<<

1968ApJ. . .151. . 431M 103 9 10 l l 10 for theanisotropyparameters whileestimating(a)theinfluenceofanisotropy onthe Lagrangian formforthosefieldequationswhichcontrol theanisotropyparameters;(iv) most importantoftheseare(i)theuseparametrizations forthemetricwhichallow allows onetoignorethedetailsofsolutions thenon-linearequationsofmotion neous cosmologiesusingsomenewtechniquesdeveloped in§§II-IVofthispaper.The dominated expansionphasebetweenabout10°andKwheretheneutrinosare and (v)aderivationofanadiabaticinvariant for theanisotropyparameterswhich a definitionof“anisotropyenergy”(relatedtothe Hamiltonianoftheanisotropyequa- the stressesinducedincollisionlessradiationby theanisotropicexpansion;(iii)a in theneutrinoradiationmustbetakenintoaccount. collisionless andtheanisotropicstressesfrommomentumdistribution tions) whichcontributestotheexpansionratein samewayasotherformsofenergy; the expansionandanisotropytobetreatedin differentways;(ii)acomputationof This excludes,inthesemodelswhichwebelievetobetypical,anypossibilitythatpure various directionsisreducedbythisneutrinoviscositytothepointwhereanisotropy 0.03 percent(of3°K).Themostimportantmechanisminreducingtheanisotropyis than 6X10°K.Furtherreductionsinanisotropytakeplaceduringtheradiation- Thorne 1967ö)whichiscontrolledbytheaverageexpansionrateattemperaturesless couldinfluencetheprimordialheliumproduction(HawkingandTayler1966; no longerseriouslyaffectstheaverageexpansionrateonceneutrinosarecollisionless. neutrino viscosityattemperaturesjustabove10Kwhenthefrequencytrfor for variousreasonsthatpartofthetemperatureanisotropyinmicrowaveradia- late thattheUniverse,frombeginning,wasremarkablysymmetric.Ishallattempt photon temperatureshouldbelessthan003percent,independentoftheamountinitialanisotropy, expansion rateBr{dR/dt)~t~.Anylargeinitialanisotropyintherates background radiation,thentheprecise(0.2percent)measurementofitsisotropy from collisionlessradiation,areincluded.Theseshowthatthepresentanisotropyofblack-body The AstrophysicalJournal,Vol.151,February1968 collisions betweenneutrinosandthermalelectronsorpositronsiscomparabletothe to providesomeexplanationherebyshowingthat,inalargeclassofhomogeneousbut . Assuchitsurelydeservesabetterexplanationthanisprovidedbythepostu- if theUniversehascooledtoitspresentstatefromtemperaturesaboveabout2XIO°K. expansion ratesaregiveninwhichtheeffectsofviscosityradiation,andanisotropicpressures tion atthepresentepochwhichisduetoprimordialanisotropiesshouldbelessthan anisotropic universessatisfyingEinstein’sequations,theanisotropydiesawaysorapidly (Partridge andWilkinson1967)becomesthemostaccurateobservationaldatumin © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The resultsstatedabovearebasedonastudyof the Einsteinequationsforhomoge- * Permanentaddress:Department ofPhysicsandAstronomy,UniversityMaryland,College Park If oneaccepts,asIshallhere,thecosmologicalinterpretationof3°Kmicrowave Solutions oftheEinsteinequationswithflathomogeneousspacelikehypersurfacesbutanisotropic THE ISOTROPYOFUNIVERSE I. INTRODUCTIONANDCONCLUSIONS Peterhouse, Cambridge,England Charles W.Misner* Received June22,1967 ABSTRACT a) Epitome 431 1968ApJ. . .151. . 431M 2 -2 10 proposal (Gamow1948;AlpherandHerman1948,1950),notonlyallowedforthe many decadesofexpansion. 432 CHARLESW.MISNERVol.151 interpretation (Dickeetal.1965)andpublicationofdataconfirmingitsexistence 0.07) X10~whichwewilltreatasanobservationalupperlimit.Thevariationswith variations withaquadrupoledistribution(12-hourperiod)thevalueAT/T—(0.16± ropy ofrelativisticcosmologicalmodelsthanthosederivedfromtheisotropy Thorne (1967a)hasdiscussedhowmeasurementsofthevariationtemperature but alsostimulatedanumberofnewapproachestoproblemsincosmology,astrophysics, radiation temperatureasthesequantitieschangebymanyordersofmagnitudeover observation. present limitbyimprovedobservations,itwouldimplysuchalowvelocityfortheSolar The isotropyobservationsofPartridgeandWilkinson(1967)giveforthetemperature of thebackgroundradiationwithdirectionputmuchmorestringentlimitsonanisot- native explanationisnotruledoutonenergeticgroundssincerecentburningofhydrogen Field andHitchcock1966;ThaddeusClauserHowellShakeshaft1966), expansion rate;(b)theanisotropyinand(c) The firstexampleofthisapproachwouldbeEinstein’s(1917)failuretofindstatic be devotedtocalculationswhichtry“predict”thepresentlyobservableUniverse. relation ofobservationaldatasufficienttodistinguishamongasmallnumbersimple System thatnotheoryofthe3°Kradiationispresentlypreparedtotoleratesuchan could notbeduetotheexpansionanisotropyeffectsunderdiscussioninthispaper,but extragalactic (Hubble)redshifts(KristianandSachs1966;Kantowski1966). thermalizing it.Thispaperpresumestheconventionalcosmologicalinterpretation. to heliuminstarscouldsupplythenecessaryenergyifmechanismsbefoundfor tion ofthis3°Kradiationisnotsomuchestablishedasitunchallenged,andanalter- and cosmic-rayphysics.AsFowler(1967)haspointedout,thecosmologicalinterpreta- present paperisconcernedwithaclassofsolutions whichgeneralizethestandard feasible approacheswouldattempttosurveymuch morelimitedclassesofsolutions between observationandtheoryonthispointisreviewed byNorth[1965]).Thedifficulty expansion whichisrequired(notmerelypermitted)ifoneassumesspatialisotropyin cosmological solutions,whichcanberegardedasalostopportunitytopredicttheHubble cosmological solutionsofEinstein’sequations,Isuggestthatsometheoreticaleffort a dipoledistribution(24-hourperiod)forwhichtheyfindAT/r=(0.03±0.07)X10 pressure whilemaintaining thehomogeneityofspace(translationinvariance). Wefind verse maybelargelyindependentoftheinitial conditionsadmittedforstudy.The lies inthetreatmentofinitialconditions.Ideally onemighttrytoshowthatalmost in usingrelativisticcosmologyforpredictiverather thanmerelydescriptivepurposes than takingtheuniqueproblemofrelativisticcosmologytobecollectionandcor- the large-scaleinhomogeneityofUniverse(SachsandWolfe1967;SciamaRees their measurementplaceslimitsonthevelocityofSolarSystem(Sciama1967)and (Penzias andWilson1965),ledtofurtherobservations(RollWilkinson1966; the original(A=0)Einsteinequations(see [1945];thehistoricalinteraction the Einsteinequationstoseewhethersomepresently observablepropertiesoftheUni- all solutionsoftheEinsteinequationswhichlead tostarformationalsohavemany the Universebyincludinganisotropybothin expansionrateandintheradiation radiation-filled k=0Robertson-Walker“hotbig-bang” modelsoftheearlyepochs other propertiescompatible(orincompatible!)with observation.Moremodestbutmore 1967), Iftheamplitudeofdipolevariationsweretobereducedone-third that allthesemodelsinwhich temperaturesabove10°Koccurredinthe pastbecome 1 1 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Dicket conceptionofprimordialblack-bodyradiation,whichrevitalizedanearlier I wishtoapproachrelativisticcosmologyfromanunfamiliarpointofview.Rather R.H.Dicke(1964,unpublished); seeDicke,Peebles,Roll,andWilkinson(1965)Peebles (1966). b) Introduction 1968ApJ. . .151. . 