First Record of the Invasive Swimming Crab Charybdis Hellerii (A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: a Baseline Study
diversity Article Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: A Baseline Study Patricia Briones-Fourzán * , Luz Verónica Monroy-Velázquez, Jaime Estrada-Olivo y and Enrique Lozano-Álvarez Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Puerto Morelos, 77580 Quintana Roo, Mexico; [email protected] (L.V.M.-V.); [email protected] (J.E.-O.); [email protected] (E.L.-Á.) * Correspondence: [email protected] Current address: Calle Trasatlántico SM-18, Mz 24, Lote 12; Villas Morelos, Puerto Morelos, y 77580 Quintana Roo, Mexico. Received: 7 April 2020; Accepted: 19 May 2020; Published: 23 May 2020 Abstract: The community composition of decapods associated with subtidal tropical seagrass meadows was analyzed in a pristine reef lagoon on the Mexican Caribbean coast in the summer of 1995 and winter of 1998. The macrophyte community was dominated by Thalassia testudinum followed by Syringodium filiforme, with interspersed rhyzophytic macroalgae and large patches of drift algae. In each season, 10 one-min trawls were made with an epibenthic sled (mesh aperture 1 mm) during the day and 10 during the night on each of five sites. In all, 53,211 decapods belonging to 119 species were collected. The most diverse taxa were Brachyura and Caridea, but the most abundant were Caridea and Anomura. Dominance was high, with three species (Latreutes fucorum, Cuapetes americanus, and Thor manningi) accounting for almost 50% of individuals, and 10 species accounting for nearly 90% of individuals. There was great similarity in community composition and ecological indices between seasons, but significantly more individuals and species in night versus day samples. -
Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group. -
Charybdis Hellerii Global Invasive
FULL ACCOUNT FOR: Charybdis hellerii Charybdis hellerii System: Marine_terrestrial Kingdom Phylum Class Order Family Animalia Arthropoda Malacostraca Decapoda Portunidae Common name Indo-Pacific swimming crab (English), spiny hands (English), Ishigani New Caledonia (Japanese), New Caledonia-íshigani (Japanese) Synonym Goniosoma hellerii , (A. Milne-Edwards, 1867) Goniosoma merguiense , (DeMan, 1888) Charybdis merguiensis , (Sakai, 1934; Barnard, 1950; Guinot, 1962) Charybdis (Goniosoma) merguiense , (Alcock, 1899; Nobili, 1906, Chopra, 1935; Leene, 1973; Shen, 1937) Goniosoma sexdentatum , (De Man, 1879) Charybdis amboinensis , (Leene, 1938) Goniosoma spiniferum Charybdis vannamei , Ward 1941 Similar species Summary Charybdis hellerii is an Indo-Pacific, portunid crab that has invaded several locations in the Mediterranean Sea, by Erythrean invasion through the Suez Canal, and the South Atlantic in the Caribbean and United States via ballast water fouling. Charybdis hellerii is a potential threat to native crab populations and benthic communities and its introduction should be avoided by adhering to ballast water management guidelines. view this species on IUCN Red List Species Description Charybdis hellerii is a small crab measuring from about 5-8 cm wide. It is dark green with a light purple on the upper inner surface of palm and dark purple on dorsal surfaces of distal 4 segments of walking and swimming legs. The carapace has pale green to whitish areas on frontal, hepatic, and epibranchial regions. It is most easily identifiable by the spine on the posterior of the carpus on the fifth leg which bears its chela, or claws giving it one of its common names: spiny hands. Its dorsal carapace is naked and its anterolateral margin has 6 prominent black-tipped teeth. -
