Bacterial Diversity Associated with Poplar Trees Grown on a Hg
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China
Article Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China Xiaoping Zhang 1, Zheke Zhong 1,*, Xu Gai 1, Jiafu Ying 2, Weifen Li 2, Xuhua Du 1, Fangyuan Bian 1 and Chuanbao Yang 1 1 China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, China; [email protected] (X.Z.); [email protected] (X.G.); [email protected] (X.D.); [email protected] (F.B.); [email protected] (C.Y.) 2 College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] (J.Y.); wfl[email protected] (W.L.) * Correspondence: [email protected]; Tel.: +86-0571-88860734 Received: 25 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern with large economic benefits in subtropical China. However, little is known regarding the effect of this integration on the bamboo leaf-associated microbiome, which can be very important for disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis (PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken farming. -
Relative Genetic Diversity of the Rare and Endangered Agave Shawii Ssp
Received: 17 July 2020 | Revised: 9 December 2020 | Accepted: 14 December 2020 DOI: 10.1002/ece3.7172 ORIGINAL RESEARCH Relative genetic diversity of the rare and endangered Agave shawii ssp. shawii and associated soil microbes within a southern California ecological preserve Jeanne P. Vu1 | Miguel F. Vasquez1 | Zuying Feng1 | Keith Lombardo2 | Sora Haagensen1,3 | Goran Bozinovic1,4 1Boz Life Science Research and Teaching Institute, San Diego, CA, USA Abstract 2Southern California Research Learning Shaw's Agave (Agave shawii ssp. shawii) is an endangered maritime succulent growing Center, National Park Services, San Diego, along the coast of California and northern Baja California. The population inhabiting CA, USA 3University of California San Diego Point Loma Peninsula has a complicated history of transplantation without documen- Extended Studies, La Jolla, CA, USA tation. The low effective population size in California prompted agave transplanting 4 Biological Sciences, University of California from the U.S. Naval Base site (NB) to Cabrillo National Monument (CNM). Since 2008, San Diego, La Jolla, CA, USA there are no agave sprouts identified on the CNM site, and concerns have been raised Correspondence about the genetic diversity of this population. We sequenced two barcoding loci, rbcL Goran Bozinovic, Boz Life Science Research and Teaching Institute, 3030 Bunker Hill St, and matK, of 27 individual plants from 5 geographically distinct populations, includ- San Diego CA 92109, USA. ing 12 individuals from California (NB and CNM). Phylogenetic analysis revealed the Emails: [email protected]; gbozinovic@ ucsd.edu three US and two Mexican agave populations are closely related and have similar ge- netic variation at the two barcoding regions, suggesting the Point Loma agave popu- Funding information National Park Services (NPS) Pacific West lation is not clonal. -
Bacterial Community Structure in High-Arctic Snow and Freshwater As Revealed by Pyrosequencing of 16S Rrna Genes and Cultivation Annette K
RESEARCH/REVIEW ARTICLE Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation Annette K. Møller,1 Ditte A. Søborg,1 Waleed Abu Al-Soud,2 Søren J. Sørensen2 & Niels Kroer1 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 2 Department of Biology, University of Copenhagen, Sølvgade 83H, DK-1307 K Copenhagen, Denmark Keywords Abstract Taxonomic diversity; microbial assemblages; bacterial density; DOC. The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA Correspondence genes and 16S rRNA gene sequencing of cultivated isolates. Both the Niels Kroer, pyrosequence and cultivation data indicated that the phylogenetic composition Department of Environmental Science, of the microbial assemblages was different within the snow layers and between Aarhus University, snow and freshwater. The highest diversity was seen in snow. In the middle Frederiksborgvej 399, and top snow layers, , and dominated, DK-4000 Roskilde, Denmark. Proteobacteria Bacteroidetes Cyanobacteria E-mail: [email protected] although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacter- oidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. -
Development of Bacterial Communities in Biological Soil Crusts Along
1 Development of bacterial communities in biological soil crusts along 2 a revegetation chronosequence in the Tengger Desert, northwest 3 China 4 5 Author names and affiliations: 6 Lichao Liu1, Yubing Liu1, 2 *, Peng Zhang1, Guang Song1, Rong Hui1, Zengru Wang1, Jin Wang1, 2 7 1Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese 8 Academy of Sciences, Lanzhou, 730000, China 9 2Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute 10 of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 11 12 * Corresponding author: Yubing Liu 13 Address: Donggang West Road 320, Lanzhou 730000, P. R. China. 14 Tel: +86 0931 4967202. 15 E-mail address: [email protected] 16 17 Abstract. Knowledge of structure and function of microbial communities in different 18 successional stages of biological soil crusts (BSCs) is still scarce for desert areas. In this study, 19 Illumina MiSeq sequencing was used to assess the composition changes of bacterial communities 20 in different ages of BSCs in the revegetation of Shapotou in the Tengger Desert. The most dominant 21 phyla of bacterial communities shifted with the changed types of BSCs in the successional stages, 22 from Firmicutes in mobile sand and physical crusts to Actinobacteria and Proteobacteria in BSCs, 23 and the most dominant genera shifted from Bacillus, Enterococcus and Lactococcus to 24 RB41_norank and JG34-KF-361_norank. Alpha diversity and quantitative real-time PCR analysis 25 indicated that bacteria richness and abundance reached their highest levels after 15 years of BSC 26 development. -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