431M 2a2ß 10 510 142aa21 2a we writethespatialmetric componentsintheformgij{i)—e()ijwhere 2/3¿yisa equations intosimpleforms,suchastheFriedmann equationfortheRobertson-Walker solutions inanalyticforms.Theeffortisdirected rather towardcastingthedifferential in thisdirectionthanothers.Thepresentpaper isprimarilydevotedtosolutionsof fluid) andcontributeamajorpartoftheenergydensity. Sinceneutrinostravelinginthe where Zio=Z/IOK.Moredetailsofthisstandardmodelforthe“hotbig-bang" highly isotropicbythetimetheycoolto3°K,sothislimitedstudyisnotinconsistent ignored. Pressureanisotropiesthatarisefromthe ofcollision-dominatedradia- direction ofmostrapidexpansionsufferthegreatest redshifts,thepressurewillbeweaker covering atleast10°toK,wheretheneutrinos arecollisionless(hencenota at anyepoch,andsothequalitativebehaviorof solutionsiseasytodescribe. , sothattherelativeimportanceofvarious effectscanbeeasilyestimated tion arealsoconsidered.Idonot,however,aim particularlytowardobtainingexact the Einsteinequationsinwhichpressureanisotropies thatariseinthiswayarenot tensor isnotappropriatefordiscussinganisotropiccosmologiesinthetemperaturerange, Once oneacceptsthermalneutrinosfromearlyepochs,however,afluidstress-energy canbefoundinWagoner,Fowler,andHoyle(1967)orZel'dovich(1966). light andbycollisions)toproducehomogeneity.Indeed,theseeffectshavebeenasevere nikov 1963)andbyHeckmannSchiicking(1962)forthecasewherestress- form byKasner(1921)foremptyspace-time(seealsoTaub1951;LifshitzandKhalat- most generalsolutionoftheEinsteinequationsforgij(t)hasbeengiveninanalytic be complementedbyaconsiderationoffiniteamplitudeirregularitiesalltypes,not ment ofgalaxiesfrommodestinitialperturbationswithamplitudesfargreaterthan restriction oneffortstoproduceminorirregularities(suchasgalaxies)frommorehomo- with theconjecturethat“Einstein'sequationspredictUniverseisisotropic." No. 2,1968ISOTROPYOFUNIVERSE433 as wellphotons,orfaattemperatureswherethermalelectron-positronpairsmust expands fromearlyhightemperaturesexceedingthep-mesonrestmass,appropriate and p=aTise«:twithTe~T~ifairGa/Sc).Forauniversewhich when onespecializesthemetricbyassumingtwoofthreespacedirectionsareequiva- which includesthe&=0Robertson-Walkerformasaspecialcasewithgijebij.The received nodetailedattention(Misner1967Z>). which couldbesignificantinsmoothingvariousmodeschaoticinitialconditionshave merely thosedesignedtoproducegalaxies(Misner1967a).Anumberofphenomena The possibilitythat“Einstein'sequationspredicttheUniverseishomogeneous" also beincluded.Inthislattercaseonehas energy densityconstantisnotabut^atoincludenon-degeneratep-and¿-neutrinos lent. ThesolutionintheRobertson-Walkercaseforpurelyaradiationfluidwithp=\p radiation fluidwithp—alsogivesolutionsinanalyticform(seeThorne1967a) -energy tensors,correspondingtoapressurelessfluidplusmagneticfield,or energy tensoristakenintheformforapressurelessperfectfluid.Moregeneral include Hawking1966c;Peebles1967;SachsandWolfe1967).Severalauthors(Peebles geneous initialconditions(Gamow1948;recentstudiescontainingfurtherreferences ever, largeinitialrandomvelocitieswhichmightbethoughttypicalofachaoticor does notcomeunderstudyhere,sincewesimplyassumehomogeneitythroughout.How- statistical fluctuationscouldproduce.Thisapproachneedsfurtherdiscussion,andshould “generic" initialsingularitydohaveatendency(limitedinitseffectsbythevelocityof 1965, 1967;Harrison1967a,b;SilkMichie1968)haveconsideredthedevelop- 2i1 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem To describetheanisotropy oftheUniverseindependentlyitsover-all expansion The metricformassumedthroughoutthepresentpaperisds=—dt+gij(t)dxdx\ c) AnisotropyParameters 2 t =(1.1sec)Zio“,(i‘U 1968ApJ. . .151. . 431M ß2ß 2ß 200 1i a A a 2/S01n 2 2 00 1/23a significant. Wedefinethe“rateofshear”matrix\%withsuitable 2 3(Atf) =(H-tfO+(#3Hy(H\tf),(1-2) 23 l1 ¡2 H~AH ={Da)~{crijai¡)6X10K)thistransitionisnotassharp asthevtransition,soweconsider p v e V c cT v V ß m 12 0± 10 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem In theEinsteinequationsweconsiderastress-energytensorwithT=p&+p As thetemperaturedecreasestoward10K,thermalp-pairsannihilate;and A rigorouslimitderivedin§IWdshowsthatpßalwaysdecreasesmorerapidlythan The nexttransitiontakesplacenear2X10K when thecross-sectionforcollisions r 2 {Da) =(Btt/S)p(87r/3)(p3+p*Pyp&) / d) AnisotropicCosmologicalModels 1968ApJ. . .151. . 431M 4 -1 2iri,tQa 2 1 value forpß/pattheendofviscousdamping phasewetakethisendtobefixed value isindependentof77, butrjdeterminesthetimeandtemperatureatwhich itoccurs. by tDa=0.5,whichfrom Figure1occursat///isc=0.25wherepß/p —0.4.This when pß>py(althoughtheotherpartsofsolution withpß<r)(\6TrG/c)willbesupplied to pythroughthisviscousheating.Theviscosity persists onlysolongastheneutrinos is showntobeaformofworkinwhichenergytransferredfromthegravitational cosity. Butsecond,thisadditionaldecreaseofpßbeyonditsadiabaticexpansion on pß/p.Inthefirstplaceshearmotionswhichpß—measuresde- anisotropy degreesoffreedomßijtotheradiationenergyp,andifenough (da/dt)", andtheequationsbeingsolvednolongerhavea physical justification. y c Vy 7c isec c c 7T c c cT y y T © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Fig. 1.—Homogeneousanisotropyinauniversefilledwithradiationofconstantviscosityr¡.This 321 10* 10~10'10°10' i 1 s =16jn;t—«- 1968ApJ. . .151. . 431M -31 3 5 4 293 2 1 2 l less neutrinoswhicharepossibly ofobservationalinterestiftheanisotropyislarge(pß/p ^>1)when in ourmodelssincetheyshow pß/p<0.6atthatepoch. the neutrinosfirstbecomecollisionless. Theeffectsofviscositypreventthisconditionfrom beingsatisfied form ofionizedhydrogen,whichwouldleadtophoton scatteringatmuchlowertem- low-density universe.Therefollowsasketchofthe argumentforthelow-densitycase. peratures.) Inalow-densityuniverse(2X10g/cm now)thephotonsstopscattering cases areAT/T<3X10~inthehigh-densityuniverse, andAT/T<3X10“inthe under theassumptionpßTheinitialconditionswere=andpßp„ only below300°K.Thelimitsonthepresentphoton temperaturewefindinthetwo until about3000°Kwhenhydrogenrecombines.(We seekanupperlimitonthephoton choice ofpresentdensity.Inahigh-densityuniverse(2X10~g/cmnow)theradia- ß =isfirstreached,conformsquitewelltotheapproximate(sinusoidal)solutionofeq.(4.4)derived eqs. (4.22)and(4.23)withß-=0p&pshowspartofthetransitionfromalargeanisotropy of theneutrinos)arestillsignificant,andmatter dominatesthetotalenergydensity temperature anisotropy,andthereforeassumethat the“missingmatter”isnotin tion energycanbeneglectedbelow30000°K,but photonsremaincollision-dominated a =0,withdß/dadeterminedfromeq.(4.24).Notethattheentiredevelopment>afterpoint ble descriptionfor|ß|<1.Wethereforeadoptitfromthepoint(Tio=1.6)where No. 2,1968ISOTROPYOFUNIVERSE437 neutrinos lastscatteruntiltheUniversebecomesmatter-dominated.Thissolution (3000° KHrecombination)whiletheirenergyand pressure(nowanisotropiclikethat been invoked.Thepointwherematterdominatestheenergydensityvarieswithone’s neglected. Forinthatcaseperfectfluidsolutions(§IV6)withpß/pTwouldhave so muchasonewouldincorrectlycalculateifradiationpressureanisotropiesweretobe shows pß/ppT,soasubstantialdecreaseinanisotropyoccursthisphase,butnot the numericalsolutiongiveninFigures2and3showsthissmallßisanaccepta- of expansionwhereneutrinosarecollisionless. v Pß(ß +Py)~<:0.4orpß/p<0.6atTi=1.6asthestartingpointfornextphase v PPv T + y v0 2 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Doroshkevich,Zel’dovidi,andNovikov(1967)havedescribed someaspectsofmodelswithcollision- Fig. 2.-—HomogeneousanisotropyinauniversefilledwithcollisionlessradiationThissolutionof In §IVawegiveasolutionwithcollisionlessradiationwhichassumespß<$Cp„,and 1968ApJ. . .151. . 