Larval Rearing of Mithraculus Sculptus (Lamarck, 1818) in Captivity
UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia Larval rearing of Mithraculus sculptus (Lamarck, 1818) in captivity. Tiago Miguel Dionísio Mourinho Dissertação apresentada para obtenção de Grau de Mestre em Aquacultura e Pescas-Especialidade em Aquacultura Trabalho efectuado sob orientação de: Prof. Dra. Margarida Cristo Mestre Joana Salabert 2012 UNIVERSIDADE DO ALGARVE Faculdade de ciências e tecnologia Larval rearing of Mithraculus sculptus (Lamarck, 1818) in captivity. Dissertação orientada por: Prof. Dra. Margarida Cristo Universidade do Algarve Faculdade de Ciências e Tecnologia Dissertação co-orientada por: Mestre Joana Salabert Lusoreef, Criação de Espécies Marinhas, Lda. Autor: Lic. Tiago Miguel Dinísio Mourinho Universidade do Algarve Faculdade de Ciências e Tecnologia Mestrado em Aquacultura e Pescas-Especialidade em Aquacultura 2012 Larval rearing of Mithraculus sculptus (Lamarck, 1818) in captivity. Declaração de autoria de trabalho Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. O autor: Tiago Mourinho Copyright® by Tiago Mourinho A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. Resumo O aumento exponencial da aquariofilia de recife tem levantado alguns problemas ecológicos. A captura de seres vivos dos recifes para o mercado aquarista tem impactos negativos na ecologia dos mesmos. -
Brachyura of the Pacific Coast of America Brachyrhyncha: Portunidae
n\oo ALLAN HANCOCK MONOGRAPHS IN MARINE BIOLOGY NUMBER 1 BRACHYURA OF THE PACIFIC COAST OF AMERICA BRACHYRHYNCHA: PORTUNIDAE BY JOHN S. GARTH AND W. STEPHENSON LOS ANGELES, CALIFORNIA PRINTED FOR THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA 1966 Kff' ALLAN HANCOCK MONOGRAPHS IN MARINE BIOLOGY NUMBER 1 BRACHYURA OF THE PACIFIC COAST OF AMERICA BRACHYRHYNCHA: PORTUNIDAE BY JOHN S. GARTH Allan Hancock Foundation and Department of Biological Sciences University of Southern California Los Angeles, California AND W. STEPHENSON Department of Zoology Ij nivcrsity of Queensland Brisbane, Australia I .OS ANGELES, CALIFORNIA PRINTED FOR THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA 1966 ALLAN HANCOCK MONOGRAPHS IN MARINE BIOLOGY NUMBER 1 ISSUED: APRIL 29, 1966 PRICE: $4.50 THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Los ANGELES, CALIFORNIA TABLE OF CONTENTS General Discussion 1 Introduction 1 Source of Materials 2 Acknowledgment 2 Systematic Discussion 3 Method of Treatment 3 Historical Review 3 Analogous Atlantic Species 4 Explanation of Terms 8 Color Notes 9 Abbreviations 9 Family Portunidae 9 Subfamily Macropipinae 12 Genus Ovalipes 12 Ovalipes punctatus (de Haan) 12 Subfamily Portuninae 14 Genus Portunus 15 Portunus acuminatus (Stimpson) 17 Portunus angustus Rathbun 19 Portunus asper (A. Milne Edwards) 19 Portunus brevimanus (Faxon) 23 Portunus iridescens (Rathbun) 26 Portunus guaymasensis n. sp 29 Portunus stanfordi Rathbun 31 Portunus xantusii (Stimpson) 31 Portunus xantusii xantusii (Stimpson) 32 Portunus xantusii minimus (Rathbun) 35 Portunus xantusii affinis (Faxon) 38 Portunus tuberculatus (Stimpson) 40 Genus Callinectes 42 Callinectes arcuatus Ordway 43 Callinectes bellicosus (Stimpson) 47 Callinectes toxotes Ordway 50 Genus Arenaeus 52 Arenaeus mexicanus (Gerstaecker) 53 Genus Cronius 56 Cronius ruber (Lamarck) 57 Subfamily Podophthalminae 62 Genus Euphylax 63 Euphylax dovii Stimpson 64 Euphylax robustus A. -
Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA
Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2019 Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA Angelo Jason Spadaro Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Spadaro, Angelo J.. "Cryptic Herbivorous Invertebrates Restructure the Composition of Degraded Coral Reef Communities in the Florida Keys, Florida, USA" (2019). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/fg35-1j72 https://digitalcommons.odu.edu/biology_etds/86 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. CRYPTIC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA by Angelo Jason Spadaro B.S. May 2010, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2019 Approved by: Mark J Butler, IV (Director) Eric Walters (Member) Dan Barshis (Member) Seabird McKeon (Member) ABSTRACT CRYPTC HERBIVOROUS INVERTEBRATES RESTRUCTURE THE COMPOSITION OF DEGRADED CORAL REEF COMMUNITIES IN THE FLORIDA KEYS, FLORIDA, USA Angelo Jason Spadaro Old Dominion University, 2019 Director: Dr. -
Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA). -
Notes and News
NOTES AND NEWS EXTENSIONOF THEKNOWN DISTRIBUTION OF CHARYBDISHELLERII (A.MILNE-EDW ARDS,1867) (DECAPODA, POR TUNIDAE) ALONGTHE WESTERN TROPICAL SOUTH A TLANTIC BY FERNANDO LUIS MEDINA MANTELATTO 1;2;3)andLUCIANO LUIZ DIAS 1) 1)Depto.de Biologia, Faculdade de Filoso a, Ci^enciase Letrasde Ribeir ao~ Preto (FFCLRP), Universidadede S ao~ Paulo (USP), Av.Bandeirantes 3900, CEP 14040-901Ribeir ao~ Preto, SP, Brazil 2)NEBECC (Groupof Studies on Crustacean Biology, Ecology and Culture) Charybdishellerii (A.Milne-Edwards, 1867), a species ofIndo-W est Paci c origin,has migrated to several areas ofthe MediterraneanSea throughthe Suez Canal,and has also beenfound in the western Atlantic Ocean.Detailed informa- tion aboutits occurrenceon the east coast ofNorth America (IndianRiver near Fort Pierce, Florida),its routeof distribution in the western Atlantic Ocean,and data onits biologycan be found in Lemaitre (1995),who also referredto the captureof this species in Colombia(Campos & T urkay, 1989), Cuba (G omez´ & Mart´onez-Iglesias, 1990),and V enezuela(Hern andez´ & Bolanos,~ 1995). Accordingto Melo (1996),twenty portunid species havebeen recorded in Brazilian waters. Recently C. hellerii was addedto the species foundin this area. The rst tworecords of young specimens wereprovided by Carqueija & Gouv^ea (1996)who reported them fromBahia State andby Calado(1996) from AlagoasState; Negreiros-Fransozo(1996) described the morphologyof the rst zoeafrom an ovigerous female collected in UbatubaBay, northern coast ofS ao~ Paulo,and Mantelatto &Souza-Carey(1998) reported the presenceof immature individuals onbryozoan colonies of Schizoporellaunicornis (Johnston,1847) sampled in this bay;Tavares & Mendonc¸a(1996)documented the presenceof this species in Rio deJaneiro State. -
Notes on the Behaviour of the Portunid Crab Charybdis Longicollis Leene Parasitized by the Rhizocephalan Heteros&Ccas Dollfa