Structural Features of the Vesicle of Frankia Sp. Cpi1 in Culture
Structural features of the vesicle of Frankia sp. CpIl in culture JOHNG. TORREYAND DALECALLAHAM Cabot Foundation, Harvard University, Petersham, MA, U.S.A.01366 and Department of Botany, University of Massachusetts, Amherst, MA, U.S.A.01003 Accepted March 16, 1982 TORREY,J. G., and D. CALLAHAM.1982. Structural features of the vesicle of Frankia sp. CpII inculture. Can. J. Microbiol. 28: 749-757. The filamentous bacterium Frankia sp. CpIl of the Actinomycetales, responsible for symbiotic nitrogen fixation in the nodules of certain woody dicots, also fixes dinitrogen when grown independently of the host in a nitrogen-free synthetic nutrient medium under aerobic conditions. In structural studies of Frankla grown in culture it has been shown that the bacterial filaments form vesicles, enlarged terminal endings in which the enzyme nitrogenase is formed. Microscopic examination of cultures shows that the vesicles possess a specialized envelope consisting of a number of thin layers or laminae which In polarized light show birefringence and in freeze-etch electron microscopy are resolved as multiple (12-15) laminae approximately 35-40 A (1 A = 0.1 nm) in thickness. Comparisons are made between the structure of the veslcle envelope in cultured Frankia and the ; strikingly similar innermost laminated layer in the dinitrogen-fixing heterocysts of the cyanobacterium Anabaena. Comparable protective functions in limiting oxygen to the dinitrogen-fixing sites are suggested for these similar structures in two quite unrelated microorganisms. 1 TORREY,J. G., et D. CALLAHAM.1982. Structural features of the vesicle of Frankia sp. CpIl in culture. Can. J. Microbiol. 28: 749-757. I La bactkrie filamenteuse Frankia sp. -
The Two-Domain Tree of Life Is Linked to a New Root for the Archaea
The two-domain tree of life is linked to a new root for the Archaea Kasie Raymanna, Céline Brochier-Armanetb, and Simonetta Gribaldoa,1 aInstitut Pasteur, Department of Microbiology, Unit Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bUniversité de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved April 17, 2015 (received for review November 02, 2014) One of the most fundamental questions in evolutionary biology is restricted taxonomic sampling, notably for the outgroup, may also the origin of the lineage leading to eukaryotes. Recent phyloge- generate or mask potential tree reconstruction artifacts (16). All nomic analyses have indicated an emergence of eukaryotes from these considerations emphasize that we have not yet found a way within the radiation of modern Archaea and specifically from a group out of the phylogenomic impasse caused by the use of universal comprising Thaumarchaeota/“Aigarchaeota” (candidate phylum)/ trees to investigate the relationships among Archaea and eu- Crenarchaeota/Korarchaeota (TACK). Despite their major im- karyotes (12). plications, these studies were all based on the reconstruction of Here, we have applied an original two-step strategy that we universal trees and left the exact placement of eukaryotes with re- proposed a few years ago which involves separately analyzing the spect to the TACK lineage unclear. Here we have applied an original markers shared between Archaea and eukaryotes and between two-step approach that involves the separate analysis of markers Archaea and Bacteria (12). This strategy allowed us to use a larger shared between Archaea and eukaryotes and between Archaea and taxonomic sampling, more markers and thus more positions, have Bacteria. -
Supporting Information
Supporting Information Fujimura et al. 10.1073/pnas.1310750111 SI Materials and Methods respectively. Photomicrographs were captured using a Zeiss Axio House Dust Collection. Dust from homes with or without dogs was Imager Z1 and AxioVision 4.8 software (Zeiss). collected using a sterile fabric filter sock inserted into a sterile vacuum nozzle immediately before vacuuming a 3′ × 3′ area for mRNA Extraction, Reverse Transcription, and RT-PCR. mRNA was 3 min. The sock was removed from the vacuum, the collected isolated from ground lung tissue using TRIzol reagent (Invi- μ trogen) or the RNeasy Mini kit (Qiagen) according to manu- dust weighed and sieved through a 300- m sieve to remove large ’ μ debris from the sample. Comparable sieved samples have pre- facturer s instructions. A total of 5 g of RNA per sample was reverse transcribed using murine leukemia virus RTase (Applied viously been used successfully to profile microbial communities Biosystems). Expression of relevant genes was analyzed with present in house dust (1, 2). Dust samples were subsequently TaqMan gene expression assays (Applied Biosystems) using an divided into 25- or 6.25-mg fractions for dog (D)- or no-pet ABI Prism 7500 Sequence Detection System (Applied Bio- (NP)-associated houses, respectively, each stored in a sterile − systems). Gene expression was normalized to GAPDH and ex- 5-mL tube at 20 °C until used for murine supplementation. pressed as fold change over expression in control mice. Murine Models. Cockroach allergen model. BALB/c were purchased Culture and Stimulation of Lymph Node Cells. Mediastinal lymph from The Jackson Laboratory. -