431M 3 <<,, 6 6 4 6 4 421/ 4 28-8 -810 high- andlow-densitymodelssuggestthat withcurvedspacesections(k=±1) used inthispapersuffice forstudiesofatleasttherotation-freecasesaswill beshown might alsobehavedifferentlyfromtheflat(k=0) modelsstudiedherewhenonecarries elsewhere inadiscussion oftheanisotropic¿=+1models.)However,one wouldnot 3 X10”presentanisotropyinthehigh-density model. Thesedifferencesbetweenthe the analysistolowtemperatures belowtheradiation-dominatedphase.(The techniques photons arecollision-dominatedinamatter-dominated universeandthefast,(rijfUjoc Note thenon-linearbounceneara——4previoustowhich therewasasimpledß/da=H-2“free 3 X10~inthatmodel.Theneutrinos,however, havetheiranisotropyfrozenearlier motion’’ wheretheeffectsofanisotropypotentialV(ß) werenegligibleandp^®wasconstant. described inFig.2ispresentedawaywhichallowsthelargeanistropybehaviorfor<0tobeseen (at 3X10°K)inthiscaseandmightshowa larger,butunmeasurable,AT/T~ T, decreaseinthisdecadecontributestothelower presentphotonanisotropyAT/T< + same inthiscase. 438 CHARLESW.MISNERVol.151 matter-dominated phasestudiedin§IVgshowsthatßneednotdecreasefurther,but would showamaximumßthereafterof%(dß/da)m=0.9X10~.Theaddition 3pneutrino.) Thisvalueofpß/pcanbeinterpretedfromequation(4.31)intheform this tothe(non-decreasing)possiblej3oo<1.4X10~gives(AT/T)«(§ß)3 that, ifßwerezeroat300°K,thenthesolution 10“ atthepresenttime,oranytimewithT<100°K.Thelimitforneutrinosis to allowß<2X10”or(dß/da)1.610.Thesubsequentbehaviorinthe the 300°Ktransitiontoamatter-dominateduniverseonehasroughlyp=2pd— that (pß/p)<0.4X10at300°Kstartingfrom(pß/p)0.61.6°K.(At 3 ra v 43 10 0b © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem In thehigh-densitycasethereisaphasebetween 3X10°andKwhere Fig. 3.—Homogeneousanisotropyinauniversefilledwithcollisionlessradiation.Thesamesolution Between 1.6X10and300°Kweusethepß10°Kmighthaveincludedlargeanisotropicpressuresfromthegravita- appropriate toconsidersubstantialamountsofgravitationalradiationfillingtheUni- anisotropy beforeanyformofradiationbecomescollisionless.Itmay,course,be thermalized, andlikeanyaverage(overk)ofterms A^k*whichleadstoaresult take placeonatimescaleshorterthanweneednotice, thenthekdistributionwillbe (Isaacson1967).Ifcollisionsbetweenradiation particleswithdifferentk*values and nullsokpk*=0;theunitpolarizationvectoreisorthogonaltokparallel etry asoneapproachesthesingularityisexactlysameinperfectfluidcase, does not,therefore,changeanyofourpreviousarguments.Thebehaviorthegeom- tained forothermasslessradiationsuchasneutrinos orshort-wavelengthgravitational the phasev here8istheLiederivativealongd/dx.Theequation(A^)^=0applies and where theentirecoordinatedependenceistobefoundinfactorsk(qj).Inparticular separately foreachRvalueincollisionlessradiation,sowefindthat be independentoftheweobtainahomogeneousradiationdistributionforwhich where k(q,t)aregivenbyequations(2.4)and(2.5).BydemandingthatA={ 0 For astress-energytensorwetake corresponding constantsare and by=0wefind These constantsdeterminekcompletelysince of thegeodesicequation.WehavethreeKillingvectors,namely,Ç=d/dx?,and require. ForanyKillingvector£=^(d/dx)thequantityg?•£isafirstintegral a= w models, andourinterestisratherintheoppositeextremeofcollisionlessradiation. but ithasenoughfirstintegralsinthemetric(2.1)togiveeasilyinformationwe 440 CHARLESW.MISNERVol.151 stress-energy tensorforcollision-dominatedradiationhasbeenoftenusedincosmological where u?isthetimeaxisofthatframe.Ofcoursep=3pfollowsfrom0.This a íiv © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Given thisinitialdistribution wewishtodescribethedistributionatsome other For themetric(2.1)wemay,byaconstantlinear transformationofthecoordinates For collisionlessradiationthegeodesicequationk-=0mustbetakenseriously, v 31 yi{q)d*q =2(27r)-¥?[exp(|^|Jo")±1], (2-12) l2zah1 ah12 (- g)Ti=¡dqSSl{q)qiq{qgqb)~.^.io) 1/2 (_ )i/2oo$d*qyi{q){qagqb)(2-9) ja gr= a) TheCollisionlessStress-EnergyTensor ( -g)r,=2^.[]. (2.11) 7 (_g)l/2^ =J(. 28) ah Qa =k>(d/dx)gab{t)kka.(2-3) b) TemperatureAnisotropy abU2 l2 k°(t) =[qag(t)q].(2.5) yi(q) =(-g)iAk«(2-7) h vz2 T» =¡dqAk^k,(2.6) k%t) =g«(/)?,'(2-4) 1968ApJ. . .151. . 431M 2a2ß 2Taßj M2ß T12z aßT1 i aßsll2z zf z1,2 xfr f -1 z2 Ar 00 00 No. 2,1968ISOTROPYOFUNIVERSE441 where ßisatracelesssymmetricmatrix.Inmatrixnotationwewritethisas way whichdsitinguishesbetweenexpansionandanisotropy.Letgij(t)=e()ij, matrix notationtowriteds=-dt-{-dxg.dxandthusseethatco¿'e{)i>jdxgive time t.Tothisendweintroduceanorthonormalbasis,andparametrizethemetricina Then sincedete=exp(trM)foranymatrixMwehave1and With dxacolumnmatrixofthedx\androw(dx,)wecanalsoemploy q^dx —(e~e~q)o>=&¿'co¿'sowithk'thecolumnofk’wehave an orthonormalbasis(Cartan1946;Willmore1959)since To findthemomentumcomponents¥'ofaphotoninthisframewewritekidx= in d*k'andcomputing,fromequation(2.15)d*q=det(ee)dk'gdk\weseethat proper volume.ByequatingthistoN(k')dkforthedensityofphotonswithmomenta whose directionscorrespondtoqindq,wehaveg~yi(q)dasthenumberperunit perature T(n')thatdependsondirection.Wecall ni’fii' =1,wecanwrite namely, k^T~.Byintroducingdirectioncosinesnfork'sok=Wn!andn’^n' Starting fromyi(q)d*qasthe(conserved)numberofphotonsperunitcoordinatevolume This showsthatineachdirectionnthedistributionappearsthermal,butwithatem- for theanisotropyofradiationtemperature.This formulashowsthatmeasurements argument |#|TVoftheexponentialin9i(^)differsfromthatathermaldistribution, This distributionN(k')differsfromathermalonlytotheextentthat formula of theradiationtemperatureT(n')indifferentdirections provideadirectmeasurement the ^centraltemperature^ofdistributionandcanthenwriteThorne’s(1967a,b) where withdk'=(k°)dkHQ!thedWintegration gives theusualthermalresultaT(n) of thecentraltemperatureTandanisotropy matrixß. is definedbytheintegration ofdO,'overthedirectionsn'.Althoughthis formulafor (dQ!/^tt) fortheenergydensity fromeachdirectionn\andthe average<)' T isthesimplesttointerpret, wefindthatthebehaviorofTiseasier todiscussif c © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem From equations(2.9)and(2.15)wehave l172aT2ß0 T-\q =To-^)To~e(k'k')(Toe-^-^n^nJ^k. Q 2Taß ds =-dt-\-cowwithedx.(2.14) aß z # =e~qor—ek'.(2.15) Too jdk'N{k')W=a{T\n')y, (2.18) = 2a2ß 11212Za g. =e,trß0.(2.13) c) TheAnisotropyPotential g =(detg.)e. 2 T~(rí) =r~W%'(2.17) c N(k') =m(q). a T =Toe~(2*i6) c 1968ApJ. . .151. . 431M i3 3 4a00 3 2 2 442 CHARLESW.MISNERVol.151 we dotheintegralsovermomentaqattimekratherthanpresentmomen- part ofthestresses.Weproceednowtostudyitspropertiesinsomedetail. The matrixg~hadcomponentsg\andinthelastintegralabovewehavesetm=sin6 where now<)isdefinedby tum componentsk'.Thusinequation(2.9)weset^=\q\nwhererFn1,sod# while thesecondfactorwhichweshallwriteinform cos 0,etc.ThefactorTV=rV"inTthereforecontainsalltheeffectsofexpansion, ropy potential”sinceitsderivatives,fromequation(2.11),willdeterminetheanisotropic contains theeffectsofanisotropy.ThequantityV(ß)definedherewecall“anisot- values ofßwhichisdescribedbelow; which neglects0(ß)termsanduses,inthesecondform,aparametrizationofeigen- valid inoneofthethreeequivalentsectorsß+ß_plane,namely,where from therotationinvarianceofintegraldefiningV(ß)inequation(2.21)andneeds no furtherdiscussion.Theasymptoticform(v)isalsoeasytoobtainonceweparametrize 0 \q\d\q\dQ,, tofind the eigenvaluesofßappropriately.Letbeft,ftwith2ft=0from Then, sinceby(ii)wemayassumeßisdiagonal, equation (2.21)reads tr ß=0,andwrite or — ßisthemostnegativeeigenvalueofßij.Ofaboveproperties,(ii)followstrivially 1 +V(ß)=<^j(n)exp[2Ißcost>]+ exp2|ßcos+ + 32 T © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The principalpropertiesweshallestablishforV(ß)are: ii) Rotationinvariance:F(RßR)=F(ß)foranyorthogonalmatrixwith1; iv) Asmallßapproximation: iii) Aninequality: i) Positivedefiniteness:V(ß)>0withequalityonlyforß=0; v) Anasymptoticform -1/2 ß =ßi+|ß|cosÛ,ß_3(— ß) =|ß|sinÛ.