New Records from the Southern North Sea and First Records from the Baltic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2004 University of Connecticut Storrs, CT
Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs. -
Benthic Marine Algae on Japanese Tsunami Marine Debris – a Morphological Documentation of the Species
Benthic Marine Algae on Japanese Tsunami Marine Debris – a morphological documentation of the species Gayle I. Hansen ([email protected]), Oregon State University, USA With DNA determinations by Takeaki Hanyuda ([email protected]) & Hiroshi Kawai ([email protected]), Kobe University, Japan Copyright: 2017, CC BY-NC (attribution, non-commercial use). For photographs, please credit G.I. Hansen or those noted on the pictures. Printing: For better pdf printing, please reduce to letter (11” x 8.5”) size, landscape orientation. Citations to be used for this series: Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 1 – The tsunami event, the project overview, and the red algae. OSU Scholars Archive, Corvallis, pp. 1-50. http://dx.doi.org/10.5399/osu/1110 Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 2. The brown algae. OSU Scholars Archive, Corvallis, pp. 1-61. http://dx.doi.org/10.5399/osu/1111 Hansen, G.I., Hanyuda, T. & Kawai, H. (2017). Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 3. The green algae and cyanobacteria. OSU Scholars Archive, Corvallis. pp. 1-43. http://dx.doi.org/10.5399/osu/1112 Other publications supported: The Scholars Archive presentations above provide photographic documentation for the species included in the following publications. The poster is a pictorial overview of some of the larger debris algae made for teaching. -
Seaweeds of California Green Algae
PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean. -
Check List Lists of Species Check List 11(5): 1739, 15 September 2015 Doi: ISSN 1809-127X © 2015 Check List and Authors
11 5 1739 the journal of biodiversity data 15 September 2015 Check List LISTS OF SPECIES Check List 11(5): 1739, 15 September 2015 doi: http://dx.doi.org/10.15560/11.5.1739 ISSN 1809-127X © 2015 Check List and Authors Intertidal seaweeds from North Atlantic Patagonian coasts, Argentina M. Emilia Croce1, 2*, M. Cecilia Gauna2, Carolina Fernández2, 3 and Elisa R. Parodi2, 4 1 PLAPIQUI (Planta Piloto de Ingeniería Química), CONICET-UNS, Camino La Carrindanga Km 7. 5, B8000FWB Bahía Blanca, Argentina 2 IADO (Instituto Argentino de Oceanografía), CONICET-UNS, Camino La Carrindanga Km 7. 5, B8000FWB Bahía Blanca, Argentina 3 Universidad Nacional de Río Negro, Sede Atlántica, Departamento de Ciencias Exactas, Naturales y de Ingeniería, Av. Don Bosco y Leloir, R8500AEC Río Negro, Argentina 4 Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN Bahía Blanca, Argentina * Corresponding author. E-mail: ecroce@criba. edu. ar Abstract: The coasts located between 39°S and 41°S of environmental characteristics of coastal habitats, in the Argentinean biogeographic province have been being used as ecological quality bioindicators under the described by impoverished seaweed assemblages, Water Framework Directive (Directive 2000/60/EC). however the floristic information about this region is Water temperature, salinity, light intensity, nutrient sparse. The aim of this study was to survey the intertidal availability, wave exposure and substrate composition seaweeds inhabiting three sites in the oceanographic are among the most influencing abiotic factors that system “El Rincon” (Buenos Aires, Argentina). A total of shape the communities of intertidal seaweeds (Dring 42 taxa were identified with a dominance of Rhodophyta 1992). -
A Chronology of Middle Missouri Plains Village Sites
Smithsonian Institution Scholarly Press smithsonian contributions to botany • number 106 Smithsonian Institution Scholarly Press ConspectusA Chronology of the Benthic of MiddleMarine AlgaeMissouri of the Plains Gulf of California:Village Rhodophyta, Sites Phaeophyceae, and ChlorophytaBy Craig M. Johnson with contributions by StanleyJames A. N. Ahler, Norris, Herbert Luis Haas, E. and Aguilar-Rosas, Georges Bonani and Francisco F. Pedroche SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Smithsonian Institution Scholarly Press (SISP) publishes small papers and -
Developing Systems for the Commercial Culture of Ulva Species in the UK