Phylogeny and Assemblage Composition of Frankia in Alnus Tenuifolia Nodules Across a Primary Successional Sere in Interior Alaska
Molecular Ecology (2013) 22, 3864–3877 doi: 10.1111/mec.12339 Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska M. D. ANDERSON,*† D. L. TAYLOR† and R. W. RUESS† *Department of Biology, Macalester College, 1600 Grand Ave, Saint Paul, MN 55105, USA, †Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA Abstract In nitrogen (N) fixing symbioses, host-symbiont specificity, genetic variation in bacte- rial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N-fixers. This study examined phylogenetic host specificity of Frankia in field-collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial auto- correlation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus-infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession hab- itats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. -
The Editing of Eddic Poetry Judy Quinn
A HANDBOOK TO EDDIC POETRY This is the first comprehensive and accessible survey in English of Old Norse eddic poetry: a remarkable body of literature rooted in the Viking Age, which is a critical source for the study of early Scandinavian myths, poetics, culture, and society. Dramatically recreating the voices of the legendary past, eddic poems distil moments of high emotion as human heroes and supernatural beings alike grapple with betrayal, loyalty, mortality, and love. These poems relate the most famous deeds of gods such as Óðinn and Þórr with their adversaries the giants; they bring to life the often fraught interactions between kings, queens, and heroes as well as their encounters with valkyries, elves, dragons, and dwarfs. Written by leading international scholars, the chapters in this volume showcase the poetic riches of the eddic corpus and reveal its relevance to the history of poetics, gender studies, pre-Christian religions, art history, and archaeology. carolyne larrington is Official Fellow and Tutor at St John’s College, University of Oxford. judy quinn is Reader in Old Norse Literature in the Department of Anglo-Saxon, Norse and Celtic at the University of Cambridge. brittany schorn is a Research Associate in the Department of Anglo-Saxon, Norse and Celtic at the University of Cambridge. A HANDBOOK TO EDDIC POETRY Myths and Legends of Early Scandinavia CAROLYNE LARRINGTON University of Oxford JUDY QUINN University of Cambridge BRITTANY SCHORN University of Cambridge University Printing House, Cambridge cb2 8bs, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. -
Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights Into the Origin and Distribution of Nitrogen Fixation Across Bacteria and Archaea
microorganisms Article Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea Amrit Koirala 1 and Volker S. Brözel 1,2,* 1 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA; [email protected] 2 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa * Correspondence: [email protected]; Tel.: +1-605-688-6144 Abstract: The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico predic- tion of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocu- Citation: Koirala, A.; Brözel, V.S. mented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes Phylogeny of Nitrogenase Structural and Assembly Components Reveals are currently supported by biochemical evidence of diazotrophy. -
Wedding Higher Taxonomic Ranks with Metabolic Signatures Coded in Prokaryotic Genomes
Wedding higher taxonomic ranks with metabolic signatures coded in prokaryotic genomes Gregorio Iraola*, Hugo Naya* Corresponding authors: E-mail: [email protected], [email protected] This PDF file includes: Supplementary Table 1 Supplementary Figures 1 to 4 Supplementary Methods SUPPLEMENTARY TABLES Supplementary Tab. 1 Supplementary Tab. 1. Full prediction for the set of 108 external genomes used as test. genome domain phylum class order family genus prediction alphaproteobacterium_LFTY0 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Unknown candidatus_nasuia_deltocephalinicola_PUNC_CP013211 Bacteria Proteobacteria Gammaproteobacteria Unknown Unknown Unknown candidatus_sulcia_muelleri_PUNC_CP013212 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NA Candidatus Sulcia deinococcus_grandis_ATCC43672_BCMS0 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus devosia_sp_H5989_CP011300 Bacteria Proteobacteria Unknown Unknown Unknown Unknown micromonospora_RV43_LEKG0 Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora nitrosomonas_communis_Nm2_CP011451 Bacteria Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae Unknown nocardia_seriolae_U1_BBYQ0 Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Nocardia nocardiopsis_RV163_LEKI01 Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis oscillatoriales_cyanobacterium_MTP1_LNAA0 Bacteria Cyanobacteria NA Oscillatoriales