(2.26) +2 2 2cos > + (%)exp2I^l /* 00ill2Tl/241 T =aTog-(ng-n)')ar<^~%))^i9) c c ß =—ß+—|ß|cos, ß =iß+-|V3ß-|ß|COS(tf+Itt), (2.25) ft =iß++W3ß~\ß\°s(d-—Itt), 3 2 ==l1 (4Tr)-ff(n)dti=(47t)“/f(d,èexpKißaößab)'}-1;(2-22) V(ß) ~£rßß=f(ß+ß_)(2.23) abah+ T2ß1/2 {(ne-n)) =1+V(ß)(2-21) V(ß) exp(ß+)(2-24) ' (2-27) 1968ApJ. . .151. . 431M 2 2 2 2ßß 2a2ß 2 3 21/ T plication law(/3)n='Lkßikßki —'Zhißik)>(jön).Theequalityholdsifandonlynis aneigenvalue of/3. product. Inthisbasistheinequality isequivalentto{ß)u>(ßn)andfollowsfromthe matrixmulti- where dßisamatrixofimperfectdifferentialsdefined byde~=—2e~dße~or and thencomputefromg”=e~that small ßweobtaintheapproximateform(2.23)forF(ß)byevaluating/"(O)=^tr. since ßistraceless.Thusf(s)=V(ßs)strictlyincreasingasfunctionofsawayfrom its minimumats=0,and/(l)F(ß)isthereforestrictlypositivewithß5*0.For The lastinequalityisstrictsinceß^0.Notethat so inequality But foranymatrixwhich,likeß,isself-adjointinthe(,)innerproductonehas inequality isstrongestifßchosentobethemostnegativeeigenvaluewhichsatisfies inequality (iii);oneneedonlydropanytwoofthethreetermsonrightinequation Iw exp(—Jß+)forß—>—oowithß_=0.Asimilarargumentservestoestablishthe When Ißislargeasingletermherewilldominateexceptforthreecriticaldirections No. 2,1968ISOTROPYOFUNIVERSE443 so In thisnotationonefinds This ismoresimplywrittenbydefininganewinnerproduct(,) thus yieldingequation(2.22). the furtherinequality|ß|=—ßs>(itrß)foranytracelesssymmetricmatrixß, invariant underrotationsby2tt/3intheß+ß-planewhichcorrespondtopermuting the eigenvaluesofß^-.Inacriticaldirection,say,$=tt,asymptoticformisF(ß)^ The asymptoticformsinothernon-criticaldirectionsareequivalentsinceVisevidently where 5isarealnumber,andcompute from equation(2.21)sincen=1.Nowassumeß0andconsiderf(s)V(ßs), (2.27) toshow,say,1+F(ß)>Jexp(—ß)whereisoneoftheeigenvalues.The & =±tt/3,7t.Inthesector|#|oo. 3 + 3 3 3 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Leteibeavectorparalleltow,andthefirstmemberof basis{eu}orthonormalinthe(,)inner Write equations(2.11)intheform The proofthatF(ß)ispositivedefinitemoreelaborate.ThatF(0)=0obvious s=/2 f'() ((n,n)-*[2(n,ßn)(n,n)—(^,ß^)]>. 2 (il2oo) =^±gVtr(T.dg~) dgT T2ßs1/2 f(s) ——((nße~n)(ne~n)~}. 2l, /'(O) =-ßijininj}-Ißjj0 aß f"{s) ^{{nßn){nn)~y>0.(2.29) idg~ =—g~da—e~dße~ (2.30) y 12 ß f(s) =—((n,ßn)(n,n)~).(2-28) -2dß =ede~+(de-)e. (2.31) 2 (n,ßn)(n,n) >(nßn) d) AnisotropicStresses T2ßs (n,n) =ne~ 1968ApJ. . .151. . 431M f 2 ß 00 lf ll2m k00 less radiation.Butnowsupposethemetricßremainsconstant(e.g.,zero);thencolli- function; theseareelsewhereidentifiedbyuseofacoordinatetransformationwhich radiation. Wemustdistinguishthematrixßwhichappearsinmetric,andanother sets ß=0atatimewhenß'waszero,andthisequalityispreservedincollision- This willserveasthebasisforacrudecalculationofviscositycollision-dominated follows atimelikegeodesictangenttoi;=d/dtand isatrestinthesensethatitsees velocity oftwofluidparticlesthiscollision-dominated radiation(eachofwhich sions, weknowthatdß/dt=dß/dt.Combiningthetwoeffectsgives sions willallowtheradiationanisotropyß'torelaxtowardzerosowecanpostulate which showshowtheshearstressesarederivedfromanisotropypotentialF(ß). which givesstressesproportionaltoß'(themomentumanisotropy)reads Thus ifaconstantgravitationalshearrateDß=dß/dtismaintained,ß'willreach ß, whichwewillnowcallß',describestheanisotropyofradiationdistribution also dß=dß[\+0(d)]soequation(2.33)gives We sawfromequation(2.29)thatdVnevervanishesexceptatß=0,othesameis verify fromdete~=1thattrdß—(ede~)—dln0soádisalso 444 CHARLESW.MISNERVol.151 should becarriedover(Eckart 1940;LandauandLifshitz1959;Ehlers1961) as To identifytheusualviscositycoefficientfromthis expression,notethattherelative time thisequalitywillbemaintainedasDßchanges.Thusthestressequation(2.34) steady valueß'=tDßwithinafewcollisiontimes,andifchangeslittlein of theviscositycoefficientrj where arethestresscomponentsinorthonormalframeofequation(2.14). Evidently dßissymétrie,andbyuseoftherulefordifferentiatingdeterminantswe true ofthetracelesspartstresses.Thedaterminequation(2.32)showsthat Using Tfromequation(2.19)thenallowsustowrite {dß'/dt) —t(rßwhereUisacollisiontime.Ontheotherhand,inabsenceofcolli- traceless. Whenwethenuseequation(2.30)incomputingd(gT),find T =aswealreadyknewfromT/0. S c k © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem When ßissmallenoughtomakeequation(2.23)ausefulapproximationwehave = 0)isgivenbyVv-y{Da)bvy+(dßyy/dt).Thus thenon-relativisticdefinition k aß Tv y-\bvyT>'=-aTt^tcDßvy-^tcT™ {dß/dt).(2.36) k i!2d(gU2oo) =-(T.g-)datr(e-e-T.e~dß) rTt Tab —\bbT akk k4 {Ti'j’ —\bi’j'Tk’)dßi'j'=—aTdV(ß),(2*33) c Tv y—=—aT^Tsß k Tyy -\bvyT'’=—2r}{dßij/dt) (2-37) k k = —Tda—(Ti'jr\bi'j'T'){dß)i'j', k dß' dß1 = e) ViscousStresses dt te L dÆ6Ô%a VdVq jdVb f i y (2-34) (2-32) (2-35) 1968ApJ. . .151. . 431M Ttß ß 1 ß 4 M0 Mla ß 002 00 doo®i +co°*/\ookjand0;y=doHjco;oco°y coa co/byareeasilycomputed(for which displaytheRiemanntensorcomponents instance, °=dtandthew*definedinequations(2.14),sowehenceforthomit would inanycaserequireaChapman-Enskogsolution(ChapmanandCowling1939) for agasofparticleswithvelocityc,exceptthenumericalfactor(herewhich If etcistakentobeameanfreepath,thenthisjusttheusualkinetictheoryresult co theseprovidethecurvaturecomponents,whichcanthenbecontractedtogive of therelativisticBoltzmannequation(TauberandWeinberg1961;Chernikov1963; Ricci tensor—R%pandthustheEinsteinG/=R/Tobegin, cosity coefficientv=77/pwherepTc~~isthemassdensity,wethereforefind and givesfromequation(2.36)theestimatetj=-^tcT.Forkinematicshearvis- M a a 4 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Themethodsusedhereare duetoE.Cartan.Seehistext(1946),Flanders(1963), or Willmore The firststepinstudyingtheEinsteinequationsformetric(2.1)istocompute 2 aß Rijhi =(Da+o)ik(Da o)ji—(Da+o)n(Dao)j. Æ°;oy =[(Da+Do)(Dao)ot—rcr];y , R°ijk=0 k dœ° =d{dt)=0do)i~d(eedx)i[Da+(De)e~]ijdtaij(3-i) 2 0 6°j =[(Da-l"Do)“f"(Dao)OT—r<7];yC0° COy ,(3*5) Qij =(Da+o)(Dao)jio¡k^on, ik CO; =00io—(Da+o)ij03j,00ij—OOij—Tijdt(3-4) ß ß T EEEi[(De)e~-e~(De)]. (7 eee(dß/dt)=hl(De)e-+e-(De)} III. THEEINSTEINEQUATIONS a) CurvatureComputation doji =(Da+err)ijdtcoy,(3*2) V =YgC%.(2-38) (3-6) 1968ApJ. . .151. . 431M 3o 000 2m m 00 002 00Za 446 CHARLESW.MISNERVol.151 since a=(dß/dt).UponmultiplyingtheZ)a—3(Z>a)-~ItTiyO-iy=,(3.9c) Ô/(-~ 8irTe)dt=f8w(Tij—\bijTkk)elßdt (3.is) 008a ß2ß ß2ß 8TL(ß,Dß,t) =(haijVij-8irT)e,(3-12) Iß ~\e~(be)e~=—\e (be~)e , 2 dH dL/&L\„ , ^ R =6Da+12(Z>a)Vijaij.(3*8) dt \da/ß,Dß 000 2100 SirH =+StT)^ (3.13) ft) TheAnisotropyLagrangian 3(Da) —\(Tij(Tij=SttT,(3-9a) oi 0 =87rr,(3.9b) 8 7T (3-7) No. 2, 1968 OF UNIVERSE 447 the right-hand side of equation (3.9d). The computation for the other term is trivial in the special case where ß is required to be always diagonal so ß,Dß = a, and öß = öß all commute. We need only write ó(|or¿y(r¿ye3a) = {Dßij)ez

