Highly Diversified Pandoraea Pulmonicola Population During Chronic Colonization in Cystic Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

Highly Diversified Pandoraea Pulmonicola Population During Chronic Colonization in Cystic Fibrosis Highly Diversified Pandoraea pulmonicola Population during Chronic Colonization in Cystic Fibrosis Chloé Dupont, Fabien Aujoulat, Raphaël Chiron, Pauline Condom, Estelle Jumas-Bilak, Hélène Marchandin To cite this version: Chloé Dupont, Fabien Aujoulat, Raphaël Chiron, Pauline Condom, Estelle Jumas-Bilak, et al.. Highly Diversified Pandoraea pulmonicola Population during Chronic Colonization in Cystic Fibrosis. Fron- tiers in Microbiology, Frontiers Media, 2017, 8, pp.1892. 10.3389/fmicb.2017.01892. hal-01891570 HAL Id: hal-01891570 https://hal.archives-ouvertes.fr/hal-01891570 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License fmicb-08-01892 October 4, 2017 Time: 16:17 # 1 ORIGINAL RESEARCH published: 06 October 2017 doi: 10.3389/fmicb.2017.01892 Highly Diversified Pandoraea pulmonicola Population during Chronic Colonization in Cystic Fibrosis Chloé Dupont1, Fabien Aujoulat1, Raphaël Chiron2, Pauline Condom1, Estelle Jumas-Bilak1,3 and Hélène Marchandin1,4,5* 1 Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France, 2 Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire de Montpellier, Montpellier, France, 3 Laboratoire d’Hygiène Hospitalière, Hôpital Saint-Eloi, Centre Hospitalier Universitaire de Montpellier, Montpellier, France, 4 Service de Microbiologie, Hôpital Carémeau, Centre Hospitalier Universitaire de Nîmes, Nîmes, France, 5 Laboratoire de Bactériologie, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire de Montpellier, Montpellier, France Several environmental bacteria are considered as opportunistic pathogens in cystic fibrosis (CF) and are able to persistently colonize the CF respiratory tract (CFRT). Beside Pseudomonas aeruginosa and Burkholderia cepacia complex, Pandoraea spp. are defined as pathogenic. During chronic colonization, adaptive evolution and diversified population have been demonstrated, notably for P. aeruginosa. However, the persistence of Pandoraea in the CFRT remains largely unexplored. We studied genomic Edited by: and phenotypic traits of Pandoraea pulmonicola isolates successively recovered from Leonard Peruski, Centers for Disease Control and the airways of a single CF patient and relate the results to qualitative and quantitative Prevention (CDC), United States evolution of other cultivable pathogens and to patient clinical status. A total of 31 isolates Reviewed by: recovered from 18 sputum samples over a 7-year period in a single CF patient were Miklos Fuzi, studied. Genome dynamics was assessed by pulsed-field gel electrophoresis, ERIC- Semmelweis University, Hungary Dane Parker, PCR fingerprinting and 16S rRNA gene PCR-temporal temperature gel electrophoresis. Columbia University, United States Phenotypic features included antimicrobial susceptibility, motility, biofilm production, *Correspondence: and virulence in Caenorhabditis elegans model. Variability was observed for all the Hélène Marchandin [email protected] characteristics studied leading to highly diversified patterns (24 patterns) for the 31 clonally related isolates. Some of these modifications, mainly genomic events were Specialty section: concomitantly observed with CFRT microbiota composition shifts and with severe This article was submitted to Infectious Diseases, exacerbations. The diversity of P. pulmonicola population studied, observed for isolates a section of the journal recovered from successive samples but also within a sample suggested that existence Frontiers in Microbiology of a diversified population may represent a patho-adaptive strategy for host persistence Received: 14 February 2017 Accepted: 15 September 2017 in the heterogeneous and fluctuating CFRT environment. Published: 06 October 2017 Keywords: cystic fibrosis, Pandoraea, diversity, persistence, biofilm, motility, antimicrobial resistance, virulence Citation: Dupont C, Aujoulat F, Chiron R, Condom P, Jumas-Bilak E and INTRODUCTION Marchandin H (2017) Highly Diversified Pandoraea pulmonicola The genus Pandoraea was described in 2000, it belongs to the family Burkholderiaceae and Population during Chronic Colonization in Cystic Fibrosis. comprises 10 species mainly cultured from sputum of cystic fibrosis (CF) patients or soil Front. Microbiol. 