Development Boards This Product Is Rohs Compliant

Total Page:16

File Type:pdf, Size:1020Kb

Development Boards This Product Is Rohs Compliant Development Boards This product is RoHS compliant. PANDABOARD DEVELOPMENT PLATFORM Features: • Core Logic: OMAP4460 applications Processor • Interface: (1) General Purpose Expansion Header • Wireless Connectivity: 802.11 b/g/n (WiLink™ 6.0) • Memory: 1GB DDR2 RAM (I2C, GPMC, USB, MMC, DSS, ETM) • Debug options: JTAG, UART/RS-232, 1 GPIO button NTL • Full Size SD/MMC card port • Camera Expansion Header • Graphics APIs: OpenGL ES v2.0, OpenGL ES v1.1, • 10/100 Ethernet • Display Connectors: HDMI v1.3, DVI-D. LCD Expansion OpenVGv1.1, and EGL v1.3 • USB: (1) USB 2.0 OTG port, (2) USB 2.0 High-speed port • Audio Connectors: 3.5" In/Out, HDMI audio out For quantities greater than listed, call for quote. MOUSER Pandaboard Price Description STOCK NO. Part No. Each 595-PANDABOARD UEVM4430G-01-00-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4430 SoC Platform 179.00 595-PANDABOARD-ES UEVM4460G-02-01-00 Pandaboard ARM Cortex-A9 MPCore 1GHz OMAP4460 SoC Platform 185.00 Embedded Modules Embedded BEAGLEBOARD SOC PLATFORMS BeagleBoard.org develops low-cost, fan-less single-board computers based on low-power Texas Instruments processors featuring the ARM Cortex-A8 core with all of the expandability of today's desktop machines, but without the bulk, expense, or noise. BeagleBoard.org provides an open source development platform for A B the creation of high-performance embedded designs. Beagleboard C4 Features: Beagleboard xM Features: Beaglebone Features: • Over 1,200 Dhrystone MIPS using the superscalar • Over 2,000 Dhrystone MIPS using the Super-scalar • >700-MHz super-scalar ARM Cortex™-A8 ARM Cortex-A8 with highly accurate branch prediction ARM Cortex TM -A8 running at up to 1GHz • 256-MB DDR2 RAM and 256KB L2 cache running at up to 600MHz • 512-MB LPDDR RAM • 1-port USB 2.0 host • OpenGL© ES 2.0 capable 2D/3D graphics accelerator • High-speed USB 2.0 OTG port optionally powers • Integrated 10/100 Ethernet • HD video capable TMS320C64x+ DSP for versatile the board • microSD slot and 2-GB microSD card with signal processing at up to 430MHz • I2C, I2S, SPI, MMC/SD Expansion validation and demonstration image from • USB power via complete chip-set with minimal • RS-232 Serial Port, JTAG Header the Angstrom Distribution C D additional power-consuming logic • Micro-SD Slot • USB 2.0 flexible device port with ability to • DVI-D for connecting digital computer monitors • On-board four-port high-speed USB 2.0 hub with supply power • MMC+/SD/SDIO interface for memory or wireless 10/100 Ethernet • On-board USB-to-serial/JTAG over connectivity • HD Video Capable C64x+ DSP Core shared USB device port • S-Video out for connecting your NTSC or PAL • DVI-D (digital computer monitors and HDTVs) • 3.3-V 2× 46-pin peripheral with multiplexed LCD television or wearable visor • S-video (TV out) signals and battery-control expansion headers • Stereo audio in and out for a microphone and • Stereo audio out/in • Board size: 3.4" × 2.1" headphones or speakers • High-capacity microSD slot and 4-GB microSD card • Power via typical USB chargers • Camera header • 3" x 3.1" footprint • 3.25" x 3.25" footprint NPL For quantities greater than listed, call for quote. MOUSER Beagleboard Price Fig. Description STOCK NO. Part No. Each 595-BEAGLEBOARD-C5 BEAGLEBOARD-C5 A Beagleboard C5 ARM Cortex-A8 OMAP3530 600MHz SoC Platform 125.00 595-BEAGLEBOARD-XM BEAGLEBOARD-XM B Beagleboard xM ARM