ELISHA GRAY Boyd Crumrine Patterson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fax Machine (Edited from Wikipedia)
Fax Machine (Edited from Wikipedia) SUMMARY Fax (short for facsimile), sometimes called telecopying or telefax, is the telephonic transmission of scanned printed material (both text and images), normally to a telephone number connected to a printer or other output device. The original document is scanned with a fax machine (or a telecopier), which processes the contents (text or images) as a single fixed graphic image, converting it into a bitmap (a kind of digital image file), and then transmitting it through the telephone system in the form of audio-frequency tones. The receiving fax machine interprets the tones and reconstructs the image, printing a paper copy. Early systems used direct conversions of image darkness to audio tone in a continuous or analog manner. Since the 1980s, most machines modulate the transmitted audio frequencies using a digital representation of the page which is compressed to quickly transmit areas which are all-white or all-black. HISTORY Scottish inventor Alexander Bain worked on chemical mechanical fax type devices and in 1846 was able to reproduce graphic signs in laboratory experiments. He received British patent 9745 on May 27, 1843 for his "Electric Printing Telegraph." Frederick Bakewell made several improvements on Bain's design and demonstrated a telefax machine. The Pantelegraph was invented by the Italian physicist Giovanni Caselli. He introduced the first commercial telefax service between Paris and Lyon in 1865, some 11 years before the invention of the telephone. In 1880, English inventor Shelford Bidwell constructed the scanning phototelegraph that was the first telefax machine to scan any two-dimensional original, not requiring manual plotting or drawing. -
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
"Awal.A77oaway March 3, 1942
March 3, 1942. V. E. ROSENE 2,274,638 TELAUTOGRAPH SYSTEM Filed Nov. 15, 1939 7 Sheets-Sheet l K-pe% comyzacts 904 306 3/O S747/OW A A/G. / f/6.2 WvewroR M.A. AROSEWE "awal.A77OAway March 3, 1942. v. E. RoseNE . 2,274,638 TELAUTOGRAPH SYSTEM Filed Nov. 15, 1939 7 Sheets-Sheet 2 A/G.4 44 4// 2go t 4OW MAAG/MAZ lEC fill, HE | 484 422 4/2 |, . f HE 408 4O6 E = t S747/OM B /WMEW7OAR M.A.AOSAWA W4-hitA77OARWEY March 3, 1942. V. E. RoseNE 2,274,638 TELAUTOGRAPH SYSTEM Filled Nov. 15, 1939 7 Sheets-Sheet 3 4O6’ 4/3 S747/OW A /WWEM7OAR M.A.AOSAWA - 394.a 77OARWEy March 3, 1942. V. E. ROSENE 2,274,638 TELAUTOGRAPH SYSTEM I Filled Nov. 15, 1939 7 Sheets-Sheet 4 S747/OW A WVEWTOR V.A.AOSEWE "g Ysch. A A77OARWEY March 3, 1942. V. E. RoseNe 2,274,638 TELAUTOGRAPH SYSTEM Filed Nov. 15, 1939 7 Sheets-Sheet 5 76 A/G. 7 77 f, f 7// s L £3,79 729 9 E 74 7s Vf FL A. 4.E. — 72 E. TEEET 725 S747/OW B WWEW7OAR MAAROSAWE A77OARWEy March 3, 1942. V. E. ROSENE 2,274,638 TELAUTOGRAPH SYSTEM - Filed Nov. 15, 1939 7. Sheets-Sheet 6 S A//2 XTNS S.N Nims S7477OW B /W/EW7OAR V.A.AOSAWE As %4. a77OARWAY March 3, 1942. V. E. RoseNE - 2,274,638 TELAUTOGRAPH SYSTEM Filed Nov. 15, 1939 7 Sheets-Sheet 7 s E. -
DP/1982/6/Add.4
co ~u m P0 z ! O, 0 ~ -- 0 m -~ r- m ~0~ m 7’ __--.I 0 0 0 X X Izl I-! X 1.4 I-I L-4 0 i-J ~o 0 H 0 0 1-3 DW1982161Add. English (1) Table I: UNDP: Cost of Subcontreats awarded bY sector of projects and by headquarters of contractor, 1981 . Table 2: URDP: Subcontracts awarded, by contractors’ headquarters and name, cost of contrast and project, 1981 ....... 2 - 22 Table 3: UNDP: Major eqtd~aent orders for proJe~s, by name of supplier, cost of orders, and description of equipment, 1981. ¯ ¯ ¯ ¯ ¯ ¯ ¯ 23 - 37 See easo DP/1982/6/Add. 2 - Basic Pro&T~e Data and DP/1982/6/Add. 3 - Supplementary Pro&Ta~e Data. Sector A~ultuz~, Fozestry 5,700 ~ 7,986 1,374 1,323 1,413 77 21 - - - - 2,740 22,~x and Fisheries Agriculturaldeve- lopmmt s~pozt services - 578 - 804 881 682 382 37 21 - . - - 1,133 4,518 Crops 5,70~/ 595 15 - 48 24 17 40 .... 322 6,761 Livestock - 7,95~/ 570 3% ...... 110 9,024 Fisheries .... - 5 .... 384 389 Forestry - 21 - - 707 ...... 791 1,519 - 1,142 62__2 30 2,589 588 535 IndustrialDevelop- meatstlpport se~ces 5,250 472 - 522 610 129 475 90 - - 125 - 1,175 8,848 Venufacturing industries I, 231 583 - 620 12 30 2,589 459 60 1,264 - 505 665 - 2,062 10,081 Nsturall~souzces - 2,920 -. ~ 44__17 ~ 722 ~ - - 39 460 104 - 2.517 11.959 Land mdwater - 544 - 1,879 143 64 - 765 - 6 - 39 - - - 767 4,207 Mineralzesou~es - 1,633 - I - 135 ... -
