Journal of Blood Group Serology and Molecular Genetics Volume 35, Number 1, 2019 CONTENTS

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Blood Group Serology and Molecular Genetics Volume 35, Number 1, 2019 CONTENTS Journal of Blood Group Serology and Molecular Genetics VOLUME 35, N UMBER 1, 2019 This issue of Immunohematology is supported by a contribution from Grifols Diagnostics Solutions, Inc. Dedicated to advancement and education in molecular and serologic immunohematology Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 35, Number 1, 2019 CONTENTS B LOOD G ROUP R EVIEW 1 An update on the Augustine blood group system G. Daniels S EROLO G IC M ETHOD R EVIEW 3 Donath-Landsteiner Test M. Kilty and T.S. Ipe B LOOD G ROUP R EVIEW 7 An update on the CD59 blood group system C. Weinstock, M. Anliker, and I. von Zabern S EROLO G IC M ETHOD R EVIEW 9 ZZAP treatment of red blood cells S.I. Marckwardt B LOOD G ROUP R EVIEW 11 An update on the Duffy blood group system G.M. Meny R EVIEW 13 Serologic problems associated with administration of intravenous immune globulin (IVIg) D.R. Branch B LOOD G ROUP R EVIEW 16 An update on the Knops blood group system J.M. Moulds S EROLO G IC M ETHOD R EVIEW 19 Inhibition of blood group antibodies by soluble substances K.M. Byrne, C.M.C. Mercado, T.N. Nnabue, T.D. Paige, and W.A. Flegel B LOOD G ROUP R EVIEW 23 An update on the Lutheran blood group system G. Daniels 25 33 37 41 A NNOUNCE M ENT S A DVERTI S E M ENT S I N S TRUCTION S S U bs CRIPTION FOR A UTHOR S I NFOR maTION E DITOR - IN -C HIEF E DITORI A L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Geralyn M. Meny, MD, MS Pomona, California Coppell, Texas M A N ag IN G E DITOR Cynthia Flickinger, MT(ASCP)SBB Barbara J. Bryant, MD Paul M. Ness, MD Wilmington, Delaware Galveston, Texas Baltimore, Maryland Lilian M. Castilho, PhD Thierry Peyrard, PharmD, PhD TECHNIC A L E DITOR S Campinas, Brazil Paris, France Janis R. Hamilton, MS, MT(ASCP)SBB Detroit, Michigan Martha R. Combs, MT(ASCP)SBB S. Gerald Sandler, MD Durham, North Carolina Washington, District of Columbia Christine Lomas-Francis, MSc New York City, New York Geoffrey Daniels, PhD Ira A. Shulman, MD Bristol, United Kingdom Los Angeles, California Joyce Poole, FIBMS Bristol, United Kingdom Anne F. Eder, MD Jill R. Storry, PhD Washington, District of Columbia Lund, Sweden Dawn M. Rumsey, ART(CSMLT) Norcross, Georgia Melissa R. George, DO, FCAP, FASCP Nicole Thornton Hershey, Pennsylvania Bristol, United Kingdom Tiffany Walters, MT(ASCP)SBBCM Julie K. Karp, MD Charlotte, North Carolina Philadelphia, Pennsylvania E M ERITU S E DITOR S S ENIOR M EDIC A L E DITOR Jose Lima, MD Delores Mallory, MT(ASCP)SBB David Moolten, MD Douglassville, Georgia Supply, North Carolina Philadelphia, Pennsylvania Christine Lomas-Francis, MSc Marion E. Reid, PhD, FIBMS A ss OCI ATE M EDIC A L E DITOR S New York City, New York Bristol, United Kingdom P. Dayand Borge, MD Philadelphia, Pennsylvania Corinne L. Goldberg, MD Durham, North Carolina M OLECUL A R E DITOR Immunohematology is published quarterly (March, June, September, and December) by the Margaret A. Keller, PhD American Red Cross, National Headquarters, Washington, DC 20006. Philadelphia, Pennsylvania Immunohematology is indexed and included in Index Medicus and MEDLINE on the MEDLARS system. The contents are also cited in the EBASE/Excerpta Medica and Elsevier E DITORI A L A ss I S TA NT BIOBASE/Current Awareness in Biological Sciences (CABS) databases. Linda Frazier The subscription price is $50 for individual, $100 for institution (U.S.), and P RODUCTION A ss I S TA NT $60 for individual, $100 for institution (foreign), per year. Latasha Melvin Subscriptions, Change of Address, and Extra Copies: C OPY E DITOR Immunohematology, P.O. Box 40325 Frederique Courard-Houri Philadelphia, PA 19106 Or call (215) 451-4902 P ROOFRE A DER Wendy Martin-Shuma Web site: https://www.redcrossblood.org/biomedical-services/educational-resources/ immunohematology.html E LECTRONIC P U B LI S HER Copyright 2019 by The American National Red Cross Paul Duquette ISSN 0894-203X O N O UR C OVER Eugeen Van Mieghem grew up in Antwerp, Belgium, and in mood and subject his art never strayed far from the busy port’s austere setting. His laudatory yet realistic portrayals of the laborers and emigrant poor on the wharves and piers reflect his socially aware empathy and insight. At the start of his career, he used his wife Augustine Pautre as his primary model and first muse, and she predominates his early work. Tragically Augustine succumbed to tuberculosis after only 3 years of marriage, but Van Mieghem’s charged depictions of her during her illness have been compared with similar efforts by Ferdinand Hodler and Rembrandt. Van Mieghem completed De bloem van de voorstad (translation, Flower of the City) in 1901. This issue of Immunohematology includes an update of the Augustine blood group system. David Moolten, MD ii IMMUNOHEMATOLOGY, Volume 35, Number 1, 2019 B LOOD G ROUP R EVIEW An update on the Augustine blood group system G. Daniels This update of the Augustine (AUG) blood group system (Daniels An antibody to a high-prevalence antigen (AUG4) in G. The Augustine blood group system, 48 years in the making. a white woman, who had been pregnant and transfused, Immunohematology 2016;32:100–3) describes two antigens was first found in 1995. Recent whole exome sequencing that have been added to the Augustine system (International Society of Blood Transfusion system 36), bringing the number of revealed homozygosity for a missense mutation in SLC29A1 antigens in the system to four. Further information on the clinical encoding p.Asn81Ser. The variant was present in 0.1 percent significance of Augustine system antibodies and the function of of individuals in the Exome Aggregation Consortium but was the Augustine glycoprotein, equilibrative nucleoside transporter 1, is presented. Immunohematology 2019;35:1–2. never found in a homozygous state. The AUG:–4 RBCs of the propositus were AUG:1,2, confirming that ENT1 is present, Key Words: Augustine, SLC29A1, adenosine transport, but flow cytometric analysis revealed an approximately erythropoiesis, ENT1 30 percent reduction in surface ENT1 relative to that on AUG:1,2,4 (common phenotype) RBCs. The antibody of the New Augustine Antigens propositus reacted with AUG:1,2 and AUG:1,–2 RBCs, but not with AUG:–1,–2 (null phenotype) RBCs.3 Since the publication of the original review,1 two new antigens have been added to the Augustine (AUG) blood group Clinical Significance of Augustine System system: AUG3 and AUG4 (Table 1). Antibodies An antibody to a low-prevalence antigen (AUG3) caused severe hemolytic disease of the fetus and newborn (HDFN) An acute hemolytic transfusion reaction caused by anti- requiring two exchange and four top-up transfusions. Targeted AUG2 (anti-Ata)4 and severe HDFN caused by anti-AUG32 exome sequencing for blood group genes revealed that the baby confirm previous reports that Augustine system antibodies was heterozygous for a novel variant in the Augustine gene, have the potential to be dangerously hemolytic. SLC29A1, encoding p.Thr387Pro in the fifth extracellular loop of equilibrative nucleoside transporter 1 (ENT1). The baby’s Functional Aspects of the Augustine Glycoprotein brother, father, two paternal aunts, and grandmother were all heterozygous for the variant allele, and their red blood cells Analysis of mature RBCs and developing erythroid (RBCs) were all AUG:3.2 cells from the three previously reported AUG:–1,–2 (null phenotype) siblings revealed macrocytosis Table 1. Antigens of the Augustine system and abnormal morphologies together with Antigen Molecular basis a decreased level of proliferation during Number Name Prevalence Nucleotides Exon Amino acids Reference erythropoiesis and delayed erythroblast maturation. This finding suggests a role AUG1 High c.589+1G>C 6 Slice site 1 of ENT1-mediated adenosine transport in AUG2 Ata High c.1171G>A 12 Glu391Lys 1 erythroid differentiation.5 AUG3 ATML Low c.1159A>C 12 p.Thr387Pro 2 AUG4 ATAM High c.242A>G 3 p.Asn81Ser 3 IMMUNOHEMATOLOGY, Volume 35, Number 1, 2019 1 G. Daniels References 4. Raval JS, Harm SK, Wagner B, Triulzi DJ, Yazer MH. Acute hemolytic transfusion reaction attributed to anti-Ata. 1. Daniels G. The Augustine blood group system, 48 years in the Immunohematology 2016;32:140–2. making. Immunohematology 2016;32:100–3. 