Ethernet Physical Layer Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ...................................................................................................................... -
Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. -
Ethernet and Wifi
Ethernet and WiFi hp://xkcd.com/466/ CSCI 466: Networks • Keith Vertanen • Fall 2011 Overview • Mul?ple access networks – Ethernet • Long history • Dominant wired technology – 802.11 • Dominant wireless technology 2 Classic Ethernet • Ethernet – luminferous ether through which electromagne?c radiaon once thought to propagate – Carrier Sense, Mul?ple Access with Collision Detec?on (CSMA/CD) – IEEE 802.3 Robert Metcalfe, co- inventor of Ethernet 3 Classic Ethernet • Ethernet – Xerox Ethernet standardized as IEEE 802.3 in 1983 – Xerox not interested in commercializing – Metcalfe leaves and forms 3Com 4 Ethernet connec?vity • Shared medium – All hosts hear all traffic on cable – Hosts tapped the cable – 2500m maximum length – May include repeaters amplifying signal – 10 Mbps bandwidth 5 Classic Ethernet cabling Cable aSer being "vampire" tapped. Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length. Thin Ethernet cable (10BASE2) with BNC T- connector, 185m maximum length. 6 Ethernet addressing • Media Access Control address (MAC) – 48-bit globally unique address • 281,474,976,710,656 possible addresses • Should last ?ll 2100 • e.g. 01:23:45:67:89:ab – Address of all 1's is broadcast • FF:FF:FF:FF:FF:FF 7 Ethernet frame format • Frame format – Manchester encoded – Preamble products 10-Mhz square wave • Allows clock synch between sender & receiver – Pad to at least 64-bytes (collision detec?on) Ethernet 802.3 AlternaWng 0's 48-bit MAC and 1's (except addresses SoF of 11) 8 Ethernet receivers • Hosts listens to medium – Deliver to host: • Any frame with host's MAC address • All broadcast frames (all 1's) • Mul?cast frames (if subscribed to) • Or all frames if in promiscuous mode 9 MAC sublayer • Media Access Control (MAC) sublayer – Who goes next on a shared medium – Ethernet hosts can sense if medium in use – Algorithm for sending data: 1. -
Operaing the EPON Protocol Over Coaxial Distribuion Networks Call for Interest
Operang the EPON protocol over Coaxial Distribu&on Networks Call for Interest 08 November 2011 IEEE 802.3 Ethernet Working Group Atlanta, GA 1 Supporters Bill Powell Alcatel-Lucent Steve Carlson High Speed Design David Eckard Alcatel-Lucent Hesham ElBakoury Huawei Alan Brown Aurora Networks Liming Fang Huawei Dave Baran Aurora Networks David Piehler Neophotonics Edwin MalleIe Bright House Networks Amir Sheffer PMC-Sierra John Dickinson Bright House Networks Greg Bathrick PMC-Sierra Ed Boyd Broadcom ValenWn Ossman PMC-Sierra Howard Frazier Broadcom Alex Liu Qualcomm Lowell Lamb Broadcom Dylan Ko Qualcomm Mark Laubach Broadcom Steve Shellhammer Qualcomm Will Bliss Broadcom Mike Peters Sumitomo Electric Industries Robin Lavoie Cogeco Cable Inc. Yao Yong Technical Working CommiIee of China Radio & Ma SchmiI CableLabs TV Associaon Doug Jones Comcast Cable Bob Harris Time Warner Cable Jeff Finkelstein Cox Networks Kevin A. Noll Time Warner Cable John D’Ambrosia Dell Hu Baomin Wuhan Yangtze OpWcal Technologies Co.,Ltd. Zhou Zhen Fiberhome Telecommunicaon Ye Yonggang Wuhan Yangtze OpWcal Technologies Co.,Ltd. Technologies Zheng Zhi Wuhan Yangtze OpWcal Technologies Co.,Ltd. Boris Brun Harmonic Inc. Marek Hajduczenia ZTE Lior Assouline Harmonic Inc. Meiyan Zang ZTE David Warren HewleI-Packard Nevin R Jones