Single Board PC Computers Under $100 Subra Ganesan Professor Oakland University Agenda
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cubietruck – Mini PC
SPRZĘT Cubietruck – mini PC Rynek komputerków jednopłytkowych opartych o procesory ARM zapoczątkowany przez Raspberry Pi rozwija się doskonale. Może nie jak grzyby po deszczu, ale systematycznie pojawiają się nowe rozwiązania: BeagleBoard, Marsboard, Cubieboard, Olinuxino itp. Różnią się one wyposażeniem, wydajnością, dostępnością dokumentacji oraz wsparciem technicznym. Ciekawie rozwija się propozycja Cubieboard. mocujących. Niby nic, ale te trzy kawałki two- org, zapoczątkowana płytką Cubieboard A10 rzywa i paczka tulejek umożliwiają poskładanie Fotografi a 3. Obudowa Cubietruck (opisaną w EP06/2013) i Cubieboard2 zgod- samodzielnego systemu mini-PC wyposażo- ną mechanicznie, ale zbudowaną w oparciu nego w dysk HDD 2,5”, wystarczająco zabez- rolę domowego centrum multimedialnego lub o nowszy, dwurdzeniowy procesor A20, zwięk- pieczając mechanicznie jego elementy. Osłony Linuxowego komputera PC. Jedyne zastrzeżenie szający wydajność Cubie i paletę jej zastosowań w odpowiednich miejscach mają wyfrezowane można mieć do kilku różnokolorowych LED, (fotografi a 1). Najnowsza propozycja to Cubie- otwory umożliwiające korzystanie z GPIO bez bezlitośnie informujących nasze oczy o stanie truck (Cubieboard3), oparty podobnie jak Cu- zdejmowania obudowy. pracy Cubie. bieboard2 (fotografi a 2) o procesor Allwinner Ciekawą propozycją dla osób wykorzy- Cubieboard3 oparty jest o SoC w architektu- A20, lecz mający znacznie bogatsze wyposaże- stujących Cubieboard3 w roli samodzielnego rze ARM7 – Allwinner A20, który w połączeniu nie, co niestety wiąże się z wyższą ceną. Porów- mini-PC, jest pełna obudowa pokazana na fo- ze sporej wielkości dyskiem NAND Flash oraz nanie parametrów poszczególnych komputer- tografi i 3. W swoim wnętrzu mieści swobodnie zwiększoną pamięcią RAM bezproblemowo ków Cubieboard umieszczono w tabeli 1. płytkę Cubieboard3, dysk HDD 2,5” (fotogra- sprawdza się w roli komputera PC pracującego Podobnie jak w przypadku poprzednich fi a 4) i przewody połączeniowe. -
A 1024-Core 70GFLOPS/W Floating Point Manycore Microprocessor
A 1024-core 70GFLOPS/W Floating Point Manycore Microprocessor Andreas Olofsson, Roman Trogan, Oleg Raikhman Adapteva, Lexington, MA The Past, Present, & Future of Computing SIMD MIMD PE PE PE PE MINI MINI MINI CPU CPU CPU PE PE PE PE MINI MINI MINI CPU CPU CPU PE PE PE PE MINI MINI MINI CPU CPU CPU MINI MINI MINI BIG BIG CPU CPU CPU CPU CPU BIG BIG BIG BIG CPU CPU CPU CPU PAST PRESENT FUTURE 2 Adapteva’s Manycore Architecture C/C++ Programmable Incredibly Scalable 70 GFLOPS/W 3 Routing Architecture 4 E64G400 Specifications (Jan-2012) • 64-Core Microprocessor • 100 GFLOPS performance • 800 MHz Operation • 8GB/sec IO bandwidth • 1.6 TB/sec on chip memory BW • 0.8 TB/sec network on chip BW • 64 Billion Messages/sec IO Pads Core • 2 Watt total chip power • 2MB on chip memory Link Logic • 10 mm2 total silicon area • 324 ball 15x15mm plastic BGA 5 Lab Measurements 80 Energy Efficiency 70 60 50 GFLOPS/W 40 30 20 10 0 0 200 400 600 800 1000 1200 MHz ENERGY EFFICIENCY ENERGY EFFICIENCY (28nm) 6 Epiphany Performance Scaling 16,384 G 4,096 F 1,024 L 256 O 64 4096 P 1024 S 16 256 64 4 16 1 # Cores On‐demand scaling from 0.25W to 64 Watt 7 Hold on...the title said 1024 cores! • We can build it any time! • Waiting for customer • LEGO approach to design • No global timinga paths • Guaranteed by design • Generate any array in 1 day • ~130 mm2 silicon area 1024 Cores 1Core 8 What about 64-bit Floating Point? Single Precision Double Precision 2 FLOPS/CYCLE 2 FLOPS/CYCLE 64KB SRAM 64KB SRAM 0.215mm^2 0.237mm^2 700MHz 600MHz 9 Epiphany Latency Specifications -