The Marriage That Almost Was Western Union Has Always Been R.Idiculed for Rejecting the All Telephone
RETROSPECTIVE .Innovation The marriage that almost was Western Union has always been r.idiculed for rejecting the telephone. But what actually happened wasn't so ridiculous after all The hirth of the telephone.,-one hundred years ago railway and illuminating gas to Cambridge, Mass. this month-is a fascinating story of the geJ;Jius and Long intrigued by telegraphy, he decided to do persistence of on.e man. In addition, it is an instruc something about what he called "this monopoly tive demonstration of how an industrial giant, in with its inflated capital which serves its stockhold this case the Western Union Telegraph Co., can ers better than the 'public and whose:rates are ex miss its chance to foster an industry-creating orbitant and prohibiting of many kinds of busi breakthrough-something that has happened again ness." Between 1868 and 1874, he lobbied unceas and again in electronics and other fields. ingly, shuttling back and forth betweep. homes in Between ·1875 and 1879, Western Union's chiefs Boston and Washington. for a private "postal tele engaged in an intricate minuet with Alexander graph company" to be chartered by Congress but Graham Bell and his associates. On more than one with Hubbard and some of his friends among the occasion, the telegraph colossus came excruciating incorporators. As Hubbard envisioned it, the com ly close to absorbing the small group of ~ntre pany would build telegraph lines along the nation's preneurs, That the absorption was finally avoided rail and post roads and contract with the Post was probably the result of a technological gamble Office Department to send telegrams on its wires ~t that simply didn't payoff, as rates roughly half those being charged by Western ••• The place: the ollie of well as a clash of personali Union. -
The Early Years of the Telephone
©2012 JSR The early years of the telephone The early years of the telephone John S. Reid Before Bell Ask who invented the telephone and most people who have an answer will reply Alexander Graham Bell, and probably clock it up as yet another invention by a Scotsman that was commercialised beyond our borders. Like many one line summaries, this is partly true but it credits to one person much more than he really deserves. Bell didn’t invent the word, he didn’t invent the concept, what ever the patent courts decreed, and actually didn’t invent most of the technology needed to turn the telephone into a business or household reality. He did, though, submit a crucial patent at just the right time in 1876, find backers to develop his concept, promoted his invention vigorously and pursued others through the courts to establish close to a monopoly business that made him and a good many others very well off. So, what is the fuller story of the early years of the telephone? In the 1820s, Charles Wheatstone who would later make a big name for himself as an inventor of telegraphy equipment invented a device he called a ‘telephone’ for transmitting music from one room to the next. It was not electrical but relied on conducting sound through a rod. In the same decade he also invented a device he called a ‘microphone’, for listening to faint sounds, but again it was not electrical. In succeeding decades quite a number of different devices by various inventors were given the name ‘telephone’. -
Two Paths to the Telephone
; --..- �-' f4�: . STRIKING PARALLELS between the telephones envisioned by electrode. In Bell's the variation would depend on the changes in the Elisha Gray and Alexander Graham Bell are evident in their respec area of the wedge-shaped needle tip immersed in the bath. The vary tive sketches of the instruments. Both Gray's transmitter(top) and ing current would then pass through an electromagnet(right) at the Bell's (bottom) depended on varying the resistance to the flow of cur receiving end of the circuit; variations in the magnetic field would rent from a battery. Both variations would be caused by the vertical cause a second diaphragm (in Gray's scheme) or a metal reed (in movement of a needle in a liquid bath; the motion would be due to Bell's) to vibrate, thereby reproducing the sound waves that actu the response of a diaphragm to the sound waves of the human voice. ated the transmitter. Gray made the sketch of his device on February In Gray's transmitter the variation in resistance would depend on 11, 1876, some two months after he conceived the idea. Bell made changes in the distance between the tip of the needle and the bottom his sketch on March 9, 24 days after filing his patent application. 156 © 1980 SCIENTIFIC AMERICAN, INC Two Paths to the Telephone As Alexander Graham Bell was developing the telephone Elisha Gray was doing the same. Bell got the patent, but the episode is nonetheless an instructive example of simultaneous invention by David A. Hounshell n one day in 1876-February 14-the one-third interest in the business, and also connected one lead of the second U.S. -