5. Mikdar M, Le Van Kim C, Kinet S, et al. Lack of the nucleoside 2. Millard GM, McGowan EC, Wilson B, et al. A proposed new transporter ENT1 in individuals with the rare Augustine-null low-frequency antigen in the Augustine blood group system blood group is associated with an abnormal erythropoiesis and associated with a severe case of haemolytic disease of the fetus microcytosis (abstract). Vox Sang 2018;113(Suppl 1):64. and newborn. Transfusion 2018;58:1320–2. 3. Vrignaud C, Mikdar M, Raneri A, et al. Characterization of a Geoffrey Daniels, PhD, retired, previously Head of Diagnostics, novel high-prevalence red blood cell antigen in the Augustine blood group system (abstract). Vox Sang 2018;113(Suppl International Blood Group Reference Laboratory, Bristol, UK, geoff. 1):64–5. [email protected]. Manuscripts The editorial staff of Immunohematology welcomes manuscripts submitting scientific articles, case reports, and review articles, pertaining to blood group serology and molecular genetics for see Instructions for Authors in every issue of Immunohematology consideration for publication. We are especially interested in or e-mail a request to [email protected]. Include fax and review articles, case reports, papers on platelet and white cell phone numbers and e-mail address with all manuscripts serology, scientific articles covering original investigations or new and correspondence.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Role of C5ar1 and C5L2 Receptors in Ischemia-Reperfusion Injury
    Journal of Clinical Medicine Article Role of C5aR1 and C5L2 Receptors in Ischemia-Reperfusion Injury Carlos Arias-Cabrales 1,* , Eva Rodriguez-Garcia 1, Javier Gimeno 2, David Benito 3, María José Pérez-Sáez 1, Dolores Redondo-Pachón 1, Anna Buxeda 1, Carla Burballa 1, Marta Crespo 1, Marta Riera 3,* and Julio Pascual 1,* 1 Department of Nephrology, Parc de Salut Mar, 08003 Barcelona, Spain; [email protected] (E.R.-G.); [email protected] (M.J.P.-S.); [email protected] (D.R.-P.); [email protected] (A.B.); [email protected] (C.B.); [email protected] (M.C.) 2 Department of Pathology, Parc de Salut Mar, 08003 Barcelona, Spain; [email protected] 3 Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, 08003 Barcelona, Spain; [email protected] * Correspondence: [email protected] (C.A.-C.); [email protected] (M.R.); [email protected] (J.P.) Abstract: The role of C5a receptors (C5aR1 and C5L2) in renal ischemia-reperfusion injury (IRI) is uncertain. We generated an in vitro model of hypoxia/reoxygenation with human proximal tubule epithelial cells to mimic some IRI events. C5aR1, membrane attack complex (MAC) and factor H (FH) deposits were evaluated with immunofluorescence. Quantitative polymerase chain reaction evaluated the expression of C5aR1, C5L2 genes as well as genes related to tubular injury, inflammation, and profibrotic pathways. Additionally, C5aR1 and C5L2 deposits were evaluated in kidney graft biopsies (KB) from transplant patients with delayed graft function (DGF, n = 12) and compared with Citation: Arias-Cabrales, C.; a control group (n = 8). We observed higher immunofluorescence expression of C5aR1, MAC and FH Rodriguez-Garcia, E.; Gimeno, J.; as higher expression of genes related to tubular injury, inflammatory and profibrotic pathways and Benito, D.; Pérez-Sáez, M.J.; of C5aR1 in the hypoxic cells; whereas, C5L2 gene expression was unaffected by the hypoxic stimulus.