Comparison of 116 Open Spec, Hacker Friendly Single Board Computers -- June 2018
Comparison of 116 Open Spec, Hacker Friendly Single Board Computers -- June 2018 Click on the product names to get more product information. In most cases these links go to LinuxGizmos.com articles with detailed product descriptions plus market analysis. HDMI or DP- USB Product Price ($) Vendor Processor Cores 3D GPU MCU RAM Storage LAN Wireless out ports Expansion OSes 86Duino Zero / Zero Plus 39, 54 DMP Vortex86EX 1x x86 @ 300MHz no no2 128MB no3 Fast no4 no5 1 headers Linux Opt. 4GB eMMC; A20-OLinuXino-Lime2 53 or 65 Olimex Allwinner A20 2x A7 @ 1GHz Mali-400 no 1GB Fast no yes 3 other Linux, Android SATA A20-OLinuXino-Micro 65 or 77 Olimex Allwinner A20 2x A7 @ 1GHz Mali-400 no 1GB opt. 4GB NAND Fast no yes 3 other Linux, Android Debian Linux A33-OLinuXino 42 or 52 Olimex Allwinner A33 4x A7 @ 1.2GHz Mali-400 no 1GB opt. 4GB NAND no no no 1 dual 40-pin 3.4.39, Android 4.4 4GB (opt. 16GB A64-OLinuXino 47 to 88 Olimex Allwinner A64 4x A53 @ 1.2GHz Mali-400 MP2 no 1GB GbE WiFi, BT yes 1 40-pin custom Linux eMMC) Banana Pi BPI-M2 Berry 36 SinoVoip Allwinner V40 4x A7 Mali-400 MP2 no 1GB SATA GbE WiFi, BT yes 4 Pi 40 Linux, Android 8GB eMMC (opt. up Banana Pi BPI-M2 Magic 21 SinoVoip Allwinner A33 4x A7 Mali-400 MP2 no 512MB no Wifi, BT no 2 Pi 40 Linux, Android to 64GB) 8GB to 64GB eMMC; Banana Pi BPI-M2 Ultra 56 SinoVoip Allwinner R40 4x A7 Mali-400 MP2 no 2GB GbE WiFi, BT yes 4 Pi 40 Linux, Android SATA Banana Pi BPI-M2 Zero 21 SinoVoip Allwinner H2+ 4x A7 @ 1.2GHz Mali-400 MP2 no 512MB no no WiFi, BT yes 1 Pi 40 Linux, Android Banana -
Development Boards This Product Is Rohs Compliant
Development Boards This product is RoHS compliant. PANDABOARD DEVELOPMENT PLATFORM Features: • Core Logic: OMAP4460 applications Processor • Interface: (1) General Purpose Expansion Header • Wireless Connectivity: 802.11 b/g/n (WiLink™ 6.0) • Memory: 1GB DDR2 RAM (I2C, GPMC, USB, MMC, DSS, ETM) • Debug options: JTAG, UART/RS-232, 1 GPIO button NTL • Full Size SD/MMC card port • Camera Expansion Header • Graphics APIs: OpenGL ES v2.0, OpenGL ES v1.1, • 10/100 Ethernet • Display Connectors: HDMI v1.3, DVI-D. LCD Expansion OpenVGv1.1, and EGL v1.3 • USB: (1) USB 2.0 OTG port, (2) USB 2.0 High-speed port • Audio Connectors: 3.5" In/Out, HDMI audio out For quantities greater than listed, call for quote. MOUSER Pandaboard Price Description STOCK NO. Part No. Each 595-PANDABOARD UEVM4430G-01-00-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4430 SoC Platform 179.00 595-PANDABOARD-ES UEVM4460G-02-01-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4460 SoC Platform 185.00 Embedded Modules Embedded BEAGLEBOARD SOC PLATFORMS BeagleBoard.org develops low-cost, fan-less single-board computers based on low-power Texas Instruments processors featuring the ARM Cortex-A8 core with all of the expandability of today's desktop machines, but without the bulk, expense, or noise. BeagleBoard.org provides an open source development platform for A B the creation of high-performance embedded designs. Beagleboard C4 Features: Beagleboard xM Features: Beaglebone Features: • Over 1,200 Dhrystone MIPS using the superscalar • Over 2,000 Dhrystone MIPS using the Super-scalar -