8:1892. (Coenye et al., 2000). Currently, 20 Pandoraea genomes are totally sequenced, including a unique doi: 10.3389/fmicb.2017.01892 Pandoraea pulmonicola genome. Pandoraea species are considered as emerging pathogens and Frontiers in Microbiology| www.frontiersin.org 1 October 2017| Volume 8| Article 1892 fmicb-08-01892 October 4, 2017 Time: 16:17 # 2 Dupont et al. Diversity in CF Pandoraea pulmonicola Persisting Population infection led to the production of high levels of antibodies, were named with the same number followed by apostrophe(s). and to a worsened CF lung disease (Jørgensen et al., Selected co-colonizing P. aeruginosa (Pa13 isolated in September 2003; Mahenthiralingam, 2014; Degand et al., 2015; Martina 2013) and methicillin-resistant Staphylococcus aureus (Sa14 et al., 2017). After first colonization, Pandoraea spp. were isolated in January 2014) isolated at the time of or close to able to chronically colonize the CF respiratory tract (CFRT) the most severe pulmonary exacerbation experienced by the (Fernández-Olmos et al., 2012; Kokcha et al., 2013; Pugès patient during the study period, were also studied. Sputum et al., 2015; Martina et al., 2017), were transmissible between culture results (bacterial identification, load), clinical data patients (Jørgensen et al., 2003; Degand et al., 2015) and can [forced expiratory volume in 1 s (FEV1), body mass index, produce severe lung diseases and bacteremia (Pimentel and pulmonary exacerbations/stable status], and antibiotic courses MacLeod, 2008; Kokcha et al., 2013). The pathogenicity appears were recorded. mainly supported by a pro-inflammatory response induction significantly greater than with Pseudomonas aeruginosa (Caraher Antimicrobial Susceptibility Testing et al., 2008; Costello et al., 2014) and the treatment may be Antimicrobial susceptibility testing was performed according complicated by multidrug resistance conferred by carbapenem- to the 2016 recommendations of the Antibiogram Committee hydrolyzing oxacillinases (Caraher et al., 2008). P. pulmonicola of the French Society for Microbiology1. Disk diffusion method showed an ability to invade human lung epithelial cells, not was performed for amikacin, amoxicillin C/− clavulanic shared by other Pandoraea species (Caraher et al., 2008) acid, aztreonam, cefalotin, cefepime, cefoxitin, cefpirom, and was the most virulent species, being as virulent as cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, Burkholderia cenocepacia in the Galleria mellonella larvae colistin, cotrimoxazole, fosfomycin, gentamicin, imipenem, model (Costello et al., 2011). The potential involvement of isepamicin, levofloxacin, moxalactam, nalidixic acid, netilmicin, Pandoraea in complex interactions between microorganisms ofloxacin, piperacillin, piperacillin/tazobactam, tetracycline, within the CF airways was also suggested (Costello et al., ticarcillin C/− clavulanic acid, and tobramycin (Bio-Rad R ). 2014). E-test (bioMérieux R ) was performed when inhibition zone During long-term colonization, adaptive evolution was diameters were observed around disks, and minimal inhibitory found in most CF pathogens and was particularly studied concentration (MIC) results that differed by more than two for P. aeruginosa and Burkholderia spp. (Silva et al., 2011). dilutions were considered as different. For ciprofloxacin, MICs In P. aeruginosa, evolutionary adaptation and phenotype were determined by the agar dilution reference method. diversification occur during CFRT colonization (Hauser et al., 2011; Winstanley et al., 2016 for reviews). These variations Motility and Biofilm Formation generally lead to decreased immunogenicity and virulence while Motility of Pandoraea isolates was tested in semi-solid agar antibiotic resistance globally increases. In addition, some studies according to Kirov et al.