= — 2 tr [o-(ói3)(r] + | tr [(Dbe2ß)e~ß(re~ß] .

In the last term here we will wish to integrate by parts in the action integral where the term eZab(\ tr a2) occurs. Neglecting total time derivatives then we have e3aô(J tr <72) = — 2e3a tr {

Now in this last term we use, from equation (3.3) and e~ßeß = 1, the formula De~ß = -e-ß(

With equations (3.15) and (3.16) now established it is trivial to see that the anisotropy equations (3.9d) indeed follow from varying ß in the Lagrangian (3.12). Note that the only property of used in establishing the Lagrangian (3.12) was equation (2.32) or equivalently (2.11). This property holds for more general forms of matter than collisionless null radiation. For instance, a homogeneous collisionless gas of particles of mass m would have a stress-energy tensor also given by equation (2.8) but 0 2 2 b with (k ) = m + qa(f (i)qb so equation (2.11) would again follow. [Note also that 5î(^) is arbitrary; it need not be a thermal distribution.] And for collision-dominated fluids equation (2.11) is just the law for adiabatic expansion work, dll = d(gl,2Tm) = —pdV = — \Tkkdg112 since T00 will depend only on a, not on ß. c) Anisotropy Energy Let us choose our stress-energy tensor so that = P6 + Py + P„(l + V) , (3.17)

