Symbiotic Relations Between Natural and Synthetic Rubber

Total Page:16

File Type:pdf, Size:1020Kb

Symbiotic Relations Between Natural and Synthetic Rubber J. Riibb. Res. Inst. Malaya, 22(2), 214-224 (1969) Symbiotic Relations Between Natural and Synthetic Rubber JAMES D. D'lANNI The Goodyear Tire & Rubber Company, Akron, Ohio, U.S.A. The relations between natural and synthetic rubbers are truly of a symbiotic nature. Many of the rubber products essential to world economy today are based on blends of both types selected to provide optimum properties for the specific end use. In each case, of course, economic considerations help to determine the final composition. Tyres probably represent the ideal case, since each part is specifically engineered, from the standpoint of materials and design, to provide optimum performance. The quantify of natural rubber in tyres varies greatly, depending upon the type and intended use. Industrial rubber products are designed with The same concepts in mind, as well as foam rubber. The rubber industry has grown vigorously because the symbiotic relations between natural and synthetic rubbers have been most rewarding. The future of the industry will be beneficially influenced if these relations remain favourable. Symbiosis may be broadly defined as a mu- synthesis are met. Moreover, through the re- tually beneficial partnership between two or- search efforts of the Rubber Research Institute ganisms of different kinds. Many examples of Malaya and similar institutions, remarkable exist in nature, such as the lichens (alga-fungus increases in yield are being attained by hybridi- pairs). The tubercle-forming bacteria sym- sation, so that in the foreseeable future a ten- biotically associated with the roots of legumi- fold increase in the 1967 world average yield nous plants, in some way not yet clear, capture of 380 pounds per acre (430 kilograms per and fix free atmospheric nitrogen. Symbiosis hectare) seems possible (INTERNATIONAL RUB- is more widespread than is generally realised, BER STUDY GROUP, 1967). This improvement and may occur between two plants, two ani- must surely rank as one of the most econo- mals, or a plant and an animal. Thus the con- mically significant achievements in plant breed- cept of living together in mutual aid, assistance ing of all time. and support is well established in nature. A parallel can be drawn in the complex In contrast, synthetic rubbers are based on relations between natural and synthetic rub- petrochemicals from fossil fuels which are bers which have become such an important slowly but surely being depleted. New dis- part of our modern industrial economy. Both coveries of petroleum and gas continue to add similarities and differences exist which will be to the world's proved reserves, but consump- described in this paper to emphasise the inter- tion also continues to increase dramatically, dependency that underlies many of their appli- and some day in the future may outstrip new cations, despite their differing origins, sources. Most of these fossil fuels are used to A contrast may be drawn in the sources of generate energy. Since the amount converted the two major classes of rubber. Natural rub- into synthetic rubbers is probably less than ber is a true product of chemurgy. It is ob- 0.1 per cent of the total consumption of petro- tained from a plant, Hevea brasiliensis, and as leum products, we should not become unduly it is harvested, it is being constantly reple- alarmed about future sources of raw materials nished, so long as the requirements for photo- for synthetic rubbers. COMMUNICATION 514 214 JAMES D. D*!ANNI: Symbiotic Relations Between Natural and Synthetic Rubber Symbiosis is superbly illustrated in the in- TABLE 1. STRUCTURES OF POLYISOPRENES stance of blends of natural and synthetic rubbers. Many factors, such as cost and qua- Polymer Or-1,4 Trans-1,4 3,4- 1,2- lity considerations, determine the types and Natural rubber proportions of the various elastomers used in (Hevea) 98 — 2 - a particular rubber product. In many cases, Synthetic poly- the optimisation process requires constant re- isoprene evaluatioa of these factors to arrive at the (Natsyn type) 97 _ 3 _ particular composition used at any particular Synthetic poly- time — in other words, a dynamic equilibrium isoprene is maintained with a balancing of costs, pro- (Shell Li type) 94 _ 6 _ perties and performance as the critical criteria. Natural trans- In fact, the cases of synergism where blends polyisoprene are superior to either component alone out- (Balaia) 98 2 . number those where only one is indicated, Synthetic irans- particularly for today's tyre, which we shall polyisoprene discuss in more detail later. (Vanadium A case for symbiosis can also be made in catalysed) — 98 2 - the synthesis of polyisoprene with natural rub- ber properties by the use of stereospecific view, namely, that the polyisoprenes in natural catalysts to polymerise isoprene in solution. rubber, balata and their synthetic counterparts Perhaps this success encouraged Professor (with the exception of the lithium-catalysed F. Lynen, as