(2004). Biofilm formation was evaluated revealed a diversified population within a sample and suggested after 72 h of growth for Pandoraea isolates and after 48 h of that this diversity may also represent an adaptive strategy for growth for P. aeruginosa and S. aureus at 37◦C in microtitre plates host persistence (Lieberman et al., 2014; Winstanley et al., NUNC R -polystyrene (Abdouchakour et al., 2015). Isolates were 2016). categorized as non-adherent or weakly, moderately, or strongly Adaptive behavior of other CF pathogens has received less adherent according to Stepanovic et al.(2000). Experiments were attention although an increased virulence has been suggested performed in triplicate. during chronic colonization for
Recommended publications
  • Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
    fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their
    [Show full text]
  • Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating Β‑Proteobacterium Pandoraea Sp
    Kumar et al. Biotechnol Biofuels (2018) 11:154 https://doi.org/10.1186/s13068-018-1148-2 Biotechnology for Biofuels RESEARCH Open Access Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β‑proteobacterium Pandoraea sp. ISTKB Madan Kumar1, Sandhya Verma2, Rajesh Kumar Gazara2, Manish Kumar1, Ashok Pandey3, Praveen Kumar Verma2* and Indu Shekhar Thakur1* Abstract Background: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysac- charide-based biorefnery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to fnd the impor- tant enzymes for polymer utilization. Results: Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identifed various candidate genes responsible for lignin degradation and PHA production.
    [Show full text]
  • Genomic Plasticity of the Causative Agent of Melioidosis, Burkholderia Pseudomallei
    Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei Matthew T. G. Holdena, Richard W. Titballb,c, Sharon J. Peacockd,e, Ana M. Cerden˜ o-Ta´ rragaa, Timothy Atkinsb, Lisa C. Crossmana, Tyrone Pittf, Carol Churchera, Karen Mungalla, Stephen D. Bentleya, Mohammed Sebaihiaa, Nicholas R. Thomsona, Nathalie Basona, Ifor R. Beachamg, Karen Brooksa, Katherine A. Brownh, Nat F. Browng, Greg L. Challisi, Inna Cherevacha, Tracy Chillingwortha, Ann Cronina, Ben Crossetth, Paul Davisa, David DeShazerj, Theresa Feltwella, Audrey Frasera, Zahra Hancea, Heidi Hausera, Simon Holroyda, Kay Jagelsa, Karen E. Keithh, Mark Maddisona, Sharon Moulea, Claire Pricea, Michael A. Quaila, Ester Rabbinowitscha, Kim Rutherforda, Mandy Sandersa, Mark Simmondsa, Sirirurg Songsivilaik, Kim Stevensa, Sarinna Tumapae, Monkgol Vesaratchaveste, Sally Whiteheada, Corin Yeatsa, Bart G. Barrella, Petra C. F. Oystonb, and Julian Parkhilla,l aWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; bDefence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom; cDepartment of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; dNuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; eFaculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; fLaboratory of Hospital Infection, Division of Nosocomial Infection Prevention and Control, Central Public Health Laboratory, London NW9 5HT, United Kingdom; gSchool of Health Science, Griffith University, Gold Coast, Queensland 9726, Australia; hDepartment of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College, London SW7 2AZ, United Kingdom; iDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; jU.S.
    [Show full text]
  • Characterization of Bacterial Communities Associated
    www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5.