Developing systems for the commercial culture of Ulva species in the UK Guang Gao A thesis submitted to Newcastle University in candidature for the Degree of Doctor of Philosophy School of Marine Science and Technology May 2016 Abstract The green seaweed, Ulva, is highly valued in terms of animal feed, food and biofuel, as well in the delivery of crucial remediation services including wastewater treatment and CO2 removal. Accordingly, Ulva cultivation has gained significant research interest worldwide. Notwithstanding these research efforts, Ulva cultivation is still in its infancy and knowledge to underpin such developments remains limited. A common challenge in Ulva cultivation is the fluctuating productivity with time due to vegetative fragmentation and/or periodic reproduction. In this study, three methods were employed to address this challenge. Firstly, culture conditions were optimised to establish a balance between growth and reproduction. Secondly, a refined culture method was developed, which more than tripled growth of Ulva over an 18-day cultivation as compared to a standard method. Thirdly, a sterile strain was obtained by mutating a wild strain with ultraviolet radiation. This new strain grew five times faster over an 18-day cultivation and absorbed nitrate and phosphate 40.0% and 30.9% quicker compared to the wild strain respectively. The chemical composition of the sterile strain showed a lipid content of more than double that of the wild strain, while the protein content was 26.3% lower than the wild strain. Several tissue preservation techniques were developed to enable settlement and growth trials to be conducted on demand. The merits or otherwise of the preservation techniques were determined for gametes, germlings and thalli. -
PLANTS When Known
Emblow and White 2001 International Code PLANTS when known. Those familiar with the a/ Zoological Nomenclature should also note that it is the Compiled by Michael Guiry practice under the Botanical Code to cite the original author(s) in parentheses and the author(s) making a new This list includes all benthic (attached) marine algae combination outside such parentheses. So, there are only belonging to the phyla (divisions) Chlorophycota two possibilities: there may be the name of an authority (Chlorophyta), Phaeophycota (Phaeophyta), or authorities with no parentheses or there will be the Rhodophycota (Rhodophyta) and the genera Va ucheria names of an authority or authorities in parentheses with and Tribonema (Xanthophycota) that are generally another name or names outside it. Botanical authors known as seaweeds. It also includes the seagrasses should note the legitimate use of diacritical marks in (Magnioliophyta). This list is extracted fr om a world certain instances (e.g., Hydrolithon samoense; Schottera wide database of algae and seagrasses being prepared as nicaeensis) to facilitate correct pronunciation. It should part of the Species 2000 project. The database is also be noted that whilst "ex" is part of nomenclatural searchable at: authority citation, "in" is part of bibliographical citations http://www.algaebase.org and should not be used except in this context. The where it incorporates detailed references, notes, some following recently altered spellings should also be noted: synonyms, common names, some pictures, and much of Acanthophora nayadiformis fo r A. najadiformis; the distributional data that fo rms part of the present list. Chondracanfhus teedei for C. teedii; and Halopithys fo r As this database is "live" it may not include exactly the Halopitys. -
Reconstructing the Phylogeny of Capsosiphon Fulvescens (Ulotrichales, Chlorophyta) from Korea Based on Rbcland 18S Rdna Sequences
Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1462916, 6 pages http://dx.doi.org/10.1155/2016/1462916 Research Article Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcLand 18S rDNA Sequences Sang-Mi Sun,1 Seung Hwan Yang,2 Kirill S. Golokhvast,3 Bao Le,4 and Gyuhwa Chung1 1 Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea 2Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea 3Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690-950, Russia 4Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea Correspondence should be addressed to Seung Hwan Yang; [email protected] and Gyuhwa Chung; [email protected] Received 7 November 2015; Revised 29 February 2016; Accepted 21 March 2016 Academic Editor: Peter F. Stadler Copyright © 2016 Sang-Mi Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens.In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. -
Marine Macroalgal Diversity in Admiralty Bay, King
9 MARINE MACROALGAL DIVERSITY IN ADMIRALTY BAY, KING GEORGE ISLAND, SOUTH SHETLANDS ISLANDS, ANTARCTICA http://dx.doi.org/10.4322/apa.2014.112 Yocie Yoneshigue-Valentin1,*, Ingrid Balesteros Silva2, Mutue Toyota Fujii2, Nair Sumie Yokoya2, Diclá Pupo2, Silvia Maria Pita de Beauclair Guimarães2, Aline Paternostro Martins3, Paola Frazan Sanches4, Dinaelza Castelo Pereira3, Adriana Galindo Dalto1 Jonatas Martinez Canuto de Souza2, Cláudio Martin Pereira de Pereira5, Franciane Maria Pellizzari6 & Pio Colepicolo3 1Universidade Federal do Rio de Janeiro, Instituto de Biologia, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil 2Instituto de Botânica, Núcleo de Pesquisa em Ficologia, Av. Miguel Estéfano, 3867, Água Funda, CEP 04301-902, São Paulo, SP, Brazil 3Universidade de São Paulo, Instituto de Química, Av. Prof. Lineu Prestes, 748, Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil 4Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Campus Universitário, CEP 88040-970, Florianópolis, SC, Brazil 5Universidade Federal de Pelotas, Capão do Leão S/N,Campus Universitário, CEP 96010-900, Brazil 