9 Kostansek Latex06

Total Page:16

File Type:pdf, Size:1020Kb

9 Kostansek Latex06 Energy Efficient, Accelerator-Free, Cold Vulcanization of Latex Articles Mark W. McGlothlin, Whitney A. Williams, and Scott W. Herrick Apex Medical Technologies, Inc. Abstract The rapidly increasing cost of energy needed to produce high-volume dip-molded or cast latex products, such as medical gloves and other dip-molded or cast rubber film products of natural rubber or synthetic polyisoprene, is of concern to the latex industry. The use of rubber accelerators, the formation or presence of Type IV latex allergens, nitrosamine formation, and excessive energy usage are still of concern to the industry. The method of latex film vulcanization discussed in this paper reveals how a specific class of curing agents can effectively address these issues. These curing agents, known as polynitrile oxides, can rapidly vulcanize latex films at only modestly elevated temperatures, or even at room temperature or below. It is only necessary to dry the latex films on the production line, eliminating or greatly reducing the need for an in process heated curing step. This can save much energy and can increase production capacity. No post-stripping cure is needed, as full cure occurs at room temperature over time without concern for under-curing or over-curing. The cured articles are clear, free of sulfur, activators, accelerators, nitrosamines, nitrosatables, and odors. As compared to alternative accelerator-free methods, they have superior physical properties, including improved tear and tensile strengths and ultimate elongation. Tear strength of up to 70 kN/m, tensile strengths of up to about 6000 psi, and ultimate elongations in the range of about 550 % to about 1200 % have been achieved. It is not necessary or desirable to prevulcanize. It is also not necessary to use any specialized production equipment. Purpose This paper will first present a historical perspective with respect to solid rubber and latex vulcanization methods. Then, the emphasis will provide insight into the favorable aspects of 1 vulcanizing latex with a certain class of resin curatives, which have the potential to leave behind no residual chemicals that contribute to Type IV latex allergy. The particular classes of resin cure agents which will be discussed in this paper are polynitrile oxides, and are identified in this paper as having especially beneficial properties with regard to latex processing. They can be used to produce latex articles with very biocompatible properties and can contribute to the goal of eliminating Type IV latex allergy and nitrosamines. Historical Background of Vulcanization Options for Latex The forming of useful vulcanized articles, such as medical gloves, finger cots, condoms, balloons, etc. from natural rubber latex dates back many decades. During this time period, a number of methods of vulcanizing latex have been put into industrial use. The most common method employed on a commercial basis today is that of accelerated-sulfur vulcanization. Vulcanization with sulfur has traditionally been performed in the presence of vulcanization accelerators, such as dithiocarbamate and thiuram accelerators, because non- accelerated sulfur vulcanization typically leads to poor physical properties and poor aging stability. The added use of a metal oxide, such as zinc oxide, with sulfur improves matters, but still does not lead to adequate physical properties for most uses. However, these substances, and their breakdown products, can contribute to adverse reactions in individuals with whom the resulting rubber articles may come into contact. The reaction is commonly referred to as a Type IV allergy, which is mediated by T cells, generally occurs within six to 48 hours of contact with the rubber article, and is localized in the area of the skin where contact is made. Secondary amine-containing accelerators are also referred to as nitrosatable amines since they can produce nitrosamines, which have been identified as potential human carcinogens. Many attempts have been made to introduce accelerator-free vulcanization systems to the latex industry to address some of these concerns. Perhaps the next most prevalent accelerator-free vulcanization systems are those using metal oxides as crosslinkers. These are common for the curing of polychloroprene articles and nitrile articles. They can be used without the use of accelerators or sulfur. Other methods include radiation prevulcanization of natural rubber, 2 organic peroxide and/or hydroperoxide prevulcanization of natural rubber, and peroxide postvulcanization of synthetic polyisoprene and natural rubber. With the exception of the pure prevulcanization systems, all of these known methods use significantly elevated temperatures to achieve an adequate level of vulcanization. Some work has been