Improving the Beaglebone Board with Embedded Ubuntu, Enhanced GPMC Driver and Python for Communication and Graphical Prototypes
Final Master Thesis Improving the BeagleBone board with embedded Ubuntu, enhanced GPMC driver and Python for communication and graphical prototypes By RUBÉN GONZÁLEZ MUÑOZ Directed by MANUEL M. DOMINGUEZ PUMAR FINAL MASTER THESIS 30 ECTS, JULY 2015, ELECTRICAL AND ELECTRONICS ENGINEERING Abstract Abstract BeagleBone is a low price, small size Linux embedded microcomputer with a full set of I/O pins and processing power for real-time applications, also expandable with cape pluggable boards. The current work has been focused on improving the performance of this board. In this case, the BeagleBone comes with a pre-installed Angstrom OS and with a cape board using a particular software “overlay” and applications. Due to a lack of support, this pre-installed OS has been replaced by Ubuntu. As a consequence, the cape software and applications need to be adapted. Another necessity that emerges from the stated changes is to improve the communications through a GPMC interface. The depicted driver has been built for the new system as well as synchronous variants, also developed and tested. Finally, a set of applications in Python using the cape functionalities has been developed. Some extra graphical features have been included as example. Contents Contents Abstract ..................................................................................................................................................................................... 5 List of figures ......................................................................................................................................................................... -
Suzanne's Microcluster Slides
csinparallel.org Microclusters for teaching PDC Suzanne J. Matthews (West Point) 1 csinparallel.org What is a Microcluster? • A personal, highly portable Beowulf cluster • Enables highly interactive and tactile experiential learning • Notable early examples: – Ultimate Linux Lunch Box (Ron Minnich and Mitch Williams, Sandia National Labs) – LittleFe (Charlie Peck, Earlham College) – Microwulf (Joel Adams, Calvin College) 2 csinparallel.org Single Board Computers (SBCs) 3 csinparallel.org Student Pi (West Point) Suzanne J. Matthews Raspberry Pi nodes - Prototype: Raspberry Pi B nodes - Initial: Raspberry Pi B+ nodes - Current: Raspberry Pi 2 nodes - 900 Mhz quad-core CPU, 1 GB of RAM, HDMI, USB, 10/100 Ethernet - Raspbian Linux June 2014 - ~$40 p/node - Materials: - http://suzannejmatthews.com/private/cluster.html October 2014 May 2016 4 csinparallel.org Student Parallella (West Point) Suzanne J. Matthews Parallella nodes - dual-core ARM A9 CPU, 16-core Epiphany co-processor, 1 GB of RAM, μHDMI, μUSB, Gigabit Ethernet - Linaro Linux - ~$145 p/node - Materials: - http://suzannejmatthews.com/private/cluster.html - http://suzannejmatthews.github.io/ October 2014 April 2016 January 2015 5 csinparallel.org Half ShoeBox Clusters (Centre College) David Toth Cubieboard/ODROID nodes (2-node clusters) - Prototype: Cubieboard2: dual-core ARM Cortex A7, 1 GB of RAM, HDMI, USB, 10/100 Ethernet - Latest: ODROID C2: 2Ghz quad-core A53, 2 GB of RAM, HDMI, USB, Gigabit Ethernet, - Android/Ubuntu Linux - ~ $150-$200 p/cluster - Materials: Early 2014 - http://web.centre.edu/david.toth/portablecluster/index.html -
