High Performance Cognitive Radio Platform with Integrated Physical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study of Tv White Spaces in the Context of Cognitive Radio for The
ISSN: 0798-1015 DOI: 10.48082/espacios-a20v41n50p12 Vol. 41 (50) 2020 • Art. 12 Recibido/Received: 23/09/2020 • Aprobado/Approved: 18/11/2020 • Publicado/Published: 30/12/2020 Study of TV white spaces in the context of cognitive radio for the deployment of WiFi in rural zones of the colombian army Estudio de espacios en blanco de TV en el contexto de radio cognitiva para el despliegue de WiFi en zonas rurales del ejército colombiano AVENDAÑO, Eduardo 1 ESPINDOLA, Jorge E.2 MONTAÑEZ, Oscar J.3 Abstract This article presents a study on Television White Spaces (TVWS) to solve the connectivity of the WiFi service for the Colombian National Army in rural areas. The study analyzes regulatory aspects and technical equipment to provide a free internet access solution. Video transmission was experimentally validated, using OFDM with USRP N210 radios. With this preliminary analysis, it was possible to understand how the PHY and MAC layers of the 802.22 Standard work to select the appropriate devices. key words: tvws, usrp, cognitive radio, software-defined radio (sdr) Resumen Este artículo presenta un estudio sobre Espacios Blancos de Televisión para solucionar la conectividad del servicio WiFi para el Ejército Nacional de Colombia en zonas rurales. El estudio analiza aspectos regulatorios y el equipamiento técnico para brindar solución de acceso gratuito a internet. Se validó experimentalmente la transmisión de video, usando OFDM con radios USRP N210. Con este análisis preliminar, fue posible comprender cómo funcionan las capas PHY y MAC del Estándar 802.22 para seleccionar los dispositivos adecuados. Palabras clave: tvws, usrp, radio cognitiva, radio definida por software (sdr) 1. -
Ultra-Low-Power Wide Range Backscatter Communication Using Cellular Generated Carrier †
sensors Article Ultra-Low-Power Wide Range Backscatter Communication Using Cellular Generated Carrier † Muhammad Usman Sheikh * , Boxuan Xie , Kalle Ruttik , Hüseyin Yi˘gitler , Riku Jäntti and Jyri Hämäläinen Department of Communications and Networking, Aalto University, 02150 Espoo, Finland; boxuan.xie@aalto.fi (B.X.); kalle.ruttik@aalto.fi (K.R.); huseyin.yigitler@aalto.fi (H.Y.); riku.jantti@aalto.fi (R.J.); jyri.hamalainen@aalto.fi (J.H.) * Correspondence: muhammad.sheikh@aalto.fi † This paper is an extended version of our conference paper: Sheikh, M.U., Jameel, F., Yi˘gitler, H., Wang, X., Jäntti, R. “Monostatic Backscatter Communication in Urban Microcellular Environment Using Cellular Networks.” In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020. Abstract: With the popularization of Internet-of-things (IoT) and wireless communication systems, a diverse set of applications in smart cities are emerging to improve the city-life. These applications usually require a large coverage area and minimal operation and maintenance cost. To this end, the recently emerging backscatter communication (BC) is gaining interest in both industry and academia as a new communication paradigm that provides high energy efficient communications that may even work in a battery-less mode and, thus, it is well suited for smart city applications. However, the coverage of BC in urban area deployments is not available, and the feasibility of its utilization for smart city applications is not known. In this article, we present a comprehensive coverage study of a Citation: Sheikh, M.U.; Xie, B.; practical cellular carrier-based BC system for indoor and outdoor scenarios in a downtown area of a Ruttik, K.; Yi˘gitler, H.; Jäntti, R.; Helsinki city. -
Cognitive Frequency Hopping Based on Interference Prediction: Theory and Experimental Results ∗
Cognitive Frequency Hopping Based on Interference Prediction: Theory and Experimental Results ∗ Stefan Geirhofera John Z. Sunb Lang Tonga Brian M. Sadlerc [email protected] [email protected] [email protected] [email protected] aSchool of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 bResearch Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 cU.S. Army Research Laboratory, Adelphi, MD 20783 Wireless services in the unlicensed bands are proliferating but frequently face high interfer- ence from other devices due to a lack of coordination among heterogeneous technologies. In this paper we study how cognitive radio concepts enable systems to sense and predict interference patterns and adapt their spectrum access accordingly. This leads to a new cognitive coexistence paradigm, in which cognitive radio implicitly coordinates the spec- trum access of heterogeneous systems. Within this framework, we investigate coexistence with a set of parallel WLAN bands: based on predicting WLAN activity, the cognitive radio dynamically hops between the bands to avoid collisions and reduce interference. The de- velopment of a real-time test bed is presented, and used to corroborate theoretical results and model assumptions. Numerical results show a good fit between theory and experiment and demonstrate that sensing and prediction can mitigate interference effectively. I. Introduction direct information exchange among interfering sys- tems. Instead we study how a cognitive radio may Wireless devices and services are growing rapidly and reduce collisions by predicting the WLAN’s activ- are becoming ubiquitous. The unlicensed bands have ity and adapting its medium access accordingly. The played a fundamental role in this trend as illustrated cognitive concept of sensing and adaptation conse- by the rapid proliferation of WiFi and Bluetooth de- quently serves as an implicit means for coordinating vices. -