    [Show full text]
  • Draft Genome of a Heavy-Metal-Resistant Bacterium, Cupriavidus Sp
    Korean Journal of Microbiology (2020) Vol. 56, No. 3, pp. 343-346 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2020.0061 eISSN 2383-9902 Copyright ⓒ 2020, The Microbiological Society of Korea Draft genome of a heavy-metal-resistant bacterium, Cupriavidus sp. strain SW-Y-13, isolated from river water in Korea Kiwoon Baek , Young Ho Nam , Eu Jin Chung , and Ahyoung Choi* Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea 강물에서 분리한 중금속 내성 세균 Cupriavidus sp. SW-Y-13 균주의 유전체 해독 백기운 ・ 남영호 ・ 정유진 ・ 최아영* 국립낙동강생물자원관 담수생물연구본부 (Received July 6, 2020; Revised September 18, 2020; Accepted September 18, 2020) Cupriavidus sp. strain SW-Y-13 is an aerobic, Gram-negative, found to survive in close association with pollution-causing rod-shaped bacterium isolated from river water in South Korea, heavy metals, for example, Cupriavidus metallidurans, which in 2019. Its draft genome was produced using the PacBio RS II successfully grows in the presence of Cu, Hg, Ni, Ag, Cd, Co, platform and is thought to consist of five circular chromosomes Zn, and As (Goris et al., 2001; Vandamme and Coenye, 2004; with a total of 7,307,793 bp. The genome has a G + C content Janssen et al., 2010). Several bacteria found in polluted of 63.1%. Based on 16S rRNA sequence similarity, strain SW-Y-13 is most closely related to Cupriavidus metallidurans environments have been shown to adapt to the presence of toxic (98.4%). Genome annotation revealed that the genome is heavy metals. Identification of novel bacterial mechanisms comprised of 6,613 genes, 6,536 CDSs, 12 rRNAs, 61 tRNAs, facilitating growth in heavy-metal-polluted environments and 4 ncRNAs.
    [Show full text]
  • Host–Symbiont Specificity Determined by Microbe–Microbe Competition in an Insect
    Host–symbiont specificity determined by microbe– microbe competition in an insect gut Hideomi Itoha,1, Seonghan Jangb,1, Kazutaka Takeshitac, Tsubasa Ohbayashid, Naomi Ohnishie,2, Xian-Ying Mengf, Yasuo Mitania, and Yoshitomo Kikuchia,b,g,3 aBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, 062-8517 Sapporo, Japan; bGraduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan; cFaculty of Bioresource Sciences, Akita Prefectural University, 010-0195 Akita, Japan; dInstitute for Integrative Biology of the Cell, UMR 9198, CNRS, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), Université Paris-Sud, 91198 Gif-sur-Yvette, France; eResearch Center for Zoonosis Control, Hokkaido University, 001-0020 Sapporo, Japan; fBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Center, 305-8566 Tsukuba, Japan; and gComputational Bio Big Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 062-8517 Sapporo, Japan Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved September 30, 2019 (received for review July 18, 2019) Despite the omnipresence of specific host–symbiont associations microbe competition on the evolution and stabilization of host– with acquisition of the microbial symbiont from the environment, symbiont specificity is very scarce. little is known about how the specificity of the interaction evolved The bean bug Riptortus pedestris (Heteroptera: Alydidae) is and is maintained. The bean bug Riptortus pedestris acquires a associated with a Burkholderia symbiont that is confined in specific bacterial symbiont of the genus Burkholderia from environ- symbiosis-specific crypts located in the posterior midgut region Burkholderia mental soil and harbors it in midgut crypts.
    [Show full text]
  • Pneumonia Due to Pandoraea Apista After Evacuation of Traumatic Intracranial Hematomas:A Case Report and Literature Review
    Lin et al. BMC Infectious Diseases (2019) 19:869 https://doi.org/10.1186/s12879-019-4420-6 CASE REPORT Open Access Pneumonia due to Pandoraea Apista after evacuation of traumatic intracranial hematomas:a case report and literature review Chuanzhong Lin1,2, Ning Luo1, Qiang Xu2, Jianjun Zhang3, Mengting Cai4, Guanhao Zheng5 and Ping Yang2* Abstract Background: Pandoraea species is a newly described genus, which is multidrug resistant and difficult to identify. Clinical isolates are mostly cultured from cystic fibrosis (CF) patients. CF is a rare disease in China, which makes Pandoraea a total stranger to Chinese physicians. Pandoraea genus is reported as an emerging pathogen in CF patients in most cases. However, there are few pieces of evidence that confirm Pandoraea can be more virulent in non-CF patients. The pathogenicity of Pandoraea genus is poorly understood, as well as its treatment. The incidence of Pandoraea induced infection in non-CF patients may be underestimated and it’s important to identify and understand these organisms. Case presentation: We report a 44-years-old man who suffered from pneumonia and died eventually. Before his condition deteriorated, a Gram-negative bacilli was cultured from his sputum and identified as Pandoraea Apista by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Conclusion: Pandoraea spp. is an emerging opportunistic pathogen. The incidences of Pandoraea related infection in non-CF patients may be underestimated due to the difficulty of identification. All strains of Pandoraea show multi-drug resistance and highly variable susceptibility. To better treatment, species-level identification and antibiotic susceptibility test are necessary.