Cortex-A8 DM3730CBP 1GHz SoC Platform 149.00 595-BEAGLEBONE-000 BB-BONE-000 C Beaglebone ARM Cortex-A8 TI AM3359 700MHz+ SoC Platform 89.00 Accessories 595-BB-CAPE-LCD BB-CAPE-LCD D Display Development Tools - Beaglebone Cape LCD (800x480) 149.00 595-BB-CAPE-DVI-D BB-CAPE-DVI-D - Beaglebone Cape - DVI-D / HDMI Output 48.95 595-BB-CAPE-BREAKOUT BB-CAPE-BREAKOUT - Beaglebone Cape - Breakout Board 39.95 595-BB-CAPE-BREADBRD BB-CAPE-BREADBRD - Beaglebone Cape - Breadboard 29.95 NEW SUPPLIER LEOPARD IMAGING DEVELOPMENT BOARDS A B C D E F G H I J K L M N O Leopardboard 365 Features: Leopardboard 368 Features: • ARM926EJ-S Core: 216, 270, 300MHz • High-Performance Digital Media System-on-Chip (DMSoC) • Capable of 1080p 30fps H.264 video processing • Enhanced Video Processing Subsystem with Face Detection module • 432-MHz ARM926EJ-S Clock Rate • Peripherals include EMAC, USB 2.0 OTG, DDR2/NAND, 5 SPIs, • Video Processing Subsystem (VPSS) • Two Video Image Co-processors (HDVICP, MJCP) Engines 2 UARTs, 2 MMC/SD/SDIO, Key Scan • HD Video Codecs: H.264, MPEG4, MJPEG, WMV9/VC1, MPEG2 • Supports a Range of Encode, Decode and Video Quality Operations • 8 Different Boot Modes and Configurable Power-Saving Modes • Audio Codecs: MP3, WMA, AAC, Audio Echo Canceler (AEC) • Video Processing Subsystem • Pin-to-pin and software compatible with DM365 • 10/100 Ethernet Port - HW Face Detect Engine • Extended temperature (-40°C - 85°C) available • USB 2.0 (can be used to power the board or as expansion) - Resize Engine from 1/16x to 8x • 3.3-V and 1.8-V I/O, 1.35-V Core • JTAG and Serial ports for debugging - 16-Bit Parallel AFE (Analog Front-End) Interface Up to 120MHz • 338-Pin Ball Grid Array at 65nm Process Technology • SD memory card support (also supports SDIO) - 4:2:2 (8-/16-bit) Interface • Stereo audio In/Out - 8-/16-bit YCC and Up to 24-Bit RGB888 Digital Output • Composite TV/Component HD TV Output - 3 DACs for HD Analog Video Output • LCD/DVI Interface - Hardware On-Screen Display (OSD) • All camera boards for Leopard board can be used with Leopardboard 365 Royalty-free open source 2A functions • For quantities greater than listed, call for quote. MOUSER Leopard Imaging Price Fig. Description STOCK NO. Part No. Each Development Boards 931-LI-TB01 LI-TB01 A Leopardboard 365 - DaVinci TMS320DM365 129.00 931-LI-TB02 LI-TB02 B Leopardboard 368 - DaVinci TMS320DM368 149.00 Daughter Boards 931-LI-5M03 LI-5M03 C Leopardboard 365 5M M12 Lens Camera Board 75.00 931-LI-5M03CS LI-5M03CS D LeopardBoard 365 5M MT9P031 Camera Board CS Mount without Lens 79.00 931-LI-VI365 LI-VI365 E Leopardboard 365 HD Y/Pb/Pr Video Input Board 55.00 931-LI-HDI365 LI-HDI365 F LeopardBoard 365 Component HD Video Input Board 69.00 931-LI-DVI1 LI-DVI1 G Leopardboard 365 DVI Video Output Board 65.00 931-LI-LBCMVGA LI-LBCMVGA H LeopardBoard 365 VGA Camera Board for Leopard Board 29.00 931-LI-VM34LP LI-VM34LP I Leopardboard 356 Global Shutter WVGA Camera Board - M12 Lens 79.00 931-LI-LBCM1M1 LI-LBCM1M1 J Leopardboard 365 1.3M CMOS (Aptina) Camera Board 32.00 931-LI-LBCM2M1 LI-LBCM2M1 K LeopardBoard 365 2M CMOS (Aptina) Camera Board 35.00 931-LI-LBCM3M1 LI-LBCM3M1 L Leopardboard 365 3M CMOS (Aptina) Camera Board 40.00 931-LI-LBCM5M1 LI-LBCM5M1 M Leopardboard 365 5M CMOS (Aptina) Camera Board 45.00 Accessories 931-LI-PS5-01 LI-PS5-01 N +5 VDC Universal Power Supply 15.00 931-LI-CAMFLEX LI-CAMFLEX O Camera Board Extension Cable - 2" 35.00 © Copyright 2012 Mouser Electronics © Copyright 2012 Mouser Electronics 42 mouser.com (800) 346-6873 NEW SUPPLIER.