done to address the goal of using a crosslinking agent that readily incorporates itself into the crosslinked rubber network, without the need to leave behind residual chemicals. This is clearly a worthy goal, but it has been hard to achieve. In the solid rubber industry, some work has been done with regard to "resin curing" of rubber articles. Resin cure systems have the advantage in that the curative agent does become part of the cross-linked network. One apparently commercially viable method for solid rubber is that of phenol formaldehyde systems [1,2]. Unfortunately, this method does leave behind residual chemicals and requires very high temperatures for vulcanization to occur. Another resin curing method utilized diisocyanate. Such curing systems for rubber have been proposed but require that a suitable reactive group be present on the polymer chain in order for crosslinking to occur. Pure polyurethane rubber can be further crosslinked this way. Suitable reactive groups can potentially be grafted onto some types of rubber polymers, which could allow for a resin cure with diisocyantes. This could be an area for further investigation by the latex industry. The authors are not aware of any latex system using this sort of curing system at this time. As shown in US Patent 6753355, in the case of latex foam rubber, both epoxy silanes and polynitrile oxides have been investigated with some success. In the case of epoxy silanes, as in the case of diisocyantes, a suitable functional group needs to be present on the polymer chain. Carboxylation is the most common method to functionalize the polymer. With respect to nitrile oxides, it is only necessary to have some minor level of unsaturation present. The common laticies of natural rubber and synthetic polyisoprene have multiple points of unsaturation, and thus are good candidates for polynitrile oxide crosslinking. As previously noted, metal oxides are likely the best known and most utilized class of chemicals used to crosslink latex rubber without the use of accelerators. They are very commonly used in both nitrile gloves and in polychloroprene gloves. If used in unique ways, they can do away with the use of sulfur accelerators. There are, however, issues with respect to the physical properties of such gloves in the event that only metal oxides are used for curing. Nevertheless, some 3 medical gloves made from polychloroprene or nitrile latex are vulcanized by treatment with divalent and trivalent metal oxides, etc. The most common metal oxide curative appears to be zinc oxide. The use of zinc oxide provides for a commercially viable method of producing synthetic latex gloves. Polychloroprenes are grouped into two classes, sulfur-modified types and non-sulfur-modified types. US Patent 4018750 shows that sulfur-modified chloroprene requires only a metal oxide such as magnesium oxide, zinc oxide or lead oxide for vulcanization, whereas with non-sulfur-modified chloroprene, special vulcanization accelerators have to be used in addition to the metal oxides. However, US patent 6706816 makes evident that with a carboxylic acid modification of the polymer, it is possible to vulcanize with just the metal oxide. The combination of zinc oxide and magnesium oxide has gained the most widespread acceptance as the preferred formulation for vulcanizing chloroprene. Zinc oxide is used as the crosslinking agent while magnesium oxide is used as the chlorine acceptor. Zinc oxide allows for immediate vulcanization, but if used alone produces crosslinks that are inadequate. Magnesium oxide leads to safer processing, but if used alone leads to slow vulcanization and a lower degree of vulcanization. Magnesium oxide and zinc oxide, when used together, produce a synergistic vulcanizing effect resulting in a balanced combination of cure time and degree of vulcanization. The bis-alkylation theory of chloroprene vulcanization is most widely accepted. The theory proposes that the cross-linking of chloroprene takes place at the sites on the polymer chain where there are tertiary allylic chlorine atoms formed by 1,2 polymerization of the chloroprene monomer. This accounts for about 1.5% of the total chlorine in the chloroprene. The metal oxide, in most cases zinc oxide, initiates the curing process by reacting with the chlorine present to form zinc chloride, which is a catalyst for the alkylation. The zinc chloride cross-links via bis- alkylation at the reactive tertiary allylic chlorine sites of the polymer chains [3]. Grafting of a carboxylic acid group onto synthetic polyisoprene (and presumably natural rubber) can be achieved with some level of complexity. US Patent 3887527 details a method to graft a carboxylic acid group onto the polymer by using malaeic anhydride. Conceivably, this could allow for
Recommended publications
  • A Little Book About BIG Chemistry the Story of Man-Made Polymers