    [Show full text]
  • Reclassification of Four Polynucleobacter Necessarius Strains As Representatives of Polynucleobacter Asymbioticus Comb. Nov., Polynucleobacter Duraquae Sp
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 2883–2892 DOI 10.1099/ijsem.0.001073 Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius Martin W. Hahn,1 Johanna Schmidt,1 Alexandra Pitt,1 Sami J. Taipale2 and Elke Lang3 Correspondence 1Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Martin W. Hahn Austria [email protected] 2Lammi Biological Station, University of Helsinki, Pa€aj€ arventie€ 320, 16900 Lammi, Finland 3Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany Genome comparisons based on average nucleotide identity (ANI) values of four strains currently classified as Polynucleobacter necessarius subsp. asymbioticus resulted in ANI values of 75.7– 78.4 %, suggesting that each of those strains represents a separate species. The species P. necessarius was proposed by Heckmann and Schmidt in 1987 to accommodate obligate endosymbionts of ciliates affiliated with the genus Euplotes. The required revision of this species is, however, hampered by the fact, that this species is based only on a description and lacks a type strain available as pure culture. Furthermore, the ciliate culture Euplotes aediculatus ATCC 30859, on which the description of the species was based, is no longer available. We found another Euplotes aediculatus culture (Ammermann) sharing the same origin with ATCC 30859 and proved the identity of the endosymbionts contained in the two cultures. A multilocus sequence comparison approach was used to estimate if the four strains currently classified as Polynucleobacter necessarius subsp.
    [Show full text]
  • P1761 Paper Poster Session Microbial Pathogenesis and Virulence
    P1761 Paper Poster Session Microbial pathogenesis and virulence The Burkholderia contaminans operon participates in switching on the biofilm formation Olga Voronina1, Marina Kunda*1, Natalia Ruzhova1, Andrey Semenov1, Yulia Romanova1 1N.F. Gamaleya Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russian Federation Background: Burkholderia cepacia complex (Bcc) bacteria - opportunistic pathogens causing nosocomial infections, are especially dangerous for cystic fibrosis patients. Biofilm formation (BF) helps Bcc to escape the antimicrobial agents’ effect and complicates the Bcc eradication. The two component signal (TCS) transduction systems are in charge of the BF. The purpose of our investigation was the most important TCS determination. Material/methods: High biofilm producer (HBP) clinical strain B. contaminans GIMC4509:Bct370 and lacking biofilm production (LBP) B. contaminans strain GIMC4587:Bct370-19 were used. Last one was obtained Romanova et al. by insertion modification of clinical strain with plasposon pTnMod-RKm. The strains were analyzed by Whole-genome sequencing and Liquid Chromatography Mass Spectrometry (LC-MC). 454 Sequencing System Software V 2.7 (Roche), RAST, BioCyc Database Collection, InterPro, MaxQuant were used for genome assembling, annotation, operons prediction, proteins’ domains detection and proteins after MC identification. Operons sequences were deposited in GenBank under the accession numbers KP288491, KP288492. Results: There are 37 two component transcriptional regulators (TCTR) genes in B. contaminans or B. lata genomes. Most of them are located with sensor signal transduction histidine kinase genes in operon one after the other. We found out four components operon, in which gene of peptidoglycan binding protein with FecR domain was embedded between the TCTR and kinase genes.