well as researchers at N.R.P.R.A., polymer) consist only of 1,4 type structures. to work out a biochemical synthesis of rubber. However, differences in polymer chain struc- The success of their efforts, in turn, has en- ture such as head-to-tail type variation as well couraged us to believe that stereoregular poly- as cyclic structure and branching may exist mers can be synthesised in aqueous systems. between the natural and synthetic polyiso- prenes. But as it stands now, these are more MOLECULAR STRUCTURE OF or less speculations pending future experi- ISOPRENE POLYMERS mental verification. Unravelling the microstructure of natural rub- An interesting point on the chemical struc- ber and other isoprene polymers has challenged ture of natural rubber has been made by the analytical chemist for decades. Until re- SEKHAR (1961). There is evidence that natural cently, based on infrared absorption measure- rubber contains 5 to 12 aldehyde groups per ments, the generally accepted structures were million molecular weight. The storage harden- as follows (Table 1): ing of natural rubber is attributed to cross- The difference in chemical structure of poly- linking reactions involving these functional isoprene between the natural polymer and its groups. Reaction with hydroxylamine hydro- synthetic counterpart, if there is any, is very chloride converts them to oxime groups which slight and occurs mainly in the content of the cannot participate in cross-Unking reactions. 3,4- addition unit. However, the validity of Rubber so treated maintains a viscosity level the method for determination of the 3,4- unit on storage equal to that of the original planta- in polyisoprenes containing small amounts of tion rubber. We have no evidence that syn- this structure has been disputed since the thetic polyisoprene (Natsyn type) contains method was first developed. It now appears such functional groups, supported by the addi- that the numbers in the 3,4- column may all tional fact that it does not harden on storage. be 2 - 3 per cent high. Both near infrared and The close similarity in structure between the nuclear magnetic resonance measurements by natural and synthetic polyisoprenes does not, CHEN (1966) of our laboratories and others however, imply that their physical properties strongly substantiate this recently proposed must be entirely alike. Other factors besides 215 COPYRIGHT © MALAYSIAN RUBBER BOARD Journal of the Rubber Research Institute of Malaya, Volume 22, Part 2, 1969 microstructure play a major role in the physi- advantage holds for both polybutadiene and cal properties of polymer. These include gel SBR, whereas polyisoprenes are somewhat at content, molecular weight and the distribution a disadvantage because of their ready chain of molecular weights. Chain scission occurs so scission. readily in polyisoprene that the exact values In most cases, the stereospecific polybuta- of these macromolecular physical properties dienes do not have the excellent mill behaviour depend to a great extent upon the exposure of natural rubber. However, the plasticising to heat, light and mechanical forces prior to effect of styrene in SBR does contribute to the time of measurement. processability, so that this copolymer is easily handled, especially after years of effort to PROCESSING CHARACTERISTICS develop varieties which provide maximum ease It is axiomatic that processability is a key con- of processing without sacrifice in quality. sideration in the fabrication of virtually every Polybutadiene is also characterised by ex- rubber product. Whether processing is excel- treme lack of nerve and tack, and a tendency lent, good or poor is often difficult to define to 'bag' on the mill. Despite this appearance of because the standards of the consumer may 'nervelessness', polybutadiene stocks do not vary a great deal depending upon his facilities flow easily in high speed extrusions, tending to and the nature of the end use. give torn edges and high die swell. Thus it was Natural rubber has been highly regarded inevitable that polybutadienes find their major because of its high initial Mooney viscosity, applications in blends with other rubbers. In its easy breakdown to a usable plasticity, its mixtures with SBR or with Hevea (or both), tack and green strength, and, generally, its processability of the stock is improved to adaptability to the fabrication techniques of acceptable levels. the rubber factory. However, natural rubber also has significant deficiencies. Not all con- Most polybutadienes also suffer from poor sumers find that the breakdown characteristics tack, and nothing short of adding poly- suit their special needs. Some would prefer isoprene really solves this problem. There is, of better retention of compounded Mooney visco- course, extensive use of 'tackifiers*, but most sity, whereas others would prefer a faster processors will only agree that these make breakdown without peptisers. All consumers rubber 'stickier'. There is a clear distinction be- would like to reduce the costs associated with tween a strong, cohesive merging of like rub- pre-mastication.