ZTE 2 Objec&ves for This Mee&ng • To measure the interest in starWng a study group to develop a standards project proposal (a PAR and 5 Criteria) for: Operang the EPON protocol over Coaxial DistribuWon Networks • This meeWng does not: – Fully explore the problem – Debate strengths and weaknesses of soluWons – Choose any one soluWon – Create PAR or five criteria – Create a standard or specificaon 3 Agenda • IntroducWon • Market PotenWal • High Level Concept • Why Now? • Q&A • Straw Polls 4 The Brief History of EPON 2000 EPON Today.. -
Gigabit Ethernet
Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T. -
IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc. -
Gigabit Ethernet Pocket Guide
GbE.PocketG.fm Page 1 Friday, March 3, 2006 9:43 AM Carrier Class Ethernet, Metro Ethernet tester, Metro Ethernet testing, Metro Ethernet installation, Metro Ethernet maintenance, Metro Ethernet commissioning, Carrier Class Ethernet tester, Carrier Class Ethernet testing, Carrier Class Ethernet installation, Carrier Class Ethernet maintenance, Gigabit Ethernet tester, Gigabit Ethernet testing, Gigabit Ethernet installation, Gigabit Ethernet maintenance, Gigabit Ethernet commissioning, Gigabit Ethernet protocols, 1000BASE-T tester, 1000BASE-LX test, 1000BASE-SX test, 1000BASE-T testing, 1000BASE-LX testing Trend’s Gigabit EthernetPocket Guide AuroraTango Gigabit Ethernet Multi-technology Personal Test Assistant Platform for simple, fast and effective testing of Gigabit Ethernet, ADSL, OSI model 802.3 model SHDSL, and ISDN. Aurora Tango 7 Application Upper layers Gigabit Ethernet has an exceptional 6 Presentation Reconciliation range of features Upper ensuring reliable delivery of end-to-end 5 Session layers services over Metropolitan networks MII Media independent based on Gigabit Ethernet. 4 It includes a full range of tests and Transport measurements, such as RFC-2544, PCS top ten addresses, real-time Ethernet 3 Network LLC (802.2) statistics, multilayer BERT, etc. Two PMA Gigaport transceivers allow terminate, 2 Data Link MAC (803.3) loopback and monitor connections to Autonegotiation networks, plus a 10/100/1000BASE-T Physical cable port for legacy testing. 1 PHY (802.3) dependent Media MDI A PDA provides an intuitive graphical menu -
Ethernet by T.S.R.K
L8 – Ethernet by T.S.R.K. Prasad EA C451 Internetworking Technologies 02/02/2013 References / Acknowledgements Sec 4.3, 4.8: Computer Networks, Andrew Tanenbaum Sec 5.4 – 5.6: [Kurose] Sec 2.6: [Peterson] References EA C451 INET TECH Optional Readings [Shenker-ETH] Scott Shenker, L18- Ethernet, EE122, Fall 2012, Dept of EECS, University of California, Berkeley. http://inst.eecs.berkeley.edu/~ee122/ [Kurose] Chapter 5: The Link Layer and Local Area Networks, Computer Networking, Kurose & Ross Optional Readings EA C451 INET TECH Optional Readings [Tanenbaum] Chapters 3: Data Link Layer and Chapter 4: MAC Sublayer, Computer Networks, Andrew Tanenbaum, 4th Edition. [Peterson] Chapter 2: Getting Connected, Computer Networks, Peterson & Davie. IEEE 802 Project Look Ma – NO RFCs!!! Optional Readings EA C451 INET TECH Self-Study Topics Spanning tree protocol Self-Study EA C451 INET TECH IEEE 802 Project Network Layer Network LLC 802.2 Layer Logical Link Control (LLC) Data Link 802.3 MAC CSMA/CD 802.11a 802.11b 802.11g 802.15 802.16 Layer Ethernet Wireless LAN / Wi-Fi Bluetooth WiMax Physical QAM / Manchester OFDM HR-DSSS OFDM FHSS Physical Layer QPSK IEEE Standard OSI Model Note: This is not the complete model; IEEE 802 standard has 20 