3 4 a where p& = /xT , p7 = a7r , and p„ = avT*. Here T = 7V~ is the “central temperature” of the collisionless radiation (such as neutrinos below 1010 ° K) whose energy density is pv(l + F). As in § I we use p7 for the energy density of collision-dominated radiation (such as photons above 3000° K, but also including neutrinos above 1010 ° K), and p& for the energy density of pressure-free matter. The terms independent of ß do not contribute to the Euler-Lagrange equations in our variation principle for equations (3.9d), so we can take the Lagrangian to be given by Za 4 a SttZ, = ^(Tij(7ije — 87ra„r0 F(ß)e~ . (3.is)

The corresponding Hamiltonian is then er a Stt/z = 2 4“ %TravToW(ß)e- . (3-i9)

© American Astronomical Society • Provided by the NASA Astrophysics Data System 1968ApJ. . .151. . 431M 2 2 3a ß 2 448 CHARLESW.MISNERVol.151 Da, wedefinenothbut Because ofthewayitentersFriedmann-likeequation(3.9a)forexpansionrate so forward tosolvethisequationfora{t)ifeither(i)theanisotropyenergywerenegligible Since theentireßdependenceinthisequationoccurspßterm,itwouldbestraight- to bethe“anisotropyenergy.”Thenequation(3.9a)reads are discussedfurtherin§IVbelow. principal valuesoflnT.Thuswedefine ßij and(Tijmustvanish,withtheresultthatßwillthereafterremainzerobyequation constant differenceAH=definedinequation(1.2)wehavefrom(3.20) that pßalsogiveslimitsonthekinematicquantitiesanandßij.IntermsofrmsHubble to activegravitationalmassinproducingexpansionDaequation(3.21),whilehis or (ii)theanisotropyenergypßwereknownasafunctionofa.Thesetwopossibilities H). Aconvenientmeasureofthetemperatureanisotropyisrmsdifferencein By usingequation(3.21)forZT=Dawethenfindtherelatedestimate(1.6)(AH/ a Hamiltoniangoverningtheanisotropymotion,thispositivedefinitepropertymeans (3.9d). Althoughpß=he~isprimarilyadynamicalquantity,inthatitcorresponds gives ßijßij«-4-F<^(pß/pv)sowithAInT AT/T wededucefromequation(3.24) where Tjarethetemperaturesonprincipalaxesoftemperaturedistribution can assert When theanisotropyissmall,thisnotagood estimate,butthenequation(2.23) eDß, etc.,andinequations(3.3)wefind1ora/a^ Therefore eachelementofthematrixßhasform ing (Kasner1921;Taub1951)withp=0aforwhiche¿3(87rAo/3) been heatedbye-pairannihilation(seeWagoner,Fowler,andHoyle1967),soa4a of statewerep—orToc(vol).Inparticularwemayconsideremptyexpand- and therelationdh/dt=—dL/dtfromLagrangianmechanicsshowsusthatDh and n~/c<3C1. and a—withT=.ThisgivesIfonetakesp<0tobecomeex- where T=Toe~wasthetemperaturebefore viscous heatingbegan(/—>0)and tion thatrjisconstanttoobtaintheformula tion oftheDaequationgivese«ti,(Weareneglectingpforsimplicity.)Inthislater the Dßmotiontransferedenergyfrompßtop.We useequation(4.14)andtheassump- y (Da 0)itwouldshowthatp+pßremained constant whileviscousworkdoneby +277ö-»y0--ye. Anequivalentformforthisisobtainedbyusingequation(4.9)tofind y — IriVij.Letv=d/dt,whichisthe4-velocityvectorofradiationfluid;thenfrom y k y y b 7 y t © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem In caserjisindependentoftheradiationenergydensityp(whichfromourestimate In theanisotropy-dominatedphasewherepßpwecannotassumeadiabatic y y 4216/3 e* =ar+167n7(l-e-^03e“) , PyT0 263i (Da) =pß(16x^/3)öe-“e-"',(4-io) 232í 12 p =i(327r)7^-^(l- e-«*"*)-, ß? 16-1 (Tij =E^lÓTHjXe^—l),(4.13) a2Qa 16 D(pe*) +e-e=0(4.14) yß ßu =Enln(1-e~^0,(4.12) o 2 3a =(1—¿>-167™,*)(4.!!) bp =487n7((j/(;)(4.15) e y 452 CHARLES W. MISNER Vol. 151 we see that p7 <$C pß cannot be satisfied for a time as long as the viscous damping time ¿vise = (IÓttt;)-1 = (^/IGirG)^1 , (4.16) and soon after this time the Universe must become radiation-dominated with py ^ pß. The numerical solution of this problem, which shows also the transition period when Py ~ pß, is described in Figure 1 (see above). The viscous time (4.16) also appeared in Hawking’s (1966c) discussion of the interaction of weak, short-wavelength, gravitational waves with a viscous fluid. (One would expect the homogeneous anisotropy we discuss here to give the behavior of long gravitational waves, whose wavelength exceeds the horizon size.) d) General Decrease of Anisotropy during Expansion

Returning to the adiabatic case where rj = 0 but possibly av 7^ 0, we see that the time dependence of the anisotropy energy is governed by the formula dh/dt = —dL/dt which, from equations (3.18) and (3.19), can be written Dh = —hDa — (ÜT^iDo^o-ijO-ije3* . (4-i7)

During any expansion then, when Da > 0, this shows that D(hea) = D(pße^) < 0 . (4.is)

Thus, quite generally pß = he~Za decreases more rapidly than e“4°, and therefore more rapidly than the energy of isotropic radiation such as p7 or pv. Since pß/pv is thus a monotonically decreasing function of /, we see from the estimate (3.25) that the oscilla- tions of the temperature anisotropy (A ln T) must also have a decreasing amplitude in an expanding universe of the type considered in this paper. The oscillation amplitude of the Hubble constant anisotropy kH/H must also decrease monotonically. e) Adiabatic Invariants The preceding rigorous limit showing that pß decreases faster than T4 is not a good estimate, since we found that pß & T* when av = 0, and our small anisotropy example of equation (4.41) with T oc t~l¡2 showed pß œ T5. If the ß oscillations were rapid com- pared to the expansion rate one could easily derive such estimates from equation (4.17). For the present we adopt this (false) hypothesis, which means that we are studying the anisotropy Lagrangian (3.18) while ignoring the expansion equation (3.21). The reader may regard this as an evolutionary step in the process of becoming acquainted with this Lagrangian: after the simplest case where a(/) is assumed constant (which we treated in §§ ITLd-e)) the case next at hand is that where a(t) is slowly changing. We write equation (4.17) for pß = he~Za in the form

AflnCp^«.)] =2 (4.19)

r where we have set (d/dt) = (Da) (d/da). The ratio of the values of p;je '“ at two different epochs is then obtained by integration: ( P0e6a) 2(ppV/pß)da . (4.20) (ßßC 6a ft-x: The value of this integral is, by definition, not changed if we replace the integrand by its average value over the interval. By this well-known argument, then we are led to study the equation obtained from equation (4.19) by replacing its right-hand side with a smoothly varying function of a which has nearly the same average value as 2(pvV/pß) over long intervals.