    [Show full text]
  • The Membrane Complement Regulatory Protein CD59 and Its Association with Rheumatoid Arthritis and Systemic Lupus Erythematosus
    Current Medicine Research and Practice 9 (2019) 182e188 Contents lists available at ScienceDirect Current Medicine Research and Practice journal homepage: www.elsevier.com/locate/cmrp Review Article The membrane complement regulatory protein CD59 and its association with rheumatoid arthritis and systemic lupus erythematosus * Nibhriti Das a, Devyani Anand a, Bintili Biswas b, Deepa Kumari c, Monika Gandhi c, a Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India b Department of Zoology, Ramjas College, University of Delhi, India c University School of Biotechnology, Guru Gobind Singh Indraprastha University, India article info abstract Article history: The complement cascade consisting of about 50 soluble and cell surface proteins is activated in auto- Received 8 May 2019 immune inflammatory disorders. This contributes to the pathological manifestations in these diseases. In Accepted 30 July 2019 normal health, the soluble and membrane complement regulatory proteins protect the host against Available online 5 August 2019 complement-mediated self-tissue injury by controlling the extent of complement activation within the desired limits for the host's benefit. CD59 is a membrane complement regulatory protein that inhibits the Keywords: formation of the terminal complement complex or membrane attack complex (C5b6789n) which is CD59 generated on complement activation by any of the three pathways, namely, the classical, alternative, and RA SLE the mannose-binding lectin pathway. Animal experiments and human studies have suggested impor- Pathophysiology tance of membrane complement proteins including CD59 in the pathophysiology of rheumatoid arthritis Disease marker (RA) and systemic lupus erythematosus (SLE). Here is a brief review on CD59 and its distribution, structure, functions, and association with RA and SLE starting with a brief introduction on the com- plement system, its activation, the biological functions, and relations of membrane complement regu- latory proteins, especially CD59, with RA and SLE.
    [Show full text]
  • An Anticomplement Agent That Homes to the Damaged Brain and Promotes Recovery After Traumatic Brain Injury in Mice
    An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice Marieta M. Rusevaa,1,2, Valeria Ramagliab,1, B. Paul Morgana, and Claire L. Harrisa,3 aInstitute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and bDepartment of Genome Analysis, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands Edited by Douglas T. Fearon, Cornell University, Cambridge, United Kingdom, and approved September 29, 2015 (received for review July 15, 2015) Activation of complement is a key determinant of neuropathology to rapidly and specifically inhibit MAC at sites of complement and disability after traumatic brain injury (TBI), and inhibition is activation, and test its therapeutic potential in experimental TBI. neuroprotective. However, systemic complement is essential to The construct, termed CD59-2a-CRIg, comprises CD59a linked fight infections, a critical complication of TBI. We describe a to CRIg via the murine IgG2a hinge. CD59a prevents assembly targeted complement inhibitor, comprising complement receptor of MAC in cell membranes (16), whereas CRIg binds C3b/iC3b of the Ig superfamily (CRIg) fused with complement regulator CD59a, deposited at sites of complement activation (17). The IgG2a designed to inhibit membrane attack complex (MAC) assembly at hinge promotes dimerization to increase ligand avidity. CD59- sites of C3b/iC3b deposition. CRIg and CD59a were linked via the 2a-CRIg protected in the TBI model, demonstrating that site- IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b targeted anti-MAC therapeutics may be effective in prevention binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited of secondary neuropathology and improve neurologic recovery MAC formation and prevented complement-mediated lysis in vitro.