    [Show full text]
  • Quorum Sensing Activity in Pandoraea Pnomenusa RB38
    Sensors 2014, 14, 10177-10186; doi:10.3390/s140610177 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Quorum Sensing Activity in Pandoraea pnomenusa RB38 Robson Ee, Yan-Lue Lim, Lin-Xin Kin, Wai-Fong Yin and Kok-Gan Chan * Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: [email protected] (R.E.); [email protected] (Y.-L.L.); [email protected] (L.-X.K.); [email protected] (W.-F.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-37967-5162; Fax: +60-37967-4509. Received: 5 March 2014; in revised form: 25 May 2014 / Accepted: 28 May 2014 / Published: 10 June 2014 Abstract: Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. Keywords: matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF); mass spectrometry (MS); cell-to cell communication; triple quodruopole liquid chromatography mass spectrometry (LC-MS/MS); N-octanoyl homoserine lactone (C8-HSL) 1. Introduction Pandoraea is a Gram-negative rod shape proteobacteria of the Burkholderiaceae family that is often isolated from sputa of cystic fibrosis patients and soil [1].
    [Show full text]
  • Close Phylogenetic Relationship Between Obligately Endosymbiotic and Obligately Free-Living Polynucleobacter Strains (Betaproteobacteria)
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Endosymbiosis In Statu Nascendi: Close Phylogenetic Relationship Between Obligately Endosymbiotic and Obligately Free-Living Polynucleobacter Strains (Betaproteobacteria) Permalink https://escholarship.org/uc/item/2f1746m6 Authors Vannini, Claudia Pockl, Matthias Petroni, Giulio et al. Publication Date 2006-07-21 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LBNL-61437 Preprint Title: Endosymbiosis In Statu Nascendi: Close Phylogenetic Relationship Between Obligately Endosymbiotic and Obligately Free-Living Polynucleobacter Strains (Betaproteobacteria) Author(s): Claudia Vannini, Matthias Pockl, Guilio Petroni, Qinglong L. Wu, Elke Lang, Erko Stackebrandt, Martina Schrallhammer, Paul M. Richardson, and Martin W. Hahn Division: Genomics Submitted to: Environmental Microbiology Month Year: 7/06 Endosymbiosis In Statu Nascendi: Close Phylogenetic Relationship 2 Between Obligately Endosymbiotic and Obligately Free-Living Polynucleobacter Strains (Betaproteobacteria) 4 Claudia Vannini1, Matthias Pöckl2, Giulio Petroni1, Qinglong L. Wu2,3,*, Elke Lang4 , Erko 6 Stackebrandt4, Martina Schrallhammer5, Paul M. Richardson6, and Martin W. Hahn2, § 8 1 Department of Biology – Protistology and Zoology Unit, University of Pisa, Via A. Volta 10 4/6, I-56126 Pisa, Italy 2 Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 12 Mondsee, Austria 3 Nanjing Institute of Geography and Limnology, Chinese
    [Show full text]
  • Virulence of an Emerging Respiratory Pathogen, Genus Pandoraea, in Vivo and Its Interactions with Lung Epithelial Cells
    Technological University Dublin ARROW@TU Dublin Articles School of Science and Computing 2010-11 Virulence of an Emerging Respiratory Pathogen, Genus Pandoraea, In Vivo and its Interactions with Lung Epithelial Cells Gillian Herbert Institute of Technology Tallaght Anne Costello Technological University Dublin, [email protected] Lydia Fabunmi Technological University Dublin, [email protected] See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/ittsciart Part of the Biochemistry Commons, Cell Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Herbert, G., Costello, A., Fabunmi, L., Schaffer, K., Caraher, E., Callaghan, M. and McClean, M. Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. Letters in Applied Microbiology 02/2010; 50(5):500- DOI 10.1099/jmm.0.022657-0 This Article is brought to you for free and open access by the School of Science and Computing at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Funder: PRTLI Cycle 4 & PRDSP1 Authors Gillian Herbert, Anne Costello, Lydia Fabunmi, Kirsten Schaffer, Kevin Kavanagh, Emma M. Caraher, Máire Callaghan, and Siobhan McClean This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/ittsciart/26 1 Pathogenicity and Virulence 2 Virulence of emerging respiratory pathogen, genus Pandoraea, in vivo 3 and its interactions with lung epithelial cells.
    [Show full text]