Recommended publications
  • Shorten Device Boot Time for Automotive IVI and Navigation Systems
    Shorten Device Boot Time for Automotive IVI and Navigation Systems Jim Huang ( 黃敬群 ) <[email protected]> Dr. Shi-wu Lo <[email protected]> May 28, 2013 / Automotive Linux Summit (Spring) Rights to copy © Copyright 2013 0xlab http://0xlab.org/ [email protected] Attribution – ShareAlike 3.0 Corrections, suggestions, contributions and translations You are free are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: May 28, 2013 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Goal of This Presentation • Propose a practical approach of the mixture of ARM hibernation (suspend to disk) and Linux user-space checkpointing – to shorten device boot time • An intrusive technique for Android/Linux – minimal init script and root file system changes are required • Boot time is one of the key factors for Automotive IVI – mentioned by “Linux Powered Clusters” and “Silver Bullet of Virtualization (Pitfalls, Challenges and Concerns) Continued” at ALS 2013 – highlighted by “Boot Time Optimizations” at ALS 2012 About this presentation • joint development efforts of the following entities – 0xlab team - http://0xlab.org/ – OSLab, National Chung Cheng University of Taiwan, led by Dr.
    [Show full text]
  • Connecting Peripheral Devices to a Pandaboard Using
    11/16/2012 MARK CONNECTING PERIPHERAL DEVICES TO A BIRDSALL PANDABOARD USING PSI This is an application note that will help somebody use the Serial Programming Interface that is available on the OMAP-based PandaBoard’s expansion connector and also explains how use the SPI to connect with a real-time clock (RTC) chip. Ever since the PandaBoard came out, there has been a community of eager programmers constructing creative projects and asking questions about where else and what more they could do to extend the PandaBoard’s abilities. This application note will document a way to connect devices to a OMAP-based devise like a PandaBoard What is the Serial Programming Interface “Serial Programming Interface” (SPI) is a simple standard that was developed my Motorola. SPI can also be called “4-wire” interface (as opposed to 1, 2 or 3-wire serial buses) and it is sometimes referred to like that because the interface has four wires defined. The first is Master- Out-Slave-In (MOSI) and the second is the Master-In-Slave-Out (MISO). There is also a Serial Clock from the Master (SCLK) and a Chipselect Signal (CS#) which can allow for more than one slave devise to be able to connect with one master. Why do we want to use the SPI? There are various ways to connect a peripheral device to the PandaBoard like USB, SPI, etc... and SPI has some advantages. Using the Serial Programming Interface costs less in terms of power usage and it is easy to connect different devises to the PandaBoard and also to debug any problems that occur all while maintaining an acceptable performance rate.