Recommended publications
  • The Ohio Motor Vehicle Industry
    Policy Research and Strategic Planning Office A State Affiliate of the U.S. Census Bureau The Ohio Polymers Industry: Rubber and Plastic Resins and Products, and Related Machinery May 2010 Ted Strickland, Governor of Ohio Lee Fisher, Lt. Governor of Ohio Lisa Patt-McDaniel,Director, Ohio Department of Development THE OHIO POLYMERS INDUSTRY: Rubber and Plastic Resins and Products, and Related Machinery MAY 2010 B403 Don Larrick, Principal Analyst Policy Research and Strategic Planning, Ohio Department of Development P.O. Box 1001, Columbus, Oh. 43216-1001 Production Support: Steve Kelley, Editor; Robert Schmidley, GIS Specialist TABLE OF CONTENTS Page Executive Summary- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 Description of Ohio’s Polymers Industry - - - - - - - - - - - - - - - - - - - - - - 4 Notable Polymers Industry Manufacturers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 Recent Expansion and Attraction Announcements- - - - - - - - - - - - - - - - - - - - - - - 12 The Composition of Ohio’s Polymers Industry: Value-Added- - - - - - - - - - - - - - - - 14 The Composition of Ohio’s Polymers Industry: Employment - - - - - - - - - - - - - - - - 16 Industry Pay - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 The Distribution of Industry Establishments in Ohio - - - - - - - - - - - - - - - - - - - - - - 20 The Distribution of Industry Employment in Ohio - - - - - - - - - - - - - - - - - - - - - - - - 22 Foreign Investment in Ohio
    [Show full text]
  • Enhancing the Biodegradation of Waste Rubber a Novel Approach to Sustainable Management of Discarded Rubber Materials
    INTERNATIONAL LATEX CONFERENCE 2015 Enhancing the Biodegradation of Waste Rubber A novel approach to sustainable management of discarded rubber materials Teresa Clark 8/12/2015 Rubber items are a critical part of modern society and a focus on the waste management of rubber is becoming more critical. Advancements have been made in recycling rubber waste, but a vast majority of rubber products are discarded into landfills. Sustainability efforts must include self-remediation through biodegradation of rubber (pre- consumer and post-consumer) in these waste sites. Current advancements provide insight into alternative methods of utilizing bio-mimicry to these return waste products to the natural carbon cycle, produce “green” energy and expand the scope of “Zero Waste”. Included are an assessment of the unique environment within landfills and the energy impact of utilizing these methods. Additionally, a brief update to the current progress in validating the biodegradation of rubber waste is included. Enhancing the Biodegradation of Waste Rubber International Latex Conference 2015 - Teresa Clark Contents Introduction .................................................................................................................................................. 2 Waste disposal of rubber materials .............................................................................................................. 2 Composting of Rubber .................................................................................................................................
