An Efficient Scheme in IEEE 802.22 WRAN for Real Time and Non-Real Time
Total Page:16
File Type:pdf, Size:1020Kb
Master’s Thesis Electrical Engineering November 2012 An Efficient Scheme in IEEE 802.22 WRAN for Real time and Non-Real time Traffic Delay This thesis is presented as part of the Degree for Masters of Science in Electrical Engineering Nawfal AlZubaidi R-Smith Khaled Humood Blekinge Institute of Technology November 2012 School of Engineering Blekinge Institute of Technology Supervisor: (Doktorand) Maria Erman Examiner: Karlskrona, Sweden i “The Significant Problems We Face Cannot Be Solved At The Same Level Of Thinking We Were At When We Created Them.” Albert Einstein i ABSTRACT Cognitive radio network has emerged as a prevailing technique and an exciting and promising technology which has the potential of dealing with the inflexible prerequisites and the inadequacy of the radio spectrum usage. In cognitive radios, in-band sensing is fundamental for the protection of the licensed spectrum users, enabling secondary users to vacate channels immediately upon detection of primary users. This channel sensing scheme directly affects the quality-of-service of cognitive radio user and licensed user especially with the undesirable delay induced into the system. In this thesis, a combination of different delay reduction schemes from different papers has been introduced, the first paper [47] argues about performing fine sensing for non-real time traffic, while real time traffic continues transmission in the channel. The second paper [46] argues about performing fine sensing after multiple alarms that have been triggered. Both schemes have combined with applying data rate reservation as well in order to reduce as much as possible this crucial factor of delay for IEEE 802.22 wireless regional area network and to improve the channel utilization. Data rate reservation for real time users has been applied in order to reduce the queuing delay for real time services [47]. The average packet delay for the proposed scheme combination has been analyzed, with both numerical and simulation results. The results show that the scheme combination considerably reduces the average packet delay for both real time and non-real time services and hence satisfies the performance of IEEE 802.22 wireless regional networks. Index terms–Channel sensing, Cognitive radio, energy and feature detection, IEEE 802.22, quiet period. ii iii iv Acknowledgement Primarily we would like to express our deep gratitude to our supervisor Maria Erman for supporting us and encouraging us to go forward with this thesis work. Furthermore we extend our thanks to Mr. Sven Johansson who had given us the permission to go ahead with our thesis. We also show our appreciation to the Radio Communication department that made it possible for us to guide our thesis and to do the necessary research work and backup for accomplishing our thesis. We wish to convey our gratitude to our beloved families for their understanding and endless love and support during our studies and the completion of our thesis. Last but not least we thank all our friends and all those who supported us in good and hard times during our studies in Sweden. Karlskrona, November 2012. Nawfal Alzubaidi R-Smith Khaled Humood v List of Contents LIST OF ACRONYMS .......................................................................................... V LIST OF TABLES ................................................................................................ XI LIST OF FIGURES .............................................................................................. XI CHAPTER 1 ............................................................................................................. 1 INTRODUCTION ........................................................................................................ 1 1.1 Background and Thesis Motivation ............................................................... 4 1.2 Problem Statement ......................................................................................... 4 1.3 Thesis Outline ................................................................................................ 4 CHAPTER 2 ............................................................................................................. 6 BACKGROUND ON COGNITIVE RADIO NETWORKS ................................................... 6 2.1 Cognitive Radio definitions ........................................................................... 6 2.2 IEEE802.22 Standard .................................................................................... 9 2.2.1 IEEE 802.22 applications ......................................................................10 2.2.2 IEEE 802.22 requirements.....................................................................10 2.3 Cognitive Radio Architecture ......................................................................11 2.4 Cognition cycle ............................................................................................14 CHAPTER 3 ...........................................................................................................16 SPECTRUM SENSING ...............................................................................................16 3.1 Spectrum Sensing Methods ..........................................................................16 Detection of the energy: .................................................................................16 Cyclostationary sensing: .................................................................................18 Sensing based on waveform: ..........................................................................18 Matched filter: ................................................................................................19 Other methods .................................................................................................19 3.2 Sensing stages ..............................................................................................20 3.3 Spectrum Sensing Challenges ......................................................................22 Requirements of Hardware .............................................................................22 The Hidden PU ...............................................................................................23 Spread Spectrum PU’s Detection ...................................................................23 vi Frequency and Sensing Duration ...................................................................24 Security ...........................................................................................................24 3.4 Awareness of Multi-Dimensional Spectrum ................................................25 CHAPTER 4 ...........................................................................................................26 SYSTEM MODEL ................................................................................................26 4.1 Introduction .................................................................................................26 4.2 Delay Reduction Model Structure: ..............................................................29 4.2.1 Multiple Fast Sensing: ...........................................................................29 4.2.2 Fine Sensing By Non-Real Time Users ................................................30 4.2.3 Priority Based Scheduling .....................................................................31 4.3 Delay Reduction Scheme .............................................................................31 4.4 Analytic Results ...........................................................................................40 CHAPTER 5 ...........................................................................................................46 CONCLUSION .....................................................................................................46 REFERENCES .....................................................................................................488 vii List of Acronyms ADC Analogue to digital converter AWGN Additive white Gaussian noise BS Base station CAF Cyclic autocorrelation function CDT Channel detection time CPEs Customer premise equipment CR Cognitive radio CRN Cognitive radio network CSD Cyclic function spectral density DSP Digital signal processing DSSS Direct sequence spread spectrum viii EIRP Equivalent isotropic radiated power FCC Federal communication commission FHSS Frequency hopping spread spectrum IEEE Institute of electrical and electronics engineers LAN Local area network MAC Media access control MAN Metropolitan area network OSA Opportunistic spectrum access PAN Personal area network Pd Probability of detection Pf False probability PU Primary user ix PSD Power spectral density QoS Quality of service UHF Ultra high frequency RAN Regional area network Rx Receiver SDR Software defined radio SU Secondary user TSS Two-stage sensing Tx Transmitter VHF Very high frequency WG IEEE 802.22 working group WRAN Wireless regional network x List of Tables Table 1 ......................................................................................................................40 List of Figures Fig. 1.1 IEEE Standards ............................................................................................. 2 Fig. 2.1 Logical diagram contrasting traditional radio and cognitive radio .............. 7 Fig. 2.2 Cognitive radio architecture.......................................................................12 Fig. 2.3 The protocol architecture of CR network