    [Show full text]
  • Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using Radioiodinatedfab Fragments of Monoclonal Antibodies
    Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using RadioiodinatedFab Fragments of Monoclonal Antibodies By Jon Smythe, Brigitte Gardner, andDavid J. Anstee Two rat monoclonal antibodies (BRAC 1 and BRAC 1 1 ) cytes. Fabfragments of BRAC 1 1 and ERIC 10 gave values have been produced. BRAC 1 recognizes an epitope com- of 143,000 molecules GPC per red blood cell (RBC). Fab mon to the human erythrocyte membrane glycoproteins fragments of BRAC1 gave 225,000 molecules of GPC and glycophorin C (GPC) and glycophorin D (GPD). BRAC 11 GPD per RBC. These results indicate that GPC and GPD is specific for GPC. Fabfragments of these antibodies and together are sufficiently abundantto provide membrane at- BRlC 10, a murine monoclonal anti-GPC,were radioiodin- tachment sites for all ofthe protein 4.1 in normal RBCs. ated and used in quantitative binding assays to measure 0 1994 by The American Societyof Hematology. the number of GPC and GPD molecules on normal erythro- HE SHAPE AND deformability of the mature human (200,000)" and those reported for GPC (50,000).7 This nu- Downloaded from http://ashpublications.org/blood/article-pdf/83/6/1668/612763/1668.pdf by guest on 24 September 2021 T erythrocyte is controlled by a flexible two-dimensional merical differencehas led to the suggestion that a significant lattice of proteins, which together comprise the membrane proportion of protein 4.1 in normal erythrocyte membranes skeleton.' The major components of the skeleton are spec- must be bound to sites other than GPC and GPD.3 The trin, actin, ankyrin, and protein 4.1.
    [Show full text]
  • Immuno 2014 No. 1
    Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 1, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 1, 2014 CONTENTS R EPORT 1 Indirect antiglobulin test-crossmatch using low-ionic-strength saline–albumin enhancement medium and reduced incubation time: effectiveness in the detection of most clinically significant antibodies and impact on blood utilization C.L. Dinardo, S.L. Bonifácio, and A. Mendrone, Jr. R EV I EW 6 Raph blood group system M. Hayes R EPORT 11 I-int phenotype among three individuals of a Parsi community from Mumbai, India S.R. Joshi C A SE R EPORT 14 Evans syndrome in a pediatric liver transplant recipient with an autoantibody with apparent specificity for the KEL4 (Kpb) antigen S.A. Koepsell, K. Burright-Hittner, and J.D. Landmark R EV I EW 18 JMH blood group system: a review S.T. Johnson R EPORT 24 Demonstration of IgG subclass (IgG1 and IgG3) in patients with positive direct antiglobulin tests A. Singh, A. Solanki, and R. Chaudhary I N M EMOR ia M 28 George Garratty, 1935–2014 Patricia A. Arndt and Regina M. Leger 30 A NNOUNCEMENTS 34 A DVERT I SEMENTS 39 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M. Ness, MD Pomona, California Baltimore, Maryland M A N AG I NG E D I TOR James P.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Gene List HTG Edgeseq Immuno-Oncology Assay
    Gene List HTG EdgeSeq Immuno-Oncology Assay Adhesion ADGRE5 CLEC4A CLEC7A IBSP ICAM4 ITGA5 ITGB1 L1CAM MBL2 SELE ALCAM CLEC4C DST ICAM1 ITGA1 ITGA6 ITGB2 LGALS1 MUC1 SVIL CDH1 CLEC5A EPCAM ICAM2 ITGA2 ITGAL ITGB3 LGALS3 NCAM1 THBS1 CDH5 CLEC6A FN1 ICAM3 ITGA4 ITGAM ITGB4 LGALS9 PVR THY1 Apoptosis APAF1 BCL2 BID CARD11 CASP10 CASP8 FADD NOD1 SSX1 TP53 TRAF3 BCL10 BCL2L1 BIRC5 CASP1 CASP3 DDX58 NLRP3 NOD2 TIMP1 TRAF2 TRAF6 B-Cell Function BLNK BTLA CD22 CD79A FAS FCER2 IKBKG PAX5 SLAMF1 SLAMF7 SPN BTK CD19 CD24 EBF4 FASLG IKBKB MS4A1 RAG1 SLAMF6 SPI1 Cell Cycle ABL1 ATF1 ATM BATF CCND1 CDK1 CDKN1B NCL RELA SSX1 TBX21 TP53 ABL2 ATF2 AXL BAX CCND3 CDKN1A