Jamming Attacks and Anti-Jamming Strategies in Wireless Networks
1 Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive Survey Hossein Pirayesh and Huacheng Zeng Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA Abstract—Wireless networks are a key component of the will become ubiquitously available for massive devices to telecommunications infrastructure in our society, and wireless realize the vision of Internet of Everything (IoE) in the near services become increasingly important as the applications of future [18]. wireless devices have penetrated every aspect of our lives. Although wireless technologies have significantly advanced in As we are increasingly reliant on wireless services, security the past decades, most wireless networks are still vulnerable to threats have become a big concern about the confidentiality, radio jamming attacks due to the openness nature of wireless integrity, and availability of wireless communications. Com- channels, and the progress in the design of jamming-resistant pared to other security threats such as eavesdropping and wireless networking systems remains limited. This stagnation can data fabrication, wireless networks are particularly vulnerable be attributed to the lack of practical physical-layer wireless tech- nologies that can efficiently decode data packets in the presence to radio jamming attacks for the following reasons. First, of jamming attacks. This article surveys existing jamming attacks jamming attacks are easy to launch. With the advances in and anti-jamming strategies in wireless local area networks software-defined radio, one can easily program a small $10 (WLANs), cellular networks, cognitive radio networks (CRNs), USB dongle device to a jammer that covers 20 MHz bandwidth ZigBee networks, Bluetooth networks, vehicular networks, LoRa below 6 GHz and up to 100 mW transmission power [34]. -
IEEE 802.22 Wireless Regional Area Networks
Universal Journal of Communications and Network 1(1): 27-31, 2013 http://www.hrpub.org DOI: 10.13189/ujcn.2013.010105 A Survey on Rural Broadband Wireless Access Using Cognitive Radio Technology: IEEE 802.22 Wireless Regional Area Networks M.Ravi Kumar*, S.Manoj Kumar, M.balajee Dept. of IT (MCA), G M R Institute of Technology Rajam, Andhra Pradesh, India *Corresponding Author: [email protected] Copyright © 2013 Horizon Research Publishing All rights reserved. Abstract The previous and most popular broadband (6MHz, 7MHz, or 8MHz) to address, as a primary objective, wireless technology i.e. WiMAX which is limited about to rural and remote areas and low population density 10 miles, there are power and line of sight issues yet to be underserved markets with performance levels similar to resolved for a broader coverage area. WiMAX deployment is those of Broadband access technologies such as digital therefore limited to densely populate metropolitan areas. subscriber line (xDSL) technologies and Digital Cable What about rural and sparsely populated, geographically modem service. A secondary objective is to have this system dispersed regional areas? Here is the upcoming solution for scale to serve denser population areas where spectrum is that which is implemented by IEEE .The IEEE 802.22 available. The WRAN system must be capable of supporting standard defines a system for a Wireless Regional Area a mix of data, voice and audio/video applications. These Network i.e. WRAN that uses unused or white spaces within include Internet access, VoIP, video teleconferencing and the television bands between 54 and 862 MHz, especially streaming video. -
Spectrum Occupancy Measurements and Analysis in 2.4 Ghz WLAN
electronics Article Spectrum Occupancy Measurements and Analysis in 2.4 GHz WLAN Adnan Ahmad Cheema 1 and Sana Salous 2,* 1 School of Engineering, Ulster University, Jordanstown BT37 0QB, UK 2 Department of Engineering, Durham University, Durham DH1 3LE, UK * Correspondence: [email protected]; Tel.: +0044-191-33-42532 Received: 26 July 2019; Accepted: 7 September 2019; Published: 10 September 2019 Abstract: High time resolution spectrum occupancy measurements and analysis are presented for 2.4 GHz WLAN signals. A custom-designed wideband sensing engine records the received power of signals, and its performance is presented to select the decision threshold required to define the channel state (busy/idle). Two sets of measurements are presented where data were collected using an omni-directional and directional antenna in an indoor environment. Statistics of the idle time windows in the 2.4 GHz WLAN are analyzed using a wider set of distributions, which require fewer parameters to compute and are more practical for implementation compared to the widely-used phase type or Gaussian mixture distributions. For the omni-directional antenna, it was found that the lognormal and gamma distributions can be used to model the behavior of the idle time windows under different network traffic loads. In addition, the measurements show that the low time resolution and angle of arrival affect the statistics of the idle time windows. Keywords: cognitive radio; spectrum occupancy; dynamic spectrum access; time resolution; directional; sensing engine 1. Introduction The vision of 5G network (5GN) encapsulates many application areas, e.g. mobile broadband, connected health, intelligent transportation, and industry automation [1]. -