Timeless Values, Enduring Innovation
TIMELESS VALUES, ENDURING INNOVATION T HE G RAYBAR STORY T H E G R AY B A R S T O RY by Richard Blodgett GREENWICH PUBLISHING GROUP, INC. © 2009 Graybar G b Electric El i Company, C Inc. I All Al rights reserved. Printed and bound in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without permission in writing from Graybar, 34 North Meramec Avenue, St. Louis, MO, 63105, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a magazine, newspaper or broadcast. Produced and published by Greenwich Publishing Group, Inc. Old Lyme, Connecticut www.greenwichpublishing.com Designed by Clare Cunningham Graphic Design Library of Congress Control Number: 2009936538 ISBN: 0-944641-77-6 First Printing: October 2009 10 9 8 7 6 5 4 3 2 1 Any trademarks in this book are property of their respective owners. PHOTO CREDITS: Pages 6-7 courtesy of John Nemec Pages 16-17 © Bettmann/CORBIS Page 20 © CORBIS Page 20 (inset) © Hulton-Deutsch Collection/CORBIS Page 28 (upper left) © Bettmann/CORBIS Page 29 (both) © Bettmann/CORBIS Page 30 (upper right) © Bettmann/CORBIS Page 44 courtesy of John Rodriguez Page 50 Smithsonian Institution SI NEG #EMP122.020 Page 79 (upper) © Bettmann/CORBIS Page 79 (lower) courtesy of AdClassix.com Page 104 © Joel W. Rogers/CORBIS Page 105 © Bettmann/CORBIS Graybar would like to thank Scott Smith and David Torrence, who have helped document Graybar’s history and milestone achievements through photography. -
The Telephone and Its Several Inventors
The History of Telecommunications The Telephone and its Several Inventors by Wim van Etten 1/36 Outline 1. Introduction 2. Bell and his invention 3. Bell Telephone Company (BTC) 4. Lawsuits 5. Developments in Europe and the Netherlands 6. Telephone sets 7. Telephone cables 8. Telephone switching 9. Liberalization 10. Conclusion 2/36 Reis • German physicist and school master • 1861: vibrating membrane touched needle; reproduction of sound by needle connected to electromagnet hitting wooden box • several great scientists witnessed his results • transmission of articulated speech could not be demonstrated in court • submitted publication to Annalen der Physik: refused • later on he was invited to publish; then he refused • ended his physical experiments as a poor, disappointed man Johann Philipp Reis 1834-1874 • invention not patented 3/36 The telephone patent 1876: February 14, Alexander Graham Bell applies patent “Improvement in Telegraphy”; patented March 7, 1876 Most valuable patent ever issued ! 4/36 Bell’s first experiments 5/36 Alexander Graham Bell • born in Scotland 1847 • father, grandfather and brother had all been associated with work on elocution and speech • his father developed a system of “Visible Speech” • was an expert in learning deaf-mute to “speak” • met Wheatstone and Helmholtz • when 2 brothers died of tuberculosis parents emigrated to Canada • 1873: professor of Vocal Physiology and Elocution at the Boston University School of Oratory: US citizen Alexander Graham Bell • 1875: started experimenting with “musical” telegraphy (1847-1922) • had a vision to transmit voice over telegraph wires 6/36 Bell (continued) • left Boston University to spent more time to experiments • 2 important deaf-mute pupils left: Georgie Sanders and Mabel Hubbard • used basement of Sanders’ house for experiments • Sanders and Hubbard gave financial support, provided he would abandon telephone experiments • Henry encouraged to go on with it • Thomas Watson became his assistant • March 10, 1876: “Mr. -
GOING MOBILE the Newest in Communications Technology for Contractors