    SPRINGER BRIEFS IN MATERIALS Jim Massy A Little Book about BIG Chemistry The Story of Man-Made Polymers www.ebook3000.com SpringerBriefs in Materials The SpringerBriefs Series in Materials presents highly relevant, concise mono- graphs on a wide range of topics covering fundamental advances and new applications in the field. Areas of interest include topical information on innovative, structural and functional materials and composites as well as fundamental principles, physical properties, materials theory and design. SpringerBriefs present succinct summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include: • A timely report of state-of-the-art analytical techniques • A bridge between new research results, as published in journal articles, and a contextual literature review • A snapshot of a hot or emerging topic • An in-depth case study or clinical example • A presentation of core concepts that students must understand in order to make independent contributions Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guide- lines, and expedited production schedules. More information about this series at http://www.springer.com/series/10111 www.ebook3000.com Jim Massy A Little Book about BIG Chemistry The Story of Man-Made Polymers 123 Jim Massy Norwich, Norfolk UK ISSN 2192-1091 ISSN 2192-1105 (electronic) SpringerBriefs in Materials ISBN 978-3-319-54830-2 ISBN 978-3-319-54831-9 (eBook) DOI 10.1007/978-3-319-54831-9 Library of Congress Control Number: 2017934463 © The Author(s) 2017 This work is subject to copyright.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • The Ohio Motor Vehicle Industry
    Policy Research and Strategic Planning Office A State Affiliate of the U.S. Census Bureau The Ohio Polymers Industry: Rubber and Plastic Resins and Products, and Related Machinery May 2010 Ted Strickland, Governor of Ohio Lee Fisher, Lt. Governor of Ohio Lisa Patt-McDaniel,Director, Ohio Department of Development THE OHIO POLYMERS INDUSTRY: Rubber and Plastic Resins and Products, and Related Machinery MAY 2010 B403 Don Larrick, Principal Analyst Policy Research and Strategic Planning, Ohio Department of Development P.O. Box 1001, Columbus, Oh. 43216-1001 Production Support: Steve Kelley, Editor; Robert Schmidley, GIS Specialist TABLE OF CONTENTS Page Executive Summary- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 Description of Ohio’s Polymers Industry - - - - - - - - - - - - - - - - - - - - - - 4 Notable Polymers Industry Manufacturers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 Recent Expansion and Attraction Announcements- - - - - - - - - - - - - - - - - - - - - - - 12 The Composition of Ohio’s Polymers Industry: Value-Added- - - - - - - - - - - - - - - - 14 The Composition of Ohio’s Polymers Industry: Employment - - - - - - - - - - - - - - - - 16 Industry Pay - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 The Distribution of Industry Establishments in Ohio - - - - - - - - - - - - - - - - - - - - - - 20 The Distribution of Industry Employment in Ohio - - - - - - - - - - - - - - - - - - - - - - - - 22 Foreign Investment in Ohio
    [Show full text]
  • Enhancing the Biodegradation of Waste Rubber a Novel Approach to Sustainable Management of Discarded Rubber Materials
    INTERNATIONAL LATEX CONFERENCE 2015 Enhancing the Biodegradation of Waste Rubber A novel approach to sustainable management of discarded rubber materials Teresa Clark 8/12/2015 Rubber items are a critical part of modern society and a focus on the waste management of rubber is becoming more critical. Advancements have been made in recycling rubber waste, but a vast majority of rubber products are discarded into landfills. Sustainability efforts must include self-remediation through biodegradation of rubber (pre- consumer and post-consumer) in these waste sites. Current advancements provide insight into alternative methods of utilizing bio-mimicry to these return waste products to the natural carbon cycle, produce “green” energy and expand the scope of “Zero Waste”. Included are an assessment of the unique environment within landfills and the energy impact of utilizing these methods. Additionally, a brief update to the current progress in validating the biodegradation of rubber waste is included. Enhancing the Biodegradation of Waste Rubber International Latex Conference 2015 - Teresa Clark Contents Introduction .................................................................................................................................................. 2 Waste disposal of rubber materials .............................................................................................................. 2 Composting of Rubber .................................................................................................................................