JounNnr op Narunal Hrsronr 1998.32. 15ll 1585 Notes on the behaviour of the portunid crab Charybdis longicollis Leene parasitized by the rhizocephalan Heteros&ccasdollfasi Boschma G. INNOCENTIT, M. VANNINIT and B. S. GALTLI 'La I Museo Zoologico Specola', (Jniversitd di Firenze, via Romctna 17, 50125 Firenze, Italy f Israel Oceanographic and Limnological Research, P.O. Box 8030, HaiJa 31080, Israel (Accepted8 May 1998) A significant portion of the population of Charybdis longicollis (Decapoda: Portunidae) along the Mediterranean coast of Israel is parasitized by the rhizo- cephalan Heterosaccusdollfusi. The behaviour of the parasitized crabs, in different stages of infection, is examined and compared with the behaviour of non- parasitized crabs. Locomotion, rest, body-, egg- and parasite-grooming,digging and burying, courtship and mating are described qualitatively and analysed quantitatively under standardized conditions. Behaviour patterns of parasitized crabs lacking externae,either immature or scarred,were similar to those of non- parasitized crabs. The presenceof externae was observedto modify digging and to inhibit burying behaviour. The presenceof externae induces an imitation of egg-grooming behaviour pattern in both males and females. Exlernae-bearing crabs engagedin parasite-groomingmore intensely than ovigerous crabs in egg- grooming. Ksvwono s: Charyhdis, H et er osac cus, Rhizocephala, parasitism, behaviour. Introduction The lessepsian portunid crab Charybdis longicollis Leene is one of the most common decapods along the Mediterranean coast of Israel, where it was first recorded about 40 years ago (Lewinsohn and Holthuis, 1964). Since 1993, it has been parasitized by the rhizocephalan Heterosaccusdollfusi Boschma, a lessepsian migrant too (Galil and Litzen, 1995). H. dollfusi penetrates through the gills of young C. -
Lady Crab Charybdis Japonica (A. Milne-Edwards, 1861) Crustacea: Decapoda: Brachyura: Portunidae Status Exotic (Intercepted in Australia)
PaDIL - Fact Sheet Page 1 of 4 Lady Crab Charybdis japonica (A. Milne-Edwards, 1861) Crustacea: Decapoda: Brachyura: Portunidae Status Exotic (intercepted in Australia) Other Common Names None Listed Scientific Synonyms None Listed Host Types Marine Distribution - Regions Australasian - Oceanian South and South-East Asia Distribution - Notes A single mature male specimen was found in the Port River Adelaide, by a recreational fisher in 2000. A three day search by fisheries officiers found no additional specimens (Poore, 2004). Diagnostic Characters: Description: carapace hexagonal and pilose; chela propodus with 5 spines on upper surface (including spine at carpus articulation; Size: to 80 mm wide. Broad Sweep Marine Commodity Marine Specifics Specimen Contact Point [email protected] Name Gary Poore Web links None Listed http://www.padil.gov.au/viewPest.aspx?id=1167 13/06/2008 PaDIL - Fact Sheet Page 2 of 4 Padil links swimmer crab References Poore, G. C. B. (2004) Marine decapod Crustacea of southern Australia. A guide to identification (with chapter on Stomatopoda by Shane Ahyong). Melbourne: CSIRO Publishing. Acknowledgements Citation Dane, E. & Poore, G.C.B. (2008) Lady Crab (Charybdis japonica) Pest and Diseases Image Library. Updated on 12/06/2008 1:05:01 PM. Available online: http://www.padil.gov.au Last Updated 12/06/2008 1:05:01 PM Diagnostic Images Anterior body appendages Caption: Photo of inner claw showing spines Source: Peter Davie, Queensland Museum http://www.padil.gov.au/viewPest.aspx?id=1167 13/06/2008 PaDIL - Fact Sheet Page 3 of 4 carapace Caption: Partial drawing of carapace Source: Gary Poore, Museum Victoria Overview Images http://www.padil.gov.au/viewPest.aspx?id=1167 13/06/2008 PaDIL - Fact Sheet Page 4 of 4 Dorsal Caption: Photo of preserved specimen from Adelaide, Australia Source: Peter Davie, Queensland Museum Full size images available at http://www.padil.gov.au. -
Brachyuran Community in Ubatuba Bay, Northern Coast of Sao Paulo State, Brazil