sub-committees formulating the details of the Data link layer standards. IEEE 802 Project EA C451 INET TECH You Said It If something comes along to replace Ethernet, it will be called “Ethernet”, so therefore Ethernet will never die. - Attributed to Bob Metcalfe by Ken Thompson You Said It EA C451 INET TECH Presentation Overview Conclusion Deployment Scenarios Gigabit Ethernet Classic Ethernet Introduction Lecture Outline EA C451 INET TECH Presentation Overview Conclusion Deployment Scenarios Gigabit Ethernet Classic Ethernet Introduction Lecture Outline EA C451 INET TECH Ethernet “dominant” wired LAN technology: • cheap Rs. -
Hybridní Ethernet (1)
Hybridní Ethernet (1) • Jedná se o kombinaci dříve uvedených typů sítě Ethernet • Tuto kombinaci lze provést pomocí: – hybridního adaptéru (BNC/řada N): mezi tenkým a silným koaxiálním kabelem – repeateru: mezi tenkým a silným koaxiálním kabelem – hubu: mezi tenkým, silným koaxiálním kabelem a kroucenou dvojlinkou 2018-06-01 1 Hybridní Ethernet (2) RJ-45 BNC + T + BNC konektor # # # max. 100 (400) m Terminátor # # AUI konektor # # Hub N + T + N konektor nebo jehlový konektor Repeater min. 0,5 m max. 185 (300) m (300) 185 max. # # # m 500 max. Drop kabel Transceiver (MAU) (max 50 m) # # # # # min. 2,5 m 2018-06-01 2 10Broad36 (1) • Jako přenosové médium používá koaxiální kabel s char. impedancí Z0 = 75 W pracující v přeloženém pásmu • Činnost v přeloženém pásmu umožňuje, aby koaxiální kabel byl využíván i pro přenos jiných informací (např. video), než jsou data přenášená v síti • Jednotlivé stanice se ke koaxiálnímu kabelu připojují pomocí transceiveru a pomocného (drop) kabelu (max. 50 m) 2018-06-01 3 10Broad36 (2) • Maximální délka jednoho kabelu je 1800 m • Všechny sítě 10Broad36 jsou zakončeny pomocí tzv. head-end zařízení, které může být na konci jednoho kabelového segmentu nebo jako kořen více kabelových segmentů • Na druhém konci je síť ukončena termináto- rem • Tímto je možné zvětšit fyzický rozsah célé sítě až 3600 m (s drop kabely 3700 m) 2018-06-01 4 10Broad36 (3) • Síť 10Broad36 může být vybudována ve dvou konfiguracích: – s jedním koaxiálním kabelem: • datové přenosy jsou rozděleny do dvou kanálů, z nichž každý využívá jiné -
Draft Revised Optical Transport Networks & Technologies
INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15 TELECOMMUNICATION TD 107 Rev.2(PLEN/15) STANDARDIZATION SECTOR STUDY PERIOD 2013-2016 English only Original: English Question(s): 3/15 1-12 July 2013 TD Source: Rapporteur Q3/15 Title: Draft Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17 This TD includes the draft of Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17. Contact: Yoshinori Koike Tel: +81-422-59-6723 NTT Corporation Fax: +81-422-59-3493 Japan Email: [email protected] Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T. - 2 - TD 107 (PLEN/15) Optical Transport Networks & Technologies Standardization Work Plan Issue 167, September July 20123 1. General Optical and other Transport Networks & Technologies Standardization Work Plan is a living document. It may be updated even between meetings. The latest version can be found at the following URL. http://www.itu.int/ITU-T/studygroups/com15/otn/ Proposed modifications and comments should be sent to: Yoshinori Koike [email protected] Tel. +81 422 59 6723 2. Introduction Today's global communications world has many different definitions for Optical and other Transport networks and many different technologies that support them. This has resulted in a number of different Study Groups within the ITU-T, e.g. -