OFDM Based Transceiver for a Cognitive Radio
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 OFDM based Transceiver for a Cognitive Radio Mundlamuri Kowshik, Electronics and Communication Engineering Shiv Nadar University Greater Noida, Uttar Pradesh, India Abstract: Cognitive radio is the heir of next generation accurate identification of empty spectrum ask for efficient wireless communication. This will be the next big leap in the spectrum sensing algorithms etc. This attracts a large process of making wireless communication efficient. In this number of research activities across the world. paper, we present the implementation and benefits of Orthogonal frequency division multiplexing (OFDM) orthogonal frequency division multiplexing commonly known is the technique proposed in this paper to be used in the as OFDM in the transceiver (transmitter and receiver) of a transceiver of a cognitive radio. OFDM is a digital multi- cognitive radio. The transmitter part of the OFDM transceiver is implemented as a model in LabVIEW and carrier modulation technique. OFDM is widely is used dumped in a NI based FPGA. This papers aims to show how across various fields in wireless transmission. The OFDM falls in place with the other components of a typical flexibility and features offered by OFDM makes it so cognitive radio also the challenges faced while adopting popular in the field of wireless communication. The OFDM. transceiver which is studied in this paper employs OFDM and we shall see the features and challenges it offers in the Keywords: Cognitive radio, OFDM. upcoming sections of this paper. The main goal of this paper is to integrate OFDM A. -
An Efficient Scheme in IEEE 802.22 WRAN for Real Time and Non-Real Time
Master’s Thesis Electrical Engineering November 2012 An Efficient Scheme in IEEE 802.22 WRAN for Real time and Non-Real time Traffic Delay This thesis is presented as part of the Degree for Masters of Science in Electrical Engineering Nawfal AlZubaidi R-Smith Khaled Humood Blekinge Institute of Technology November 2012 School of Engineering Blekinge Institute of Technology Supervisor: (Doktorand) Maria Erman Examiner: Karlskrona, Sweden i “The Significant Problems We Face Cannot Be Solved At The Same Level Of Thinking We Were At When We Created Them.” Albert Einstein i ABSTRACT Cognitive radio network has emerged as a prevailing technique and an exciting and promising technology which has the potential of dealing with the inflexible prerequisites and the inadequacy of the radio spectrum usage. In cognitive radios, in-band sensing is fundamental for the protection of the licensed spectrum users, enabling secondary users to vacate channels immediately upon detection of primary users. This channel sensing scheme directly affects the quality-of-service of cognitive radio user and licensed user especially with the undesirable delay induced into the system. In this thesis, a combination of different delay reduction schemes from different papers has been introduced, the first paper [47] argues about performing fine sensing for non-real time traffic, while real time traffic continues transmission in the channel. The second paper [46] argues about performing fine sensing after multiple alarms that have been triggered. Both schemes have combined with applying data rate reservation as well in order to reduce as much as possible this crucial factor of delay for IEEE 802.22 wireless regional area network and to improve the channel utilization. -
Cognitive Radio for Coexistence of Heterogeneous Wireless Networks Stefano Boldrini
Cognitive radio for coexistence of heterogeneous wireless networks Stefano Boldrini To cite this version: Stefano Boldrini. Cognitive radio for coexistence of heterogeneous wireless networks. Other. Supélec; Università degli studi La Sapienza (Rome), 2014. English. NNT : 2014SUPL0012. tel-01080508 HAL Id: tel-01080508 https://tel.archives-ouvertes.fr/tel-01080508 Submitted on 5 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! N°!d’ordre:!2014.12.TH! ! ! SUPELEC' ' ECOLE'DOCTORALE'STITS' «"Sciences"et"Technologies"de"l’Information"des"Télécommunications"et"des"Systèmes"»" ' ' ' THÈSE'DE'DOCTORAT' ' DOMAINE:'STIC' Spécialité:'Télécommunications' ' ' ' Soutenue'le'10'avril'2014' ' par:' ' SteFano'BOLDRINI' ' ' Radio'cognitive'pour'la'coexistence'de'réseaux'radio'hétérogènes' (Cognitive!radio!for!coexistence!of!heterogeneous!wireless!networks)! ' ' ' ' ' ' Directeur'de'thèse:! Maria.Gabriella!DI!BENEDETTO! Professeur,!Sapienza!Université!de!Rome! CoMdirecteur'de'thèse:! Jocelyn!FIORINA! Professeur,!Supélec! ! Composition'du'jury:' ! Président"du"jury:! -
Cognitive Radio Networks for Internet of Things and Wireless Sensor Networks