INSTALL ARCH LINUX ARM for a SIMPLE LAN SERVER the Hardware
INSTALL ARCH LINUX ARM FOR A SIMPLE LAN SERVER The Hardware At the top, two possibilities for the DATA drive which will store all your files. A USB-3 SSD external housing with a SSD of your choice and size. In this case a Samsung 850 500GB SSD. OR if more storage is needed, a USB-3 3.5 inch external hard drive enclosure, in this case with a 2 TB WD Red Label hard drive. Next is a 5 VDC 6 Amp power brick for the Odroid-XU4, not shown is a 12 VDC power supply included with the 3.5 inch hard drive if used. At the bottom, a USB SD Reader. A micro SD to SD adapter. A micro SD card OR an emmc to micro SD adapter with an emmc card for the Operating System. Then the Odroid- XU4 SBC (Single Board Computer). With optional Real Time Clock battery, 40 mm cooling fan, and a 1/4 inch plywood base with stand offs to protect the components on the bottom. Of course, any ARM device that Arch Linux Arm supports can be used, such as a Raspberry PI 4 or the new Odroid N2 with 4 GB RAM, or what ever. Just go to the Arch Linux Arm site, https://archlinuxarm.org/ Hover over "Platforms" then the Architecture, brand name, etc. to see if your device is supported. Click on your device and get a page with overview and installation tabs. Page 1 of 12 EndeavourOS_Server_ARM.odt For security reasons, this server is not intended to be accessed from the internet and should be connected directly by LAN cable to a router or to a switch connected to the router. -
DFR0261 Dfrobot Datasheet
Cubieboard 2 Kit SKU:DFR0261 INTRODUCTION Cubieboard2 (ARM® Cortex™‐A7 Dual‐Core), a upgrade of current cubieboard, is ready to ship now. Cubieboard2 is based on Allwinner A20 SoC, small size , hacker friendly, extendable and very low‐cost.It is an alternative to the Raspberry Pi or pcDuino. Compare with Raspberry Pi, it has higher performance, SATA supported and 96 extended interface. Compared with cubieboard,just replacing one chip(well, the most important one),cubieboard2 are upgraded from a single core to a dual core and twice gpu performance, and even no change is needed on the PCB. So all the base boards, accessories that works with cubieboard will also fit in with cubieboard2. On the software side, cubieboard2 support both android 4.2 Jelly Bean, Ubuntu 12.04 and other Linux distributions. Android Jelly Bean improves on speed and simplicity and brings a lot of new feature. If you plan to assemble a small computer, you can try using this small ARM platform cubieboard. It supports Ubuntu and other Linux distributions; you could use it like an ordinary computer operation. At the same time, the platform also supports Android 4.0 Ice Cream Sandwich system and has bulit‐in IR sensor, can be used as "Android TV". SPECIFICATION CPU:ARM® Cortex™‐A7 Dual‐Core GPU:ARM® Mali400MP2, Complies with OpenGL ES 2.0/1.1 Memory:1GB DDR3 @960M Storage:4GB internal NAND flash, up to 64GB on uSD slot, up to 2T on 2.5 SATA disk Power:5VDC input 2A or USB otg input Networking:10/100 ethernet, optional wifi USB : Two USB 2.0 HOST, one USB 2.0 OTG Extended Interfaces: 96 extend pin interface, including I2C, SPI, RGB/LVDS, CSI/TS, FM‐IN, ADC, CVBS, VGA, SPDIF‐OUT, R‐TP, and more Other: One IR SHIPPING LIST Cubieboard 2 main board x1 DC to USB cable x1 SATA cable(data + power) x1 Cubieboard Case x1 Serial to USB cable x1 Powered By DFRobot © 2008-2017 . -