© American Astronomical Society • Provided by the NASA Astrophysics Data System 1968ApJ. . .151. . 431M a a 6a _1 ZaSa 2 5a 2 l2 2 = ba 28104 2ha 6a 00 No. 2,1968ISOTROPYOFUNIVERSE453 fixed a.Usingthisestimateinequation(4.19)showsthatpß^isanadiabaticinvariant, that is,itisaquantitywhichapproachesconstancyinthelimitßoscilla- the virialtheorem,(pV)=%pßwhenaverageistakenoverßoscillationat sharp collisionswiththewallswhenpV/pßmayapproachbrieflyitsmaximumvalue,1. exponential behavior,thenthereisagainasimple,butdifferent,average,namely, tions arerapidcomparedtochangesina. of pß,sothatinthesmallanisotropycasewherepßisquadraticßandDßwehaveby more accuratelyconstantinthelimitofrapidlarge-amplitudeßoscillationscouldbe In thiscase,then,theright-handsideofequation(4.19)isnegligiblewhenaveraged walls spendsmostofitstimeinfreemotionwherepV/pß<^l,andverylittle difficult large-ßcaseisdeferredtothenextsection,butsincewehaveafullsolutionfor small ß(ifp&=0also),wemaystudythebehaviorofpß^inthisexample.Fromequa- obtained frommorepreciseestimatesofthesmallquantity(ppV/pß). over ßoscillations,andp^isanadiabaticinvariant.Adiabaticinvariantswhichare variable. (Infactitisconvenientphysically,as wellasmathematically,tothinkof rapid ßoscillationinaslowlychangingpotential, theexpansionequationfora(t)re- amplitude ßij(t)motionssufficienttojustifytheestimate(pV/pß)(Da).Buttheexpansionequation(3.21)requirespß<(3/8Tr)(Da)and are collisionlessandtheUniverseisradiation-dominated. somewhat differentfromthehofequation[4.4]).From(4.3)basicß in theworstcasewhereallcomponentsofßaoscillatephase.(Theconstantkis tion (4.4)wecomputethatpßeisproportionalto ever, limitedfromequation(4.2)tok<1.6,andthemostinterestingcasesareco^/co used intheformD=(d/dt)(8Tp/3)(d/da) to converttimederivatives,andthe excludes thislimit.Thepresentsectionisthereforedevotedtoastudyofthelarge- equations arethenreducedusing quires amotionofthepotentialwallssorapidthat thesystempointßijcannotreach adiabatic invariantoftheanisotropyLagrangianisroughlywhen\Dß\\Da\,or k §)>whichservesadmirablytoestimatethatpßisreducedbyafactorofnearly k —>ooclearlymakespßeconstantinthisexample.Thephysicalvaluesofarehow- the “wall”(definedbypV=pß)andforthisreason PvV/pßremainsalwayssmallas 10 asTocvariesthroughtherangefrom°to3XKinwhichneutrinos = k!or1.Butfor1,pßeonlyvariesby±50percent(or70 v (4.19) whichresultsinthenearconstancyofp^e.Itwillturnoutthat,insteada v a —>—ooandpß/p—»+• v a cc—InTioastheparameteridentifyinganygiven epoch.)Restrictingourselvesto v a v ± a v y 61 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem From equation(3.20)definingpßweseethatpVisjustthe^potentialenergy”part If pß/p1sotheßoscillationscarryintorangeßijßn»whereV(ß)hasan The usefulnessoftheseadiabaticinvariantsmaynowbeconsidered.more The limitinwhichp^*shouldbeconstantduringlarge-amplitudeßmotionsasan Since aincreasesmonotonicallywith/,wemaytake ainplaceoftasanindependent v v è-f ln(e«)=i[p.(l+F)+p +fp6](4-21) pe 7 aa p ^ 12 1 -(2k)-sin[(/ciyi*In(t/k)] /) LargeAnisotropy 1968ApJ. . .151. . 431M ßw 4ß 1/2 ß+ 1 _4a 6a 2ß Qa 2 454 result is region whereFissmall,butaftersomefiniteinterval ofßitmustbemovingaway where theprimemeansd/dQ=—d/da,Q = —aanexpansionparameterwhich gives (sinceV^>1similarly impliesV=%e) from theoriginofß+ß-planetowardone the potentialwalls,andourßcoordi- increases asoneapproachesthesingularity,e.g., p„oce—>ooasß—»oo.Thereare written fore werestrictourdiscussiontothesimplecasep=0p&whichistypicalofall When theseequationsaresupplementedbyequation(4.19)intheform which followsfromequation(4.19)andtheknownadependencesofp,p&.The nates canbechosentomakethisthewallof principalsectoroftheplanewhere obvious furthersimplificationsinthecaseofinterest whenF^,1.Inthisnotation ß+ >3~|ß_|.Thenthe asymptoticformF=%ecanbeusedandequation (4.26b) so onlytheirdirectionremainsarbitrary.Thusthe point(ß+,ß-)willnotremainina during anysuchperiodonealsohasß±"«0soß±' remainconstantaslongVVnT<>1.Thesystemofequations(4.22)-(4.24)canthenbe Pß/Pt 1andpß/p&>>>ifweassumethatparecomparabletoeachother write V=V(ß,0)pß/p.Thelargeanisotropycondition^>lalsoimplies so ßisthedistance(inß+ß-plane)fromorigintocenterofanythree an additionaltermGe~tobeincludedontheright-handsideofequation(4.24)with sides oftheroughlytriangularcontourwhereV(ß)hasfixedvaluePß/p.Wealso of theequation the potentialpV(ß+,ß-).Thiswedobylettingßbeuniquenon-negativesolution 1. Fromequation(4.26c)theseconstant“velocities” ß±satisfy(i/V)+ßß-)~1 (which iseq.[3.20]withthederivativesconverted)besatisfiedaswell.Thismay W w 7 7 vy T w v yv wvy w v vw © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem For anygivenvalueofpßwecandefineacorrespondingpositionßforthewall w 2p dß± J1rMIdß±ioPdV^ da' 2 1 =(1+v-')[(W)Gß-)]Vw-'V, w w=1 +7 -1 PA1+E)py%pb\—h2Trr-==o. (^r)]+p-'^) ß±" i+r ßß+) CHARLES WMISNER l+v^ 'dß w± ^ da ßj =2[1—-(v>-]. (4.27) e Vw' =2(V-V), %a6 W ( Pße)=2p„Fe, Pß ^PvV(ßwfi)y(4*25) da dV 0, P dß± Vol. 151 (4-26b) (4.26a) (4-2 6c) (4-24) (4-23) (4-22) No. 2, 1968 ISOTROPY OF UNIVERSE 455

ßw ß+) Thus V/Vw — e~( ~ « 1 implies that the walls are moving out with a velocity 2 /2 1/2 8W' « 2. The system point (ß+ß~) which has velocity (/V + #_ ) ~ 2 can there- fore never catch up with the receding wall unless ß+' « 2 so ß- is near zero. We must therefore turn to the exceptional case where ßJ = 0. If ßJ = 0 while ßw and ß+ are large, equation (4.26c) gives (i/V)2 = 1 - V^V (4-28) and equation (4.26b) gives i/V = i - v^v. (4-29)

If we further assume that V^V — pvV/pß<&l and choose ß+ positive we can then ß ßw ß+ compute ßw' — ß+ = —V-uTW = —e~^~ ^ which has the formal solution e ~ — ißw ß+) l (const. — Í2) showing that e~ ~ — Vw~ V cannot remain small compared to unity 1 1 for an Q interval as long as AQ = (VW~ V)~~ which, although large, is finite. Thus when initially ßJ = 0 and ß+' « 2, the system point (ß+,ß-) will eventually gain on the moving wall which also has ft/ « 2 initially, and approach it. But equations (4.28) l 2 and (4.29) are valid also when Vw~ V is not small, and show then that (|ft/) = (èft/) from which follows the strict inequality | ft/1 > ft/ for all values of ft/ except ß^' — 2 which we have just seen cannot persist, and ft/ = 0. Thus starting from the condition VvTW — e~(ßw~ß+)