    [Show full text]
  • Deliverable D4.1
    Deliverable D4.1 – State of the art on performance and power estimation of embedded and high-performance cores Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Stefano Bernabovi, Michael Chapman, Philippe Naudin To cite this version: Anastasiia Butko, Abdoulaye Gamatié, Gilles Sassatelli, Stefano Bernabovi, Michael Chapman, et al.. Deliverable D4.1 – State of the art on performance and power estimation of embedded and high- performance cores. [Research Report] LIRMM (UM, CNRS); Cortus S.A.S. 2016. lirmm-03168326 HAL Id: lirmm-03168326 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03168326 Submitted on 12 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Project Ref. Number ANR-15-CE25-0007 D4.1 – State of the art on performance and power estimation of embedded and high-performance cores Version 2.0 (2016) Final Public Distribution Main contributors: A. Butko, A. Gamatié, G. Sassatelli (LIRMM); S. Bernabovi, M. Chapman and P. Naudin (Cortus) Project Partners: Cortus S.A.S, Inria, LIRMM Every effort has been made to ensure that all statements and information contained herein are accurate, however the Continuum Project Partners accept no liability for any error or omission in the same.
    [Show full text]
  • Cubietruck – Mini PC
    SPRZĘT Cubietruck – mini PC Rynek komputerków jednopłytkowych opartych o procesory ARM zapoczątkowany przez Raspberry Pi rozwija się doskonale. Może nie jak grzyby po deszczu, ale systematycznie pojawiają się nowe rozwiązania: BeagleBoard, Marsboard, Cubieboard, Olinuxino itp. Różnią się one wyposażeniem, wydajnością, dostępnością dokumentacji oraz wsparciem technicznym. Ciekawie rozwija się propozycja Cubieboard. mocujących. Niby nic, ale te trzy kawałki two- org, zapoczątkowana płytką Cubieboard A10 rzywa i paczka tulejek umożliwiają poskładanie Fotografi a 3. Obudowa Cubietruck (opisaną w EP06/2013) i Cubieboard2 zgod- samodzielnego systemu mini-PC wyposażo- ną mechanicznie, ale zbudowaną w oparciu nego w dysk HDD 2,5”, wystarczająco zabez- rolę domowego centrum multimedialnego lub o nowszy, dwurdzeniowy procesor A20, zwięk- pieczając mechanicznie jego elementy. Osłony Linuxowego komputera PC. Jedyne zastrzeżenie szający wydajność Cubie i paletę jej zastosowań w odpowiednich miejscach mają wyfrezowane można mieć do kilku różnokolorowych LED, (fotografi a 1). Najnowsza propozycja to Cubie- otwory umożliwiające korzystanie z GPIO bez bezlitośnie informujących nasze oczy o stanie truck (Cubieboard3), oparty podobnie jak Cu- zdejmowania obudowy. pracy Cubie. bieboard2 (fotografi a 2) o procesor Allwinner Ciekawą propozycją dla osób wykorzy- Cubieboard3 oparty jest o SoC w architektu- A20, lecz mający znacznie bogatsze wyposaże- stujących Cubieboard3 w roli samodzielnego rze ARM7 – Allwinner A20, który w połączeniu nie, co niestety wiąże się z wyższą ceną. Porów- mini-PC, jest pełna obudowa pokazana na fo- ze sporej wielkości dyskiem NAND Flash oraz nanie parametrów poszczególnych komputer- tografi i 3. W swoim wnętrzu mieści swobodnie zwiększoną pamięcią RAM bezproblemowo ków Cubieboard umieszczono w tabeli 1. płytkę Cubieboard3, dysk HDD 2,5” (fotogra- sprawdza się w roli komputera PC pracującego Podobnie jak w przypadku poprzednich fi a 4) i przewody połączeniowe.
    [Show full text]
  • Universidad De Guayaquil Facultad De Ciencias Matematicas Y Fisicas Carrera De Ingeniería En Networking Y Telecomunicaciones D
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMATICAS Y FISICAS CARRERA DE INGENIERÍA EN NETWORKING Y TELECOMUNICACIONES DISEÑO DE UN SISTEMA INTELIGENTE DE MONITOREO Y CONTROL EN TIEMPO REAL PARA TANQUES DE ALMACENAMIENTO DE GASOLINA UTILIZANDO TECNOLOGÍA DE HARDWARE Y SOFTWARE LIBRE PARA PEQUEÑAS Y MEDIANAS EMPRESAS PROYECTO DE TITULACIÓN Previa a la obtención del Título de: INGENIERO EN NETWORKING Y TELECOMUNICACIONES AUTORES: Chamorro Salazar Hamilton Gabriel TUTOR: Ing. Jacobo Antonio Ramírez Urbina GUAYAQUIL – ECUADOR 2019 I REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGIA FICHA DE REGISTRO DE TESIS TITULO: Diseño de un sistema inteligente de monitoreo y control en tiempo real para tanques de almacenamiento de gasolina utilizando tecnología de hardware y software libre para pequeñas y medianas empresas. REVISORES: Ing. Luis Espin Pazmiño, M.Sc Ing. Harry Luna Aveiga, M.Sc INSTITUCIÓN: Universidad de FACULTAD: Ciencias Matemáticas y Guayaquil Físicas. CARRERA: Ingeniería en Networking y Telecomunicaciones FECHA DE PUBLICACIÓN: N° DE PAGS: 143 AREA TEMÁTICA: Tecnología de la Información y Telecomunicaciones PALABRA CLAVES: Telemetría, microcomputadores, sensores, actuadores, sistema digital, tanques de almacenamiento, control en tiempo real RESUMEN: Este proyecto tiene como finalidad investigar y diseñar un sistema de monitoreo y control en tiempo real para tanques de almacenamiento de gasolina utilizando tecnología de hardware y software libre para las pequeñas y medianas empresas. El diseño permite una gestión eficiente de los
    [Show full text]
  • Improving the Beaglebone Board with Embedded Ubuntu, Enhanced GPMC Driver and Python for Communication and Graphical Prototypes
    Final Master Thesis Improving the BeagleBone board with embedded Ubuntu, enhanced GPMC driver and Python for communication and graphical prototypes By RUBÉN GONZÁLEZ MUÑOZ Directed by MANUEL M. DOMINGUEZ PUMAR FINAL MASTER THESIS 30 ECTS, JULY 2015, ELECTRICAL AND ELECTRONICS ENGINEERING Abstract Abstract BeagleBone is a low price, small size Linux embedded microcomputer with a full set of I/O pins and processing power for real-time applications, also expandable with cape pluggable boards. The current work has been focused on improving the performance of this board. In this case, the BeagleBone comes with a pre-installed Angstrom OS and with a cape board using a particular software “overlay” and applications. Due to a lack of support, this pre-installed OS has been replaced by Ubuntu. As a consequence, the cape software and applications need to be adapted. Another necessity that emerges from the stated changes is to improve the communications through a GPMC interface. The depicted driver has been built for the new system as well as synchronous variants, also developed and tested. Finally, a set of applications in Python using the cape functionalities has been developed. Some extra graphical features have been included as example. Contents Contents Abstract ..................................................................................................................................................................................... 5 List of figures .........................................................................................................................................................................
    [Show full text]
  • Low-Power High Performance Computing
    Low-Power High Performance Computing Michael Holliday August 22, 2012 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2012 Abstract There are immense challenges in building an exascale machine with the biggest issue that of power. The designs of new HPC systems are likely to be radically different from those in use today. Making use of new architectures aimed at reducing power consumption while still delivering high performance up to and beyond a speed of one exaflop might bring about greener computing. This project will make use of systems already using low power processors including the Intel Atom and ARM A9 and compare them against the Intel Westmere Xeon Processor when scaled up to higher numbers of cores. Contents 1 Introduction1 1.1 Report Organisation............................2 2 Background3 2.1 Why Power is an Issue in HPC......................3 2.2 The Exascale Problem..........................4 2.3 Average use................................4 2.4 Defence Advanced Research Projects Agency Report..........5 2.5 ARM...................................6 2.6 Measures of Energy Efficiency......................6 3 Literature Review8 3.1 Top 500, Green 500 & Graph 500....................8 3.2 Low-Power High Performance Computing................9 3.2.1 The Cluster............................ 10 3.2.2 Results and Conclusions..................... 10 3.3 SuperMUC................................ 11 3.4 ARM Servers............................... 12 3.4.1 Calexeda EnergyCoreTM & EnergyCardTM ........... 12 3.4.2 The Boston Viridis Project.................... 12 3.4.3 HP Project Moonshot....................... 13 3.5 The European Exascale Projects..................... 13 3.5.1 Mont Blanc - Barcelona Computing Centre........... 13 3.5.2 CRESTA - EPCC......................... 14 4 Technology Review 15 4.1 Intel Xeon................................