    [Show full text]
  • Natural Rubber Value Chains: a Game Changer for Smallholders
    Natural Rubber value chains: A game changer for smallholders A. Nosa Betty¹; A. A.i²; A. E.o² 1: RUBBER RESEARCH INSTITUTE OF NIGERIA, RESEARCH OUTREACH , Nigeria, 2: Rubber Research Institute of Nigeria,, Research outreach, Nigeria Corresponding author email: [email protected] Abstract: ABSTRACT The study analyzed the value chain of natural rubber in Nigeria. The study specifically mapped the natural rubber value chain and identify the functions performed by the respondents in the chain; identified the existing marketing channels and estimated the marketing margin at each value addition point. Data for the study were collected using a well-structured questionnaire administered to 425 respondents selected using a two–stage sampling process involving random and purposive sampling techniques. Data collected were analyzed using descriptive statistics, flow chat, marketing margins, marketing efficiency The findings showed a mean age of 53 years for farmers and 44 years for marketers, with males (97.86%) dominating. Most were married and majority had at least primary education. The main value chain agencies were input suppliers/nursery farmers, rubber farmers, marketers/collectors, processor and manufacturers, while the key product points along the chain were seeds, seedlings, budded stump, lump, latex concentrates, sheet, and crumbs. Marketing margin analysis showed crumb having the highest margin (N234.01) with processing cost having the major component. Value added by processing were N14.36k, N115.16, N136.14 and N124.38 per budded stump, latex concentrate, crumb and sheet respectively. The nursery was the most efficient and it was more profitable to process into crumb rubber. It was therefore recommendations that farmers may integrate backward to produce their own budded stumps and process their latex before selling for profit Acknowledegment: ACKNOWLEDGEMENTS The authors would like to acknowledge Prof.
    [Show full text]
  • Preliminary Study on the Preparation of Latex Foam Rubber from Graft Copolymer of Deproteinised Natural Rubber and Methyl Methacrylate
    Rubb. Res., 4(3), 141-152 REPRINT Preliminary Study on the Preparation of Latex Foam Rubber from Graft Copolymer of Deproteinised Natural Rubber and Methyl Methacrylate C. NAKASON*#. A. KAESAMAN,* N. YIMWAN* AND K. KETSARIN* Deproteinised natural rubber (DPNR) latex was prepared by incubation of fresh field natural rubber latex with a proteolytic enzyme in the presence of an emuisifier. The nitrogen content was decreased from 0.9% (in the fresh field natural rubber latex) to 0.07% (in the DPNR). A graft copolymer of the deproteinised natural rubber latex and poly(methyl methacrylate) (PMMA) was then synthesized using tert. butylhydroperoxide and tetraethylene pentamine as a redox initiator. The presence of grafted PMMA in the natural rubber molecules was confirmed using FTIR. Intense absorption peaks at 1732 cm~' (-C=O stretch) and 1140 cm~' (-C-O stretch) were observed. It was also found that the quantity of grafted PMMA increased with the increase in the level ofMMA used in the grafting reaction. The graft copolymer latex was later compounded and processed into a latex foam rubber. Results showed that the latex of graft copolymer blended with high ammonia concentrated latices provided high quality latex foam rubber. This included surface appearance and physical properties, such as hardness, compression set and density. It was also found that hardness, compression set and density of the latex foam rubber increased with the increase in the level of graft copolymer in compounding formulation. Furthermore, at the same blend ratio, the properties increased with the increase in the level of methyl methacrylate used in the grafting reaction.
    [Show full text]
  • Effect of Fillers on the Recovery of Rubber Foam
    polymers Article Effect of Fillers on the Recovery of Rubber Foam: From Theory to Applications Thridsawan Prasopdee 1 and Wirasak Smitthipong 1,2,3,* 1 Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; [email protected] 2 Office of Research Integration on Target-Based Natural Rubber, National Research Council of Thailand (NRCT), Chatuchak, Bangkok 10900, Thailand 3 Office of Natural Rubber Research Program, Thailand Science Research and Innovation (TSRI), Chatuchak, Bangkok 10900, Thailand * Correspondence: [email protected] Received: 24 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Natural rubber foam (NRF) can be prepared from concentrated natural latex, providing specific characteristics such as density, compression strength, compression set, and so on, suitable for making shape-memory products. However, many customers require NRF products with a low compression set. This study aims to develop and prepare NRF to investigate its recoverability and other related characteristics by the addition of charcoal and silica fillers. The results showed that increasing filler loading increases physical and mechanical properties. The recoverability of NRF improves as silica increases, contrary to charcoal loading, due to the higher specific surface area of silica. Thermodynamic aspects showed that increasing filler loading increases the compression force (F) as well as the proportion of internal energy to the compression force (Fu/F). The entropy (S) also increases with increasing filler loading, which is favorable for thermodynamic systems. The activation enthalpy (DHa) of the NRF with silica is higher than the control NRF, which is due to rubber–filler interactions created within the NRF.