Journal of Shellfish Research, Vol. 19, No. 2, 701-709, 2000. BRACHYURAN COMMUNITY IN UBATUBA BAY, NORTHERN COAST OF SAO PAULO STATE, BRAZIL FERNANDO LUIS MEDINA MANTELATTO1 AND ADILSON FRANSOZO2 1 Departamento de Biologia, FFCLRP Universidade de Sao Paulo, Cep. 14040-901 Ribeirao Preto, SP, Brasil Departamento de Zoologia Institute de Biociincias, UNESP Botucatu, Cep. 18618-000 Botucatu, SP, Brasil ABSTRACT A brachyuran crab assemblage from eight transects at a non-consolidated sublittoral site in Ubatuba Bay was studied on a monthly basis from September 1995 to August 1996. Data about number of individuals of 50 species found and other information such as distribution of the dominant crabs are reported. The family Majidae was represented by 13 species, followed by Xanthidae (13), Portunidae (10), Leucosiidae (5), Calappidae (2), Dromiidae (2), Parthenopidae (2), Goneplacidae (1), Pinnotheridae (1), and Ocy- podidae (1). The brachyuran taxocoenosis was dominated by Callinectes ornatus (60.4%), Callinectes danae (18.8%), and Hepatus pudibundus (7.7%), representing together 86.9% of the total number of collected brachyurans. The Shannon-Weaver diversity index ranged from 1.10 to 2.06 between transects, and from 1.34 to 2.22 between months, depending more on equitability than on richness. KEY WORDS: Biodiversity, Brachyura, crabs, Crustacea, Ubatuba, Brazil INTRODUCTION C. Agarth, 1820 from three different Ubatuba beaches; Pinheiro et al. (1997) studied the composition and the relative abundance of With approximately 5,000 species described worldwide, the crabs associated with sand reefs created by Phragmatopoma lapi- Brachyura is a highly significant group of marine crustaceans play dosa Kimberg, 1867, and Mantelatto and Souza-Carey (1998) re ing an important role in the marine trophic chain (Melo 1996). -
Charybdis Hellerii (A. Milne Edwards , 1867) (Brachyura: Portunidae
CRUSTACEAN RESEARCH,NO .25: 151-157 ,1996 Charybdis hellerii (A. Milne Edwards,1867) (Brachyura: Portunidae),eighth nonindigenous marine decapod recorded 仕omBrazil Marcos Tavares and Joel Braga de Mendonca Jr. Abstract. - In the western Atlantic (Lemaitre,1995). C. hellerii has now Charybdis hellerii was first discovered as reached the Brazilian coast. Nineteen an e玄otic species in the Caribbean Sea crabs,including adults,an ovigerous fe- (1987 and 1988),northeastern Venezuela male and juveniles,were obtained by (1987) and eastern Florida (1 995). The snorkel dive in Guanabara Bay,Rio de species is now recorded 仕 omthe south・ J回目iro ,仕 omNovember 1995 to January eastern Brazilian coast (Rio de Janeiro). 1996,at depths ranging from 0.5 to 3m. It soccurrence in Brazil and the introduc- The circumstances of the occuπence ofC. tion of seven other exotic marine deca- hellerii along with comments on previous pods in Brazil 町 edi舵 us艶 d. records of seven other exotic marine deca- pods introduced to Brazil are presented Introduction herein. The specimens studied have been de- Chαrybdis hellerii (A. Milne Edwards, posited in the Carcinological collection of 1867) is aportunid native to the Indo- Universidade Santa Ursula,Rio de West Pacific ocean. However its geo・ , Janeiro (USU),and in the Museu Nacio・ graphical range has been expanded west- nal do Rio de Janeiro (MNRJ). Measure- ward as aresult of recent human activi- ments are given in millimeters (mm),as ties: invasion of the eastern part of the C 訂 apace length and carapace width. Mediterranean Sea through the Suez Ca- nal (Steinitz,1929; Crosnier,1962; Por, 1971); and ballast-mediated invasion of Chαη Ibdis hellerii (A.