GOING MOBILE The Newest in Communications Technology for Contractors u can’t be everywhere at once. pany owners often have to discuss once? Mobile communications equip- Owners and employees of to- strategy with members of the office ment is the answer. Today’s impres- day’s contracting firms have to staff while driving across town to in- sive variety of mobile communica- Y tions equipment can satisfy almost communicate a wide range of infor- spect yet another project. And office mation over a variety of distances. personnel have to transmit revised every need. Even contractors who are Foremen have to give instructions to blueprints from the drafting table to already using this equipment to some employees on each floor of the highrise the dirt field across town. extent can benefit by exploring building that they are constructing. But shouting, running to pay new innovations in communications Project managers have to be available phones, or hiring bicycle messengers technology. to settle minute-by-minute problems at every half-hour won’t do. So how does A construction company’s typical the jobsite, even when they are at the a contractor communicate effectively business day presents several situations company offices. Construction com- in a dozen different environments at in which mobile communications equipment can be useful. Your equip- ment needs will vary depending on which situations occur, and what infor- mation needs to be transmitted. So you should analyze the verbal and data traffic patterns in your company before investing in equipment -
The Myth of the Sole Inventor
Michigan Law Review Volume 110 Issue 5 2012 The Myth of the Sole Inventor Mark A. Lemley Stanford Law School Follow this and additional works at: https://repository.law.umich.edu/mlr Part of the Intellectual Property Law Commons Recommended Citation Mark A. Lemley, The Myth of the Sole Inventor, 110 MICH. L. REV. 709 (2012). Available at: https://repository.law.umich.edu/mlr/vol110/iss5/1 This Article is brought to you for free and open access by the Michigan Law Review at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. THE MYTH OF THE SOLE INVENTORt Mark A. Lemley* The theory of patent law is based on the idea that a lone genius can solve problems that stump the experts, and that the lone genius will do so only if properly incented. But the canonical story of the lone genius inventor is largely a myth. Surveys of hundreds of significant new technologies show that almost all of them are invented simultaneously or nearly simultaneous- ly by two or more teams working independently of each other. Invention appears in significant part to be a social, not an individual, phenomenon. The result is a real problem for classic theories of patent law. Our domi- nant theory of patent law doesn't seem to explain the way we actually implement that law. Maybe the problem is not with our current patent law, but with our current patent theory. -
Battle of the Brains: Election-Night Forecasting at the Dawn of the Computer Age
ABSTRACT Title of Dissertation: BATTLE OF THE BRAINS: ELECTION-NIGHT FORECASTING AT THE DAWN OF THE COMPUTER AGE Ira Chinoy, Doctor of Philosophy, 2010 Dissertation directed by: Professor Emeritus Maurine Beasley Philip Merrill College of Journalism This dissertation examines journalists’ early encounters with computers as tools for news reporting, focusing on election-night forecasting in 1952. Although election night 1952 is frequently mentioned in histories of computing and journalism as a quirky but seminal episode, it has received little scholarly attention. This dissertation asks how and why election night and the nascent field of television news became points of entry for computers in news reporting. The dissertation argues that although computers were employed as pathbreaking “electronic brains” on election night 1952, they were used in ways consistent with a long tradition of election-night reporting. As central events in American culture, election nights had long served to showcase both news reporting and new technology, whether with 19th-century devices for displaying returns to waiting crowds or with 20th-century experiments in delivering news by radio. In 1952, key players – television news broadcasters, computer manufacturers, and critics – showed varied reactions to employing computers for election coverage. But this computer use in 1952 did not represent wholesale change. While live use of the new technology was a risk taken by broadcasters and computer makers in a quest for attention, the underlying methodology of forecasting from early returns did not represent a sharp break with pre-computer approaches. And while computers were touted in advance as key features of election-night broadcasts, the “electronic brains” did not replace “human brains” as primary sources of analysis on election night in 1952.