802.3Cz PHY Naming
F O P Knowledge Development 802.3cz PHY naming Rubén Pérez-Aranda Bob Grow IEEE 802.3cz Task Force - Nov 2020 Plenary F O About PHY naming P Knowledge Development • Naming for 802.3cz PHYs should be considered to start writing the draft • According to [1], the PHY naming in 802.3: • Evolved where required • Avoided conflicting definition • Not had same letter in the same position meaning something different • Provided limited description of naming in standard • In [2] nGBASE-AR for 802.3cz PHYs was proposed, assuming scrambled coding 64b/66b is used as in other short wavelength multimode PHYs, e.g. 10GBASE-SR. • 802.3cz PHYs naming should be consistent with the adopted baseline • i.e. if no scrambled coding 64b/66b is used, R should be avoided in the corresponding position • The TF is facing the development of multi-gigabit optical PHYs specification for a completely new application, i.e. Automotive, which demands very different requirements compared to data-centers PHYs • Proposed PCS/PMA baseline for 802.3cz is different (see [3]) wrt. BASE-R • Baseline is close to 802.3bv (BASE-H) in the transmit frame structure and PMA • However, very different in the PCS: PAM2 vs. PAM16, RS-FEC vs. MLCC, no THP • PMD baseline will have to be consistent with automotive reliability levels, with an MDI supporting automotive mechanical and environmental requirements, as well as a much wider temperature range of operation • Definitively, we have a very distinct PHY that should use different letters to designate the PHY type name IEEE 802.3cz Task Force - Nov 2020 -
Ethernet (IEEE 802.3)
Computer Networking MAC Addresses, Ethernet & Wi-Fi Lecturers: Antonio Carzaniga Silvia Santini Assistants: Ali Fattaholmanan Theodore Jepsen USI Lugano, December 7, 2018 Changelog ▪ V1: December 7, 2018 ▪ V2: March 1, 2017 ▪ Changes to the «tentative schedule» of the lecture 2 Last time, on December 5, 2018… 3 What about today? ▪Link-layer addresses ▪Ethernet (IEEE 802.3) ▪Wi-Fi (IEEE 802.11) 4 Link-layer addresses 5 Image source: https://divansm.co/letter-to-santa-north-pole-address/letter-to-santa-north-pole-address-fresh-day-18-santa-s-letters/ Network adapters (aka: Network interfaces) ▪A network adapter is a piece of hardware that connects a computer to a network ▪Hosts often have multiple network adapters ▪ Type ipconfig /all on a command window to see your computer’s adapters 6 Image source: [Kurose 2013 Network adapters: Examples “A 1990s Ethernet network interface controller that connects to the motherboard via the now-obsolete ISA bus. This combination card features both a BNC connector (left) for use in (now obsolete) 10BASE2 networks and an 8P8C connector (right) for use in 10BASE-T networks.” https://en.wikipedia.org/wiki/Network_interface_controller TL-WN851ND - WLAN PCI card 802.11n/g/b 300Mbps - TP-Link https://tinyurl.com/yamo62z9 7 Network adapters: Addresses ▪Each adapter has an own link-layer address ▪ Usually burned into ROM ▪Hosts with multiple adapters have thus multiple link- layer addresses ▪A link-layer address is often referred to also as physical address, LAN address or, more commonly, MAC address 8 Format of a MAC address ▪There exist different MAC address formats, the one we consider here is the EUI-48, used in Ethernet and Wi-Fi ▪6 bytes, thus 248 possible addresses ▪ i.e., 281’474’976’710’656 ▪ i.e., 281* 1012 (trillions) Image source: By Inductiveload, modified/corrected by Kju - SVG drawing based on PNG uploaded by User:Vtraveller.