    [Show full text]
  • FAQ - Foam Rubber
    FAQ - Foam Rubber More information on Foam Rubber https://en.wikipedia.org/wiki/Foam_rubber Foam rubber (also known as cellular, sponge, or expanded rubber) refers to rubber that has been manufactured with a foaming agent to create an air-filled matrix structure. Commercial foam rubbers are generally made of either polyurethane or natural latex. Latex foam rubber, used in mattresses, is well known for its endurance. Polyurethane is a thermosetting polymer that comes from combination of Methyl di-isocyanate and polyethylene and some other chemical additives.[1] What is foam rubber used for? Foam rubber is found in a wide range of applications, from cushioning in automobile seats and furniture to insulation in walls and appliances to soles and heels in footwear. Foams are made by forming gas bubbles in a plastic mixture, with the use of a blowing agent. How do they make foam rubber? How Foam Rubber Is Made. Foam rubber uses a blowing agent, typically a gas or a chemical that produces a gas, to create a mass of small bubbles in a liquid mixture. This mixture may contain polyols, polyisocyanates, water, and additives such as flame retardants, fillers, and colorants. When was foam rubber invented? In 1937 isocyanate based materials were first used for the formation of foam rubbers, after World War II styrene-butadiene rubber replaced many natural types of foam. Foam rubbers have been used commercially for a wide range of applications since around the 1940s. Is foam rubber flammable? A 'foam' is a solid or liquid substance formed with bubbles trapped inside it.
    [Show full text]
  • Recycling Industry
    Recycling Industry The Number 1 Solution in Mixing for the Recycling Industry! Date of Sale: 00/00/00 Explore 100’s of custom designed mixer Describe your location by applications for the Recycling Industry. landmark or area of town. 3575 3rd Ave PO Box 286 Marion, IA 52302 319-377-6371 www.marionmixers.com Rubber Mulch Coloring & Drying Case Study Marion Mixers, Inc. Mixing Recycled Tires Into Playground Mulch Mix Recycled Tires Into Playground Mulch A Midwestern tire recycling company chose Marion Mixers to design and build a batch mixer that would coat ground chunks of car tire with a latex colorant. After applying the colorant, the mixer must then dry the materials so the colorant can’t rub-off during the bagging process. The company’s goal was to turn 80,000 scrap car tires per year into upscale landscape mulch for use in playgrounds. The customer brought samples of both the ground rubber (<1¼”) and the colorant to our new test lab. Thoroughly coating the rubber chunks was relatively simple. Drying the rubber took a bit more resolve. The equipment now in operation today includes a mixer, a batch sequencing control panel, a liquid metering system, a forced air drying system and two bulk material conveyors. Chunks of ground rubber are loaded into the mixer from pre-weighed super- sacks. Undiluted, latex paint is volumetrically metered into the mixer. The mixer evenly coats the rubber. A variable speed controller slows the speed of the mixer shaft to avoid scrubbing the latex off the rubber chunks during the drying cycle.
    [Show full text]
  • Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction
    materials Article Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction Hyeonu Heo 1 , Mathew Sofield 1, Jaehyung Ju 2,* and Arup Neogi 1,* 1 Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203, USA; [email protected] (H.H.); mathewsofi[email protected] (M.S.) 2 UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China * Correspondence: [email protected] (J.J.); [email protected] (A.N.) Abstract: The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise within automobiles occurs from the tire–pavement interaction over a speed of 70–80 km/h. Most noise suppression efforts aim to use sound absorbers and cavity resonators to narrow the bandwidth of acoustic frequencies using foams. We demonstrate a technique utilizing acoustic metasurfaces (AMSes) with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. A simple technique is demonstrated that utilizes acoustic metalayers with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. The proposed design can significantly reduce the noise arising from tire–pavement interaction over a broadband of acoustic frequencies under 1000 Hz and over a wide range of vehicle speeds using a negative effective dynamic mass density approach.