    [Show full text]
  • Natural Rubber Value Chains: a Game Changer for Smallholders
    Natural Rubber value chains: A game changer for smallholders A. Nosa Betty¹; A. A.i²; A. E.o² 1: RUBBER RESEARCH INSTITUTE OF NIGERIA, RESEARCH OUTREACH , Nigeria, 2: Rubber Research Institute of Nigeria,, Research outreach, Nigeria Corresponding author email: [email protected] Abstract: ABSTRACT The study analyzed the value chain of natural rubber in Nigeria. The study specifically mapped the natural rubber value chain and identify the functions performed by the respondents in the chain; identified the existing marketing channels and estimated the marketing margin at each value addition point. Data for the study were collected using a well-structured questionnaire administered to 425 respondents selected using a two–stage sampling process involving random and purposive sampling techniques. Data collected were analyzed using descriptive statistics, flow chat, marketing margins, marketing efficiency The findings showed a mean age of 53 years for farmers and 44 years for marketers, with males (97.86%) dominating. Most were married and majority had at least primary education. The main value chain agencies were input suppliers/nursery farmers, rubber farmers, marketers/collectors, processor and manufacturers, while the key product points along the chain were seeds, seedlings, budded stump, lump, latex concentrates, sheet, and crumbs. Marketing margin analysis showed crumb having the highest margin (N234.01) with processing cost having the major component. Value added by processing were N14.36k, N115.16, N136.14 and N124.38 per budded stump, latex concentrate, crumb and sheet respectively. The nursery was the most efficient and it was more profitable to process into crumb rubber. It was therefore recommendations that farmers may integrate backward to produce their own budded stumps and process their latex before selling for profit Acknowledegment: ACKNOWLEDGEMENTS The authors would like to acknowledge Prof.
    [Show full text]
  • Preliminary Study on the Preparation of Latex Foam Rubber from Graft Copolymer of Deproteinised Natural Rubber and Methyl Methacrylate
    Rubb. Res., 4(3), 141-152 REPRINT Preliminary Study on the Preparation of Latex Foam Rubber from Graft Copolymer of Deproteinised Natural Rubber and Methyl Methacrylate C. NAKASON*#. A. KAESAMAN,* N. YIMWAN* AND K. KETSARIN* Deproteinised natural rubber (DPNR) latex was prepared by incubation of fresh field natural rubber latex with a proteolytic enzyme in the presence of an emuisifier. The nitrogen content was decreased from 0.9% (in the fresh field natural rubber latex) to 0.07% (in the DPNR). A graft copolymer of the deproteinised natural rubber latex and poly(methyl methacrylate) (PMMA) was then synthesized using tert. butylhydroperoxide and tetraethylene pentamine as a redox initiator. The presence of grafted PMMA in the natural rubber molecules was confirmed using FTIR. Intense absorption peaks at 1732 cm~' (-C=O stretch) and 1140 cm~' (-C-O stretch) were observed. It was also found that the quantity of grafted PMMA increased with the increase in the level ofMMA used in the grafting reaction. The graft copolymer latex was later compounded and processed into a latex foam rubber. Results showed that the latex of graft copolymer blended with high ammonia concentrated latices provided high quality latex foam rubber. This included surface appearance and physical properties, such as hardness, compression set and density. It was also found that hardness, compression set and density of the latex foam rubber increased with the increase in the level of graft copolymer in compounding formulation. Furthermore, at the same blend ratio, the properties increased with the increase in the level of methyl methacrylate used in the grafting reaction.
    [Show full text]
  • Zinc Complexes with 1,3-Diketones As Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black
    materials Article Zinc Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black Magdalena Maciejewska * , Anna Sowi ´nska* and Agata Grocholewicz Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Street 12/16, 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] (M.M.); [email protected] (A.S.) Abstract: Zinc oxide nanoparticles (N-ZnO) and zinc complexes with 1,3-diketones of different structures were applied instead of microsized zinc oxide (M-ZnO) to activate the sulfur vulcanization of styrene-butadiene rubber (SBR). The influence of vulcanization activators on the cure characteristics of rubber compounds, as well as crosslink density and functional properties of SBR vulcanizates, such as tensile properties, hardness, damping behavior, thermal stability and resistance to thermo- oxidative aging was explored. Applying N-ZnO allowed to reduce the content of zinc by 40% compared to M-ZnO without detrimental influence on the cure characteristic and performance of SBR composites. The activity of zinc complexes in vulcanization seems to strongly depend on their structure, i.e., availability of zinc to react with curatives. The lower the steric hindrance of the substituents and thus the better the availability of zinc ions, the greater was the activity of the zinc complex and consequently the higher the crosslink density of the vulcanizates. Zinc complexes had no Citation: Maciejewska, M.; detrimental effect on the time and temperature of SBR vulcanization. Despite lower crosslink density, Sowi´nska,A.; Grocholewicz, A. Zinc most vulcanizates with zinc complexes demonstrated similar or improved functional properties in Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of comparison with SBR containing M-ZnO.