when in addition to (pv/p) <$C 1 and (p7/p) <3C 1 one further assumes \ß\

£!+

© American Astronomical Society • Provided by the NASA Astrophysics Data System 1968ApJ. . .151. . 431M a 3al2 456 Here itisclearthattheterm^e~negligiblesoonaftera=0(whenpp^),sowe .1945,TheMeaningofRelativity(2ded.;Princeton,NJ. :PrincetonUniversityPress),AppendixI. ———. 1950,Rev.Mod.Phys.,22,153. from theU.S.NationalScienceFoundation(SeniorPostdoctoralFellowship1966- Then onerequiresthesolutionofequation(4.31)withinitialconditionsß±=0.Itis radiation (e.g.,photons)firstbecomescollisionlessduringamatter-dominatedphase. simple result may equivalentlyomitthecorrespondingterminequation(4.30)tofind Flanders, H.1963,DifferentialFormswithApplicationsto the PhysicalSciences(NewYork:Academic Alpher, R.A.,andHerman,C.1948,Nature,162,774. ment andconclusion.MythanksalsogototheCambridgeUniversityDepartmentof This rapiddecreaseofHubbleconstantanisotropyisnotsharedbythetemperature which impliesdß±/daœe~.Thusinmatter-dominateduniversesweobtainthe Gamow, G.1948,Nature,162, 680. Field, G.B.,andHitchcock,J.L.1966,Phys.Rev.Letters, 16, 817. Applied MathematicsandTheoreticalPhysics(D.A.M.T.P.)fortheirhospitality, ideas andencouragementledmetobeginthesestudies,R.A.Matzner,who with particularappreciationtoJ.FaulknerandP.A.Strittmatter,whoseprovocative or equivalentlyequation(1.9). anisotropy sinceß±=const,isclearlyasolutionofequation(4.31).Thus(AT/T)oc Fowler, W.A.1967,paperpresented attheSecondInternat.Conf.HighEnergyPhysics andNuclear Dicke, R.H.,Peebles,P.J.E.,Roll,G.,andWilkinson, D. T.1965,ApJ.,142,414. Cartan, E.1946,LeçonssurlagéométriedesespacesdeRiemann(2ded.;Paris:Gauthier-Villars),chap.vii. Bahcall, J.N.1964,Phys.Rev.,136,B1164. to J.WeberoftheUniversityMaryland,andfromU.K.ScienceResearchCouncil. assistance ofJ.ElderD.A.M.T.P.Financialsupportismostgratefullyacknowledged ties providedbyagrantfromI.B.M.(U.K.)weremadeavailablethroughthegenerous to S.W.HawkingandM.J.Reesfortheirmanyusefulconversations.Computerfacili- carried outthecomputationsreportedinfiguresandcorrectedanerroneousargu- Saslaw, andP.A.G.Scheuerformanyinformativestimulatingconversations,but Einstein, A.1917,Sitzungsber.preuss.Akad.Wiss.,p.142, translatedinThePrincipleofRelativity,by Eckart, C.1940,Phys.Rev.,58,919. Chernikov, N.A.1963,ActaPhys.Polon.,23,629. Chapman, S.,andCowling,T.G.1939,TheMathematicalTheoryofNon-UniformGases(Cambridge: T° =const,isapossiblebehavior.Aparticularcaseofinterestwhensomeform Ehlers, J.1961,Ahh.Akad.Wiss.Mainz,No.11. Doroshkevich, A.G.,Zel’dovich,Ya.B.,andNovikov,I. D.1967,Zh.ET.F.Pis'ma,5,119(trans. Curtis, A.R.1950,Proc.Roy.Soc.,A,200,248. 1967), fromaU.S.NationalAeronauticsandSpaceAdministrationgrant(NsG-436) v © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Press). I wishtothankmycolleaguesD.W.Sciama,E.A.Spiegel,G.F.R.Ellis,C. A. Einstein,H.Lorentz,Weyl,andMinkowski (London: Methuen,1923;reprintedNew Structure, HebrewUniversity, Jerusalem,Israel,March1,1967. York: Dover). in J.E.T.P.Letters,5,96). Cambridge UniversityPress). 2/23a3 (AH/H) =|(iS+ßJ)cc-ocT.(4.32) +e Sal2 ß± =Kdß±/da)o(l—e~)(4.33) CHARLES W.MISNER 2 2 dß ,,dß +± da REFERENCES Vol. 151 (4-31) No. 2,1968 ISOTROPY OF UNIVERSE 457 Harrison, E. R. 1965, Ap. 142,1643. • . 1967ô, Phys. Rev. Letters, 18, 1011. . 1967Ô, preprint. Hawking, S. W. 1966a, Proc. Roy. Soc., London A, 294, 511. • . 1966&, ibid., 295, 490. ■ —. 1966c, Ap. /., 145, 544. Hawking, S. W., and Tayler, R. J. 1966, Nature, 209, 1278. Heckmann, O., and Schücking, E. 1962, in Gravitation: An Introduction to Current Research, ed. L. Witten (New York: Academic Press), chap. xi. Howell, T, and Shakeshaft, J. R. 1966, Nature, 210, 1318. Isaacson, R. A. 1967, unpublished Ph.D. thesis, University of Maryland (Tech Rept. No 657), and Phys. Rev. (in press). Kasner, E. 1921, Am. J. Math., 43, 217. Kantowski, R., and Sachs, R. K. 1966, /. Math. Phys., 7, 443. Kristian, J., and Sachs, R. K. 1966, Ap. J., 143, 379. Landau, L. D., and Lifshitz, E. M. 1959, Fluid Mechanics (London: Pergamon Press), § 127 Lifshitz, E. M., and Khalatnikov, I. M. 1963, Advances in Physics (Phil. Mas. Suppl ), 12,185, pt. I. S 3 Lindquist, R. W. 1966, Ann. Phys., 37, 487. Michie, R. W. 1968, Ap. J. (in press). Misner, C. W. 1963, J. Math Phys., 4, 924. ■ . 1967a, Nature, 214, 40. . 1967&, in Proc. Conf. Fluids and the Gravitational Field (to be published by Centre National de la Recherche Scientifique, Paris). North, J. D. 1965, The Measure of the Universe (Oxford: Oxford University Press). Partridge, R. B., and Wilkinson, D. T. 1967, Phys Rev. Letters, 18, 557 Peebles, P. J. E. 1965, Ap. J., 142,1317. . 1966, ibid., 146, 542. . 1967, ibid., 147, 859. Penrose, R. 1965, Phys. Rev. Letters, 14, 57. Penzias, A. A., and Wilson, R. W. \96S,Ap. J., 142,419. Roll, P. G., and Wilkinson, D. T. 1966, Phys Rev. Letters, 16, 405. Sachs, R. K., and Wolfe, A. M. 1967, Ap. J., 147, 73. Sciama, D. W. 1967, Phys. Rev. Letters, 18, 1065. Sciama, D. W., and Rees, M. J. 1967, Nature, 213, 374. Silk, J. 1967a, Nature, 215, 1155. . 1968, Ap. J., 151, 459. Taub, A. H. 1948, Phys. Rev., 74, 328. • . 1951, Ann. Math., 53, 472. Tauber, G E , and Weinberg, J. W. 1961, Phys. Rev., 122, 1342. Thaddeus, P , and Clauser, J. F. 1966, Phys. Rev. Letters, 16, 819. Thorne, K. S. 1967a, Ap. J., 148, 51. . 19676, Lectures at the 1966 Les Houches Summer School for Theoretical Physics (New York: Gordon & Breach). Wagoner, R. W., Fowler, W. A., and Hoyle, F. \9(>l,Ap J., 148,3. Willmore, T. J. 1959, An Introduction to Differential (London: Oxford University Press). ZePdovich, Ya. B. 1962, Soviet Phys.—J E.T.P., 14, 1143 (trans. from Zh. Eksp. Teor. Fiz , 41 [19611 1609). . 1966, Usp. Fiz. Nauk, 89, 647 (trans. in Soviet Physics Uspekhi, 9, 602, 1967). Zipoy, D. M. 1966, Phys. Rev., 142, 825.

Copyright 1968 The University of Chicago Printed in U S A

© American Astronomical Society • Provided by the NASA Astrophysics Data System 1968ApJ. . .151. . 431M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem