANISTIC STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN SCIENCE WRITING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2004 C Megan Jacqueline Ogilvie 2004. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this document in whole or in part. Signature of Author: , I Program in Writing and Humanistic Studies June 16, 2004 Certified and Accepted By: ;1 a0 Robert Kanigel Director, Graduate Program in Science Writing Professor of Science Writing Thesis Advisor ARCHIVES JUN 2 2 2004 LIBRARIES Ocean Fertilization: Ecological Cure or Calamity By Megan Jacqueline Ogilvie Submitted to the Program in Writing and Humanistic Studies on June 16, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Science Writing ABSTRACT The late John Martin demonstrated the paramount importance of iron for microscopic plant growth in large areas of the world's oceans. Iron, he hypothesized, was the nutrient that limited green life in seawater. Over twenty years later, Martin's iron hypothesis is widely considered to be the major contribution to oceanography in the second half of the 20th century. Originating as an ecosystem experiment to test Martin's iron hypothesis, iron fertilization experiments are now used as powerful tools to study the world's oceans. Some oceanographers are concerned that these experiments are catapulting ocean science into a new era.
    [Show full text]
  • Phytoplankton Responses to Marine Climate Change – an Introduction
    Phytoplankton Responses to Marine Climate Change – An Introduction Laura Käse and Jana K. Geuer Abstract Introduction Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary produc- Phytoplankton are some of the smallest marine organisms. tion. They serve as the basis for marine food webs, drive Still, they are one of the most important players in the marine chemical composition of the global atmosphere and environment. They are the basis of many marine food webs thereby climate. Seasonal environmental changes and and, at the same time, sequester as much carbon dioxide as nutrient availability naturally influence phytoplankton all terrestrial plants together. As such, they are important species composition. Since the industrial era, anthropo- players when it comes to ocean climate change. genic climatic influences have increased noticeably – also In this chapter, the nature of phytoplankton will be inves- within the ocean. Our changing climate, however, affects tigated. Their different taxa will be explored and their eco- the composition of phytoplankton species composition on logical roles in food webs, carbon cycles, and nutrient uptake a long-term basis and requires the organisms to adapt to will be examined. A short introduction on the range of meth- this changing environment, influencing micronutrient odology available for phytoplankton studies is presented. bioavailability and other biogeochemical parameters. At Furthermore, the concept of ocean-related climate change is the same time, phytoplankton themselves can influence introduced. Examples of seasonal plankton variability are the climate with their responses to environmental changes. given, followed by an introduction to time series, an impor- Due to its key role, phytoplankton has been of interest in tant tool to obtain long-term data.
    [Show full text]
  • Ocean Fertilization
    Geoengineering Technology Briefing May 2018 Ocean Fertilization POINT OF INTERVENTION OVERVIEW Ocean fertilization (OF) is a proposed Carbon Dioxide Removal technique and refers to dumping iron filings or other “nutrients” (e.g., urea) into seawater to stimulate phytoplankton growth in areas that have low photosynthetic production. The idea is that the new phytoplankton will absorb atmospheric CO2 and, when the phytoplankton die, the carbon will be sequestered as they sink to the ocean floor. Over the last 30 years there have been at least 13 ocean iron fertilization experiments. However, scientific studies have shown that the amount of carbon exported to the deep sea is either very low or undetectable because much of the carbon is released again via the food chain.1 REALITY CHECK OF proposes that dumping iron or urea into the ocean will reduce It’s just It’s being atmospheric CO2. a theory implemented MCB proposes to spray salt water into millions of clouds to increase albedo. GEOENGINEERINGMONITOR.ORGGEOENGINEERINGMONITOR.ORG: Analysis: Analysis and and critical critical perspectives perspectives on climate on climate engineering. engineering. Contact: [email protected] [email protected] 1 Geoengineering Technology Briefing May 2018 other marine life. Modelling studies KEY PLAYER: RUSS GEORGE AND ASSOCIATES also predict that commercial-scale iron fertilization of the oceans could The most persistent OF advocate has been Russ George, who created have a significant detrimental impact Planktos, a California-based private research group. George conducted on important fisheries.11 his first OF test off the coast of Hawai’i using singer Neil Young’s private yacht. Soon after, Planktos announced plans to dump thousands of kilograms of iron particles over 10,000 km2 of international waters near the Galapagos Islands, a location chosen because, A modelling study of large- among other reasons, no government permit or oversight would be scale iron fertilization required.
    [Show full text]
  • Evidence Brief: Governing Marine Carbon Dioxide Removal and Solar
    Carnegie Climate Governance Initiative EVIDENCE BRIEF An initiative of Governing Marine Carbon Dioxide Removal and Solar Radiation Modification This briefing summarises the latest evidence around Carbon Dioxide Removal (CDR) and Solar Radiation Modification (SRM) techniques related to the marine environment. It describes a range of techniques currently under consideration, exploring their technical readiness, current research, applicable governance frameworks, and other socio-political considerations. It also provides an overview of key instruments relevant for the governance of marine CDR and SRM. Introduction Almost three years after the Paris Agreement on climate change, recognition is growing that without a rapid acceleration in action, limiting global average temperature rise to 1.5-2 degrees Celsius will not be achieved through emissions reductions or existing carbon removal practices alone. Scientists have begun exploring the additional use of large-scale CDR and SRM techniques to limit climate impacts, including keeping temperature rise down. These techniques are sometimes defined collectively as ‘geoengineering’ and can be sub-categorized as Nature Based Solutions (NBS), technology based or hybrid (NBS and technological combined). This briefing focuses on CDR and SRM techniques related to the marine environment. It describes techniques currently under consideration and explores their relative strengths and weaknesses. Current applicable governance frameworks are examined and other social-political issues pertinent to large-scale interventions in the marine environment are discussed. All the techniques discussed still require significant development, trialing and not least governance dialogue and decision making before they might ever be deployed. The Carnegie Climate Governance Inititative (C2G) has no position on the appropriateness of any of the techniques described here; we seek only to broaden the conversation about them and catalyse debate about the future of such techniques by providing this impartial overview.
    [Show full text]