    [Show full text]
  • Effect of Fillers on the Recovery of Rubber Foam
    polymers Article Effect of Fillers on the Recovery of Rubber Foam: From Theory to Applications Thridsawan Prasopdee 1 and Wirasak Smitthipong 1,2,3,* 1 Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; [email protected] 2 Office of Research Integration on Target-Based Natural Rubber, National Research Council of Thailand (NRCT), Chatuchak, Bangkok 10900, Thailand 3 Office of Natural Rubber Research Program, Thailand Science Research and Innovation (TSRI), Chatuchak, Bangkok 10900, Thailand * Correspondence: [email protected] Received: 24 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Natural rubber foam (NRF) can be prepared from concentrated natural latex, providing specific characteristics such as density, compression strength, compression set, and so on, suitable for making shape-memory products. However, many customers require NRF products with a low compression set. This study aims to develop and prepare NRF to investigate its recoverability and other related characteristics by the addition of charcoal and silica fillers. The results showed that increasing filler loading increases physical and mechanical properties. The recoverability of NRF improves as silica increases, contrary to charcoal loading, due to the higher specific surface area of silica. Thermodynamic aspects showed that increasing filler loading increases the compression force (F) as well as the proportion of internal energy to the compression force (Fu/F). The entropy (S) also increases with increasing filler loading, which is favorable for thermodynamic systems. The activation enthalpy (DHa) of the NRF with silica is higher than the control NRF, which is due to rubber–filler interactions created within the NRF.
    [Show full text]
  • ©2020 Yu Sun All Rights Reserved
    ©2020 YU SUN ALL RIGHTS RESERVED VULCANIZATION AND DEVULCANIZATION OF RUBBER A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy YU SUN August, 2020 VULCANIZATION AND DEVULCANIZATION OF RUBBER YU SUN Dissertation Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Li Jia Dr. Tianbo Liu _____________________________ _____________________________ Committee Chair Interim Dean of the College Dr. Toshikazu Miyoshi Dr. Ali Dhinojwala _____________________________ _____________________________ Committee Member Acting Dean of the Graduate School Dr. Gary R. Hamed Dr. Marnie Saunders _____________________________ _____________________________ Committee Member Date Dr. Junpeng Wang _____________________________ Committee Member Dr. Kevin Cavicchi ii ABSTRACT The research in this dissertation includes two parts: vulcanization of isobutylene- isoprene rubber (IIR) containing geminal vinylidene-acrylate groups and surface devulcanization of ground rubber particles (GRPs) for rubber recycling. In Chapter 2, EIIR was synthesized by grafting ethyl propiolate to IIR via EtAlCl2- catalyzed Alder-ene reaction. Methods for crosslinking EIIR using dicumyl peroxide (DCP) with m-Phenylene-N,N’-bismaleimide (BMI) as a coagent were investigated. The strength, extensibility, and overall toughness of the peroxide-cured EIIR significantly exceed those of previously reported peroxide-cured IIR derivatives. A wide range of stiffness can be realized without sacrificing the strength. The crosslinking density achieved using such curatives is indexed as a function of DCP/BMI ratio, and the curing efficiency of peroxide as a function of DCP/BMI ratio and DCP loading. The role of the geminal vinylidene-acrylate moiety in curing was studied by model reactions, which suggest that the geminal vinylidene-acrylate moiety undergoes both radical addition and hydrogen abstraction.