sensors Article Cognitive Radio Networks for Internet of Things and Wireless Sensor Networks Heejung Yu 1 and Yousaf Bin Zikria 2,* 1 Department of Electronics and Information Engineering, Korea University, Sejong 30019, Korea; [email protected] 2 Department of Information and Communication Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea * Correspondence: [email protected]; Tel.: +82-53-810-3098 Received: 12 September 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: Recent innovation, growth, and deployment of internet of things (IoT) networks are changing the daily life of people. 5G networks are widely deployed around the world, and they are important for continuous growth of IoT. The next generation cellular networks and wireless sensor networks (WSN) make the road to the target of the next generation IoT networks. The challenges of the next generation IoT networks remain in reducing the overall network latency and increasing throughput without sacrificing reliability. One feasible alternative is coexistence of networks operating on different frequencies. However, data bandwidth support and spectrum availability are the major challenges. Therefore, cognitive radio networks (CRN) are the best available technology to cater to all these challenges for the co-existence of IoT, WSN, 5G, and beyond-5G networks. Keywords: CRN; IoT; WSN; 5G; spectrum sensing; spectrum sharing 1. Introduction The numerous Internet of Things (IoT) technologies have contributed to explosive increase in the number of Internet-connected devices. The exponential growth of these smart connected devices is driving the revolution in social life of people. Move-forward in such a direction is the fifth-generation (5G) and beyond-5G connectivity. -
Detection of Vacant Frequency Bands in Cognitive Radio
MEE10:58 DETECTION OF VACANT FREQUENCY BANDS IN COGNITIVE RADIO Rehan Ahmed Yasir Arfat Ghous This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology May 2010 Blekinge Institute of Technology School of Engineering Supervisor: (Doktorand) Maria Erman Examiner: Universitetslektor Jörgen Nordberg ii ABSTRACT Cognitive radio is an exciting promising technology which not only has the potential of dealing with the inflexible prerequisites but also the scarcity of the radio spectrum usage. Such an innovative and transforming technology presents an exemplar change in the design of wireless communication systems, as it allows the efficient utilization of the radio spectrum by transforming the capability to dispersed terminals or radio cells of radio sensing, active spectrum sharing and self-adaptation procedure. Cooperative communications and networking is one more new communication skill prototype that permits the distributed terminals in a wireless network to cooperate with each other through some distributed transmission or signal processing in order to comprehend a new appearance of space diversity to contest the detrimental effects of fading channels. In this thesis, we regard the relevance of these technologies to spectrum sensing and spectrum sharing. One of the most vital challenges for cognitive radio systems is to diagnose the existence of primary (licensed) users over an extensive range of spectrum at a particular time and explicit geographic locality. We consider the utilization of cooperative spectrum sensing in cognitive radio systems to increase the consistency of detecting of primary users. We describe spectrum sensing for cognitive radios (CRs) and project a vigorous cooperative spectrum sensing procedure for a practical framework employing cognitive radios Cooperative sensing can formulate excellent use of network assets, attain higher gain and make the network smooth. -
Intelligent and Efficient Development of Wireless Networks: a Review of Cognitive Radio Networks
Review SPECIAL TOPIC October 2012 Vol.57 No.28-29: 36623676 Basic Theories in Cognitive Wireless Networks doi: 10.1007/s11434-012-5334-5 SPECIAL TOPICS: Intelligent and efficient development of wireless networks: A review of cognitive radio networks ZHANG Ping*, LIU Yang, FENG ZhiYong, ZHANG QiXun, LI Qian & XU Ding Wireless Technology Innovation Institute (WTI), Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China Received November 10, 2011; accepted May 10, 2012 Facing the challenges on how to improve spectrum efficiency and how to realize heterogeneous network convergence in future wireless networks, a cognitive radio network (CRN) is proposed as one of the solutions. This has become a major research topic in recent years and it is timely to give an overview of the development of CRN and to summarize key issues and technologies. The fundamental concepts of CRN, including the cognitive cycle model, the network architecture, and the cognitive ability and intelligent decision functions, are introduced in detail based on recent advances. Key issues for each topic, followed with recent research on theory and method, are then classified and the industrialization developments of CRN testbeds based on TD-LTE cellular system and standards are briefly presented. Finally, conclusions are reached on the perspectives and directions of future development. cognitive radio networks, network architecture, cognitive ability, spectrum sensing, intelligent decision and dynamic spec- trum allocation, end-to-end performance Citation: Zhang P, Liu Y, Feng Z Y, et al. Intelligent and efficient development of wireless networks: A review of cognitive radio networks.