    [Show full text]
  • Dear Customer
    ~ Table of Contents ~ ADHESIVES 38-40, 57 MESH TRUCK COVER 17 AUTOMOTIVE ITEMS 57-58 MONOFILAMENT THREAD 36 BOBBINS 34-36 NAILS 25-26 BOLSTERS (POLYFOAM) 11 NEEDLES 53-55 BONDED CUSHION WRAP 13 NO-SAG CLIPS 28 BUNGI / SHOCK CORD 59 NO-SAG SPRINGS 28 BURLAP 17 PANEL BOARDS 57 BUTTONS, DIES & CUTTERS 31-32 PILLOW INSERTS 14 BUTTON MACHINE 31 PLASTIC BAGS 5 BUTTON MOULDS 32 PLI-GRIP (FABRI-FAST) 21 BUTTON TUFTER 32, 50 POLYSCRIM 11 BUTTON TWINE 37 POLYFOAM 9-12 CAMBRIC & NON-WOVEN DUST CLOTH 16 RAZOR BLADES 59 CANE (CHAIR) 30 ROCKER BASES 27 CARPET PAD (AUTOMOTIVE) 14,58 ROCKER SPRINGS 27 CASTERS 42 RUBBER WEBBING 22 CHALK 23 SHEARS 48 CHURCH SEATING FOAM 12 SHOCK CORD / BUNGI 59 COIL SPRINGS 29 SILICONE SPRAY 39 COTTON FELT 13 SKIRT LINING 17 CUSHION FILLING 4, 5 SNAP FASTENERS 46 CUSHION UNITS 27 SPRING REPAIR BRACKET 28 CUSHION WRAP 13 SPRING TWINE 37 DACRON 13 SPRINGS (UPHOLSTERY) 28-29 DENIM (DECK CLOTH) 16 STAPLERS & STAPLES 43-45 DOWNY SOFT PILLOW FILLER 13 STEAMERS 47 DRY-FAST FOAM CUSHIONS 11 STITCHING TWINE 37 DUCK & CANVAS 17 SUPERFOAM 7-8, 12 EK CLIPS & EK NAILS 28 SWIVELS 27 EDGE WIRE & CLIPS 29 T-NUTS 41 EDGE ROLL 29 T-PINS 54 FABRI-FAST (PLI-GRIP) 21 TACKS 26 FOAM 7-12 TACKING STRIP 21 FOAM SAWS 6 THREAD 34-37 GENERAL PURPOSE CLIPS 57 TOOLS 49-52 GIMP SCROLL 20 TORSION SPRINGS 29 GLIDES 41 TUFTING NEEDLE 50 GLUE & CEMENT 38-40, 57 TWINE (BUTTON) 37 GLUE GUN 38 TWIST PINS 54 GROMMETS & DIES 33 UPHOLSTERY PINS 54 HAIRFLEX 14 UPHOLSTERY TEXT BOOK 49 HEADLINER & CLIPS 57 VELCRO TYPE HOOK AND LOOP 24 HOG RINGS (SEAT COVER TIES) 55 VENTILATORS 33 HOG RING PLIERS 56 WEBBING 22 HOOK & LOOP (VELCRO TYPE) 24 WELT CORD 23, 58 LACQUER SPRAY 15 WOVEN CANE 30 LEGS 41 ZIPPERS 18-19 ~ Page 1 ~ ~Company Policies ~ DEAR CUSTOMER: ALL PRICES IN THIS CATALOG ARE NET WHOLESALE.