    [Show full text]
  • FAQ - Foam Rubber
    FAQ - Foam Rubber More information on Foam Rubber https://en.wikipedia.org/wiki/Foam_rubber Foam rubber (also known as cellular, sponge, or expanded rubber) refers to rubber that has been manufactured with a foaming agent to create an air-filled matrix structure. Commercial foam rubbers are generally made of either polyurethane or natural latex. Latex foam rubber, used in mattresses, is well known for its endurance. Polyurethane is a thermosetting polymer that comes from combination of Methyl di-isocyanate and polyethylene and some other chemical additives.[1] What is foam rubber used for? Foam rubber is found in a wide range of applications, from cushioning in automobile seats and furniture to insulation in walls and appliances to soles and heels in footwear. Foams are made by forming gas bubbles in a plastic mixture, with the use of a blowing agent. How do they make foam rubber? How Foam Rubber Is Made. Foam rubber uses a blowing agent, typically a gas or a chemical that produces a gas, to create a mass of small bubbles in a liquid mixture. This mixture may contain polyols, polyisocyanates, water, and additives such as flame retardants, fillers, and colorants. When was foam rubber invented? In 1937 isocyanate based materials were first used for the formation of foam rubbers, after World War II styrene-butadiene rubber replaced many natural types of foam. Foam rubbers have been used commercially for a wide range of applications since around the 1940s. Is foam rubber flammable? A 'foam' is a solid or liquid substance formed with bubbles trapped inside it.
    [Show full text]
  • Recycling Industry
    Recycling Industry The Number 1 Solution in Mixing for the Recycling Industry! Date of Sale: 00/00/00 Explore 100’s of custom designed mixer Describe your location by applications for the Recycling Industry. landmark or area of town. 3575 3rd Ave PO Box 286 Marion, IA 52302 319-377-6371 www.marionmixers.com Rubber Mulch Coloring & Drying Case Study Marion Mixers, Inc. Mixing Recycled Tires Into Playground Mulch Mix Recycled Tires Into Playground Mulch A Midwestern tire recycling company chose Marion Mixers to design and build a batch mixer that would coat ground chunks of car tire with a latex colorant. After applying the colorant, the mixer must then dry the materials so the colorant can’t rub-off during the bagging process. The company’s goal was to turn 80,000 scrap car tires per year into upscale landscape mulch for use in playgrounds. The customer brought samples of both the ground rubber (<1¼”) and the colorant to our new test lab. Thoroughly coating the rubber chunks was relatively simple. Drying the rubber took a bit more resolve. The equipment now in operation today includes a mixer, a batch sequencing control panel, a liquid metering system, a forced air drying system and two bulk material conveyors. Chunks of ground rubber are loaded into the mixer from pre-weighed super- sacks. Undiluted, latex paint is volumetrically metered into the mixer. The mixer evenly coats the rubber. A variable speed controller slows the speed of the mixer shaft to avoid scrubbing the latex off the rubber chunks during the drying cycle.
    [Show full text]
  • Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives
    polymers Article Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives Łukasz Zedler 1,* , Daria Kowalkowska-Zedler 2 , Xavier Colom 3 , Javier Cañavate 3 , Mohammad Reza Saeb 4 and Krzysztof Formela 1,* 1 Department of Polymer Technology, Faculty of Chemistry, Gda´nskUniversity of Technology, Gabriela, Narutowicza 11/12, 80–233 Gda´nsk,Poland 2 Department of Inorganic Chemistry, Faculty of Chemistry, Gda´nskUniversity of Technology, Gabriela, Narutowicza 11/12, 80–233 Gda´nsk,Poland; [email protected] 3 Department of Chemical Engineering, Universitat Politècnica de Catalunya Barcelona Tech, Carrer de Colom, 1, 08222 Terrassa, Barcelona, Spain; [email protected] (X.C.); [email protected] (J.C.) 4 Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 11155-4563, Iran; [email protected] * Correspondence: [email protected] (Ł.Z.); [email protected] (K.F.) Received: 17 November 2020; Accepted: 14 December 2020; Published: 17 December 2020 Abstract: The proposed method of ground tire rubber (GTR) utilization involves the application of trans-polyoctenamer rubber (TOR), a commercially available waste rubber modifier. The idea was to investigate the influence of various curing additives (sulfur, N-cyclohexyl-2-benzothiazole sulfenamide (CBS), dibenzothiazole disulfide (MBTS) and di-(2-ethyl)hexylphosphorylpolysulfide (SDT)) on curing characteristics, physico-mechanical, thermal, acoustic properties as well as the morphology of modified GTR, in order to evaluate the possibility of reclaiming GTR and the co-cross-linking between applied components. The results showed that the presence of the modifier without the addition of curing additives hinders the physico-mechanical properties of revulcanized GTR.
    [Show full text]