6Universidade Estadual do Paraná, campus FAFIPAR, Rua Comendador Correia Júnior - 117, Centro, CEP 82203-280, Paranaguá, Paraná, Brazil *e-mail: [email protected] Abstract: e Antarctic Continent is undergoing environmental alterations due to global climate changes and anthropic activities. e knowledge of the biodiversity and of the ecophysiology of the organisms in this region is of essential importance to delineate strategies of protection and for the management of such a fragile region of the planet. Among the organisms to be monitored, the macroalgae are an important natural resource. Admiralty Bay, including the Martel inlet, is an Antarctica Special Management Area (ASMA), which undergoes changes during the year due to the coverage of ice creating perturbed climatic conditions, negatively a ecting the macroalgae. -
Phylogeny and Molecular Evolution of the Green Algae
Phylogeny and molecular evolution of the green algae Frédérik Leliaert, David Smith, Hervé Moreau, Matthew Herron, Heroen Verbruggen, Charles Delwiche, Olivier de Clerck To cite this version: Frédérik Leliaert, David Smith, Hervé Moreau, Matthew Herron, Heroen Verbruggen, et al.. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 2012, 31 (1), pp.1-46. 10.1080/07352689.2011.615705. hal-01590252 HAL Id: hal-01590252 https://hal.archives-ouvertes.fr/hal-01590252 Submitted on 19 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. postprint Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F., De Clerck, O., 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences 31: 1-46. doi:10.1080/07352689.2011.615705 Phylogeny and Molecular Evolution of the Green Algae Frederik Leliaert1, David R. Smith2, Hervé Moreau3, Matthew Herron4, Heroen Verbruggen1, Charles F. Delwiche5, Olivier De Clerck1 1 Phycology Research Group, Biology Department, Ghent -
Upper Intertidal Zone of Magarizaki Locality
Supplementary Materials: Figure S1. Algal communities in different tidal zones of the Tomioka Peninsula (Amakusa- Shimoshima Island). (A) Monodominant community of the brown crust alga Neoralfsia expansa in the upper intertidal zone of Magarizaki locality. (B) Monodominant community of the green thin membranous alga Monostroma nitidum with the accompanying red alga Gloiopeltis furcata in the middle intertidal zone of Magarizaki locality. (C) Monodominant community of the brown alga Sargassum thunbergii in the low intertidal zone of Tomioka Harbor. (D) Polydominant mosaic community composed of the brown algae Ishige okamurae, I. foliacea and the red algae Caulacanthus ustulatus and Gloiopeltis furcata in the low intertidal zone of Tomioka Harbor. (E) Polydominant community of the brown alga Colpomenia sinuosa and the red algae Amphiroa beauvoisii and Centroceras clavulatum in the upper subtidal zone. (F) Monodominant community of the brown alga Dictyopteris prolifera in the upper subtidal zone of Shiraiwazaki locality. Table S1. Sampling location, sampling points, number and time of samplings and number of samples and species. Sampling Number and Number of Number of Sampling Number of Points Time of AT UGA Location Species (Figure 1) Samplings Samples Samples 4 (No. 12; Akaiwa 4, 5, 6 Ap. 13; Au. 144 72 108 13; Oc. 15) 5 (De. 12; Ap. 13; Au. 13; Magarizaki 7 60 30 106 Oc. 15; No. 17) 3 (Ap. 13; Shikizaki Bay 3 Au. 13; Oc. 36 18 122 15) 4 (Ap. 13; Shiraiwazaki 1, 2 Au. 13; No. 96 48 217 Bay 15; No. 17) 4 (Ap. 13; Tomioka 8, 9, 10, 11, Au. 13; No. 240 120 169 Harbor 12 15; No. -
Phytobenthos Checklist
States/Authors Bulgaria: Kristina DENCHEVA Georgia: Romania: Oana MARIN Russian Federation: Dmitry AFANASYEV Turkey: Ali KARACUHA Ukraine: Marina KOSENKO Contact details: NAME ORGANIZATION E-MAIL ADDRESS Kristina DENCHEVA Institute of Oceanology, Varna, Bulgaria [email protected] Oana MARIN National Institute for Marine Research and Development, Constanta, Romania [email protected] Dmitry AFANASYEV Azov Fisheries Research Institute, Southern Federal University, Russian Federation [email protected] [email protected] Ali KARACUHA Fisheries Faculty, Sinop University, Sinop, Turkey [email protected] Marina KOSENKO Institute of Biology of the Southern Seas, Odessa Branch, Ukraine [email protected] Abbreviations used: Black Sea countries BG BULGARIA GE GEORGIA RO ROMANIA RU RUSSIAN FEDERATION TR TURKEY UA UKRAINE 1 Acknowledgements: Special thanks are given to each of the author, for their contributions in creating a complete phytobenthos check-list for the Black Sea. The authors of this document acknowledge the financial support provided by European Commission – DG Environment though the MISIS project ,,MSFD Guiding Improvements in the Black Sea Integrated Monitoring System” and EMBLAS project ,,Environmental Monitoring in the Black Sea” that made possible the compilation of the existent informations on phytobenthos. The list remains open to further improvements in the future. Contents Short description of the species: .................................................................................................. 3 Black