Openbricks Embedded Linux Framework - User Manual I
OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7 -
IMX233-Olinuxino-MINI User's Manual
OLinuXino-MINI Open-source single-board Linux computer USER’S MANUAL Revision H, April 2015 Designed by OLIMEX Ltd, 2012 All boards produced by Olimex LTD are ROHS compliant OLIMEX© 2015 IMX233-OLinuXino-MINI user's manual DISCLAIMER © 2015 Olimex Ltd. Olimex®, logo and combinations thereof, are registered trademarks of Olimex Ltd. Other product names may be trademarks of others and the rights belong to their respective owners. The information in this document is provided in connection with Olimex products. No license, express or implied or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Olimex products. The Hardware project is released under the Creative Commons Attribution-Share Alike 3.0 United States License. You may reproduce it for both your own personal use, and for commertial use. You will have to provide a link to the original creator of the project http://www.olimex.com on any documentation or website. You may also modify the files, but you must then release them as well under the same terms. Credit can be attributed through a link to the creator website: http://www.olimex.com The software is released under GPL. It is possible that the pictures in this manual differ from the latest revision of the board. The product described in this document is subject to continuous development and improvements. All particulars of the product and its use contained in this document are given by OLIMEX in good faith. However all warranties implied or expressed including but not limited to implied warranties of merchantability or fitness for purpose are excluded. -
Cubieboard Cubieboard2 Cubietruck Beaglebone Black
Raspberry Pi (Model B rev.2) Cubieboard Cubieboard2 Cubietruck Beaglebone Black 1 Ghz (OC) ARM® Cortex-A6 1 Ghz ARM® Cortex-A8 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A8 CPU ARM1176JZF-F Allwinner A10 C8096CA Allwinner A20 Allwinner A20 AM335x GPU/FPU VideoCore IV Mali-400 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) SGX350 3D / NEON FPU accelerator RAM 512 MB 1 GB DDR3 2 GB 2 GB 512 MB DDR3 Storage micro SD/SDHC 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 2.0 2GB eMMC Power micro USB (5V/1A) 3.5 W DC 5v/2A DC 5v/2A DC 5v/2.5A DC 5V/500mA Video RCA Composite Video, HDMI 1.4 HDMI HDMI HDMI/VGA microHDMI Audio 3.5 mm Headphone Jack 3.5 mm Headphone Jack / Line In 3.5 mm Headphone Jack 3.5 mm Headphone Jack, SPDIF Network 10/100 Mbps 10/100 Mbps 10/100 Mbps 10/100/1000 Mbps, Wifi, Bluetooth 10/100 Mbps 2x46 PIN GPIO I/O ports 26 PIN GPIO, 2x Ribon 2x48 PIN GPIO, 4PIN Serial, 1IR 2x48 PIN GPIO, 4PIN Serial, 1IR 1x 54 PIN GPIO (Arduino Shield Compatible) USB ports 2x USB 2.0 2x USB 2.0 2x USB 2.0, 1 mini USB OTG 2x USB 2.0, 1 mini USB OTG 1x USB 2.0 Linux (Raspbian, Debian, Fedora, Arch, Gentoo, Kali), Andoid, Angstrom, Ubuntu, Fedora, Gentoo. -
Survey and Benchmarking of Machine Learning Accelerators
1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users.