    [Show full text]
  • Openbricks Embedded Linux Framework - User Manual I
    OpenBricks Embedded Linux Framework - User Manual i OpenBricks Embedded Linux Framework - User Manual OpenBricks Embedded Linux Framework - User Manual ii Contents 1 OpenBricks Introduction 1 1.1 What is it ?......................................................1 1.2 Who is it for ?.....................................................1 1.3 Which hardware is supported ?............................................1 1.4 What does the software offer ?............................................1 1.5 Who’s using it ?....................................................1 2 List of supported features 2 2.1 Key Features.....................................................2 2.2 Applicative Toolkits..................................................2 2.3 Graphic Extensions..................................................2 2.4 Video Extensions...................................................3 2.5 Audio Extensions...................................................3 2.6 Media Players.....................................................3 2.7 Key Audio/Video Profiles...............................................3 2.8 Networking Features.................................................3 2.9 Supported Filesystems................................................4 2.10 Toolchain Features..................................................4 3 OpenBricks Supported Platforms 5 3.1 Supported Hardware Architectures..........................................5 3.2 Available Platforms..................................................5 3.3 Certified Platforms..................................................7
    [Show full text]
  • Cubieboard Cubieboard2 Cubietruck Beaglebone Black
    Raspberry Pi (Model B rev.2) Cubieboard Cubieboard2 Cubietruck Beaglebone Black 1 Ghz (OC) ARM® Cortex-A6 1 Ghz ARM® Cortex-A8 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A7 Dual Core 1 Ghz ARM® Cortex-A8 CPU ARM1176JZF-F Allwinner A10 C8096CA Allwinner A20 Allwinner A20 AM335x GPU/FPU VideoCore IV Mali-400 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) Mali-400MP2 (CedarX, OpenGL) SGX350 3D / NEON FPU accelerator RAM 512 MB 1 GB DDR3 2 GB 2 GB 512 MB DDR3 Storage micro SD/SDHC 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 4 GB NAND Flash, micro SD/SDHC, SATA 2.0 2GB eMMC Power micro USB (5V/1A) 3.5 W DC 5v/2A DC 5v/2A DC 5v/2.5A DC 5V/500mA Video RCA Composite Video, HDMI 1.4 HDMI HDMI HDMI/VGA microHDMI Audio 3.5 mm Headphone Jack 3.5 mm Headphone Jack / Line In 3.5 mm Headphone Jack 3.5 mm Headphone Jack, SPDIF Network 10/100 Mbps 10/100 Mbps 10/100 Mbps 10/100/1000 Mbps, Wifi, Bluetooth 10/100 Mbps 2x46 PIN GPIO I/O ports 26 PIN GPIO, 2x Ribon 2x48 PIN GPIO, 4PIN Serial, 1IR 2x48 PIN GPIO, 4PIN Serial, 1IR 1x 54 PIN GPIO (Arduino Shield Compatible) USB ports 2x USB 2.0 2x USB 2.0 2x USB 2.0, 1 mini USB OTG 2x USB 2.0, 1 mini USB OTG 1x USB 2.0 Linux (Raspbian, Debian, Fedora, Arch, Gentoo, Kali), Andoid, Angstrom, Ubuntu, Fedora, Gentoo.