    [Show full text]
  • INSIDE // Speaker Interview // Conference Program // Product Showcase
    Floor Plan // Exhibitor List // Event Information // Exhibitor Spotlight INSIDE // Speaker Interview // Conference Program // Product Showcase 2nd annual March 6 – 8, 2018 Novi, Michigan, USA show previewNorth America’s leading exhibition and conference for the technical foam manufacturing supply chain Exhibitor Spotlight Joe Rapp, President & CEO, Amcor Inc 18 FREE-TO -ATTEND EXHIBITION & Three-day, two-track manufacturing CONFERENCE and applications conference 20 Speaker Interview Dr Hamdy Khalil, Senior Global Director for Advanced Technologies and Innovation, Woodbridge Foam Corporation 26 organized by REGISTER FOR A FREE EXHIBITION AND CONFERENCE PASS WWW.FOAM-EXPO.COM Register for your free pass now | www.foam-expo.com/register 1 welcome contents Floor Plan 3 from the Exhibitor Listings 4 Reasons to Attend 5 event director Product Showcase 7 ello and welcome to Featured Innovation 9 Foam Expo 2018, Product News 15 H the second edition Exhibitor Spotlight 19 of the only exhibition, Conference @ Foam Expo 21 conference and Conference at a Glance – Day 1 23 networking event for the Conference at a Glance – Day 2 24 technical foams industry. Conference at a Glance – Day 3 25 Being held March 6-8 in Novi, MI, Speaker Interview 27 Foam Expo is a free-to-visit event. I invite you to networking meet colleagues from North America, Europe and Essential Contacts 29 Asia who share an interest in – and are leading Useful Information 35 the development and marketing of – the latest innovations in advanced and technical foam Sponsors & Supporters 36 materials and products. About Foam Expo Europe and Sustainable Materials for receptions Foam Expo offers you direct contact with the Transportation Expo 38 engineers and executives who produce materials and products used in automotive, aerospace, construction, medical, packaging, and sports advertisers index and leisure.
    [Show full text]
  • OECD Emission Scenario Document Additives in the Rubber Industry IC 15
    OECD Emission Scenario Document Additives in the Rubber Industry IC 15 (‘others’) Exposure Assessment of the environmental Releases of Chemicals in the Rubber Industry 1. version Institute for Environmental Research (INFU) University Dortmund September 1999 2. updated version Umweltbundesamt, comment of NL integrated January 2001 3. updated Version nomenclature adjusted to EUBEES-Document July 2001 4. updated and amended version incorporation of OECD comments 3 March 2003 Umweltbundesamt (Federal Environmental Agency), Berlin, Germany Contents 1 Introduction .......................................................................................................................1 2 Life Cycle Steps and Emission Pathways .........................................................................1 3 Main Processes.................................................................................................................2 3.1 Natural- and synthetic Rubber..................................................................................5 3.1.1 Mastication and creation of mixtures ....................................................................5 3.1.2 Shaping.................................................................................................................6 3.1.3 Vulcanisation / Curing...........................................................................................6 3.2 Latex.........................................................................................................................7 3.3 Rubber-Metal............................................................................................................7
    [Show full text]
  • MICHELIN TIRES ALLIANCE TIRES, CAMBRIDGE TIRE OFFERS the PROTECTION of a ROAD HAZARD CERTIFICATE at $1.50 PER TIRE
    - rPpdCLg Nssqa s3 -Ilpls -- 4bd'cJP . I FRIDAY, DECEMBER 2. 1977 THE TECH PAGE 9 a (The Police Blotter is a report Larceny, it was determined that locked and unoccupied. A subse- rI written by the Campus Patrol on the suspect was already serving a quent search of the dorm under- crimes, incidents; and actions on sentence at the Deer Island House taken by several students turned the MIT canmpU each week.) of Correction. As part of a up the television, which had been prisoners' "pre-release" program secreted elsewhere in the building. * 3 Thief surrenders he had been serving his sentence Vehicles stolen Fast action by a resident of of late at a halfway house in S _ £ :ee Ashdown House resulted recently Boston. With his halfway house A 1972 Ford Torino was stolen in the capture and arrest of a privilege now revoked. he is cur- from its parking place in front of suspect allegedly involved in the rently back at the House of Cor- 18 Vassar Sreet on Tuesday. Also larceny of the student's Seiko rection. Trial, of the Grand taken Tuesday was a 1965 Buick watch valued at well over Sl00.' Larceny charge has been Skylark, taken from the Tang lot. When the student returned to scheduled for mid-December. Taken last Saturday from En- his room in the early evening. he dicott Street was a green 1968 Looking discovered a stranger rifling his Typewriter stolen Dodge Van. personal personal property. On A man previously sought by the seeing the student. the stranger Campus Police appeared Monday for an MBA Program? bolted from the room and ran at a Sloan School area building Headquarters down the hall, dropping the stu- where, by passing himself off dent's watch as he fled.
    [Show full text]