    [Show full text]
  • Ten (Or So) Small Computers
    Ten (or so) Small Computers by Jon "maddog" Hall Executive Director Linux International and President, Project Cauã 1 of 50 Copyright Linux International 2015 Who Am I? • Half Electrical Engineer, Half Business, Half Computer Software • In the computer industry since 1969 – Mainframes 5 years – Unix since 1980 – Linux since 1994 • Companies (mostly large): Aetna Life and Casualty, Bell Labs, Digital Equipment Corporation, SGI, IBM, Linaro • Programmer, Systems Administrator, Systems Engineer, Product Manager, Technical Marketing Manager, University Educator, Author, Businessperson, Consultant • Taught OS design and compiler design • Extremely large systems to extremely small ones • Pragmatic • Vendor and a customer Warnings: • This is an overview guide! • Study specifications of each processor at manufacturer's site to make sure it meets your needs • Prices not normally listed because they are all over the map...shop wisely Definitions • Microcontroller vs Microprocessor • CPU vs “Core” • System On a Chip (SoC) • Hard vs Soft Realtime • GPIO Pins – Digital – Analog • Printed Circuit Board (PCB) • Shield, Cape, etc. • Breadboard – Patch cables Definitions (Cont.) • Disks – IDE – SATA – e-SATA • Graphical Processing Unit (GPU) • Field Programmable Gate Array (FPGA) • Digital Signal Processing Chips (DSP) • Unless otherwise specified, all microprocessors are ARM-32 bit Still More Definitions! • Circuit Diagrams • Surface Mount Technology – large robots – Through board holes in PCBs – Surface mount • CAD Files – PCB layout – “Gerbers” for
    [Show full text]
  • Smart Walker IV
    Multidisciplinary Senior Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 P16041: Smart Walker IV Alex Synesael Alexei Rigaud Electrical Engineering Electrical Engineering Danielle Stone Stephen Hayes Electrical Engineering Electrical Engineering ABSTRACT Diagnostic medical technology in its current form is typically expensive and intrusive to a patient’s lifestyle. The purpose of the Smart Walker IV project was to finalize a robotic assistive walker prototype capable of collecting long-term diagnostic information about a patient’s health and activities. This gives care providers a more complete image of their health than can be achieved during a relatively short visit. In addition to the diagnostic features, Smart Walker is capable of autonomous motion such that it can provide emergency support in the event of a fall, or contact the appropriate third party support. Smart Walker IV is a culmination of three previous prototype versions spanning 2013 through 2015, and is intended to serve as the final revision before the platform is ready to be utilized as a graduate research platform for robotic assistive medical diagnostics. The goal of Smart Walker IV is to complete the build and integration phases from where the previous Smart Walker III team ended. The project progressed through analysis and completion of the existing systems, the design and testing of new diagnostic subsystems, and finally complete system integration and qualification. BACKGROUND Smart Walker began as a diagnostic tool for elderly people, and has since evolved into a research platform. The Smart Walker can take diagnostic measurements, as well as measure vital signs and detect when a patient has fallen.
    [Show full text]
  • Freebsd 11.0
    SEE TEXT ONLY By John Baldwin •• 11.0 WELCOME To FreeBSD 11 The FreeBSD system is constantly Desktop and Laptop changing. FreeBSD 11 brings new FreeBSD 11 offers a variety of improvements for desk- features and fixes from two and a top and laptop users. First, a new system console driv- er is enabled by default. This driver is less VGA- and half years of active development. x86-centric than previous drivers. Rather than depend- Some of these changes have been ing on BIOS ROM support for VGA text modes, the merged to recent 10.x releases console renders text in software on framebuffers. This supports VGA adapters via graphics modes as well as such as 10.2 and 10.3, but most of the UEFI framebuffer. It also supports graphics them are brand new in 11. adapters that disable VGA compatibility when using 4 FreeBSD Journal higher resolution graphics modes such as modern tems that do not support VirtIO devices. In partic- Intel GPUs. Software text rendering allows the ular, Windows can be used out-of-the-box with- console driver to render any glyph, which in turn out requiring additional VirtIO device drivers dur- enables UTF-8 support. In addition, the in-kernel ing installation. graphics drivers include native support for Intel Finally, FreeBSD 11 includes support for PCI- graphics adapters on systems with fourth-genera- express native HotPlug. This includes handling of tion Core (“Haswell”) processors. runtime insertion and removal of ExpressCard • FreeBSD 11 includes broader support for wire- adapters in laptops as well as runtime insertion • less networks.
    [Show full text]