EGR1 REL RELB TBK1 TIMP1 TTK Cell Signaling ADORA2A DUSP4 HES1 IGF2R LYN MAPK1 MUC1 NOTCH1 RIPK2 SMAD3 STAT5B AKT3 DUSP6 HES5 IKZF1 MAF MAPK11 MYC PIK3CD RNF4 SOCS1 STAT6 BCL6 ELK1 HEY1 IKZF2 MAP2K1 MAPK14 NFATC1 PIK3CG RORC SOCS3 SYK CEBPB EP300 HEY2 IKZF3 MAP2K2 MAPK3 NFATC3 POU2F2 RUNX1 SPINK5 TAL1 CIITA ETS1 HEYL JAK1 MAP2K4 MAPK8 NFATC4 PRKCD RUNX3 STAT1 TCF7 CREB1 FLT3 HMGB1 JAK2 MAP2K7 MAPKAPK2 NFKB1 PRKCE S100B STAT2 TYK2 CREB5 FOS HRAS JAK3 MAP3K1 MEF2C NFKB2 PTEN SEMA4D STAT3 CREBBP GATA3 IGF1R KIT MAP3K5 MTDH NFKBIA PYCARD SMAD2 STAT4 Chemokine CCL1 CCL16 CCL20 CCL25 CCL4 CCR2 CCR7 CX3CL1 CXCL12 CXCL3 CXCR1 CXCR6 CCL11 CCL17 CCL21 CCL26 CCL5 CCR3 CCR9 CX3CR1 CXCL13 CXCL5 CXCR2 MST1R CCL13 CCL18 CCL22 CCL27 CCL7 CCR4 CCRL2 CXCL1 CXCL14 CXCL6 CXCR3 PPBP CCL14 CCL19 CCL23 CCL28 CCL8 CCR5 CKLF CXCL10 CXCL16 CXCL8 CXCR4 XCL2 CCL15 CCL2 CCL24 CCL3 CCR1 CCR6 CMKLR1 CXCL11 CXCL2 CXCL9 CXCR5
    [Show full text]
  • CD59: a Long-Known Complement Inhibitor Has Advanced to a Blood Group System
    B LOOD G ROUP R EVIEW CD59: A long-known complement inhibitor has advanced to a blood group system C. Weinstock, M. Anliker, and I. von Zabern The blood group system number 35 is based on CD59, a 20-kDa by Zalman et al.1 from the group of H.J. Muller-Eberhard in La membrane glycoprotein present on a large number of different Jolla, California, and in 1988 by Schönermark et al. from the cells, including erythrocytes. The major function of CD59 is to group of G.M. Hänsch in Heidelberg (Germany).2 This inhibitor protect cells from complement attack. CD59 binds to complement components C8 and C9 and prevents the polymerization of C9, was published under the designations “HRF (homologous which is required for the formation of the membrane attack restriction factor)” and “C8bp (C8 binding protein),” complex (MAC). Other functions of CD59 in cellular immunity respectively, to describe its properties.1,2 “C8bp” indicates the are less well defined. CD59 is inserted into the membrane by a glycosylphosphatidylinositol (GPI) anchor. A defect of this anchor binding capacity for C8. The name “HRF” points to a species causes lack of this protein from the cell membrane, which leads to incompatibility of this “factor” that provides protection from an enhanced sensitivity towards complement attack. Patients with complement attack more effectively in a homologous (e.g., paroxysmal nocturnal hemoglobinuria (PNH) harbor a varying human erythrocytes as a target of human complement) than in percentage of red blood cell clones with a defect in GPI-anchored proteins, including CD59. The most characteristic symptoms of a heterologous system (e.g., human erythrocytes as a target of this disease are episodes of hemolysis and thromboses.
    [Show full text]
  • Introduction to the Rh Blood Group.Pdf
    Introduction to the Rhesus Blood Group Justin R. Rhees, M.S., MLS(ASCP)CM, SBBCM University of Utah Department of Pathology Medical Laboratory Science Program Objectives 1. Describe the major Rhesus (Rh) blood group antigens in terms of biochemical structure and inheritance. 2. Describe the characteristics of Rh antibodies. 3. Translate the five major Rh antigens, genotypes, and haplotypes from Fisher-Race to Wiener nomenclature. 4. State the purpose of Fisher-Race, Wiener, Rosenfield, and ISBT nomenclatures. Background . How did this blood group get its name? . 1937 Mrs. Seno; Bellevue hospital . Unknown antibody, unrelated to ABO . Philip Levine tested her serum against 54 ABO-compatible blood samples: only 13 were compatible. Rhesus (Rh) blood group 1930s several cases of Hemolytic of the Fetus and Newborn (HDFN) published. Hemolytic transfusion reactions (HTR) were observed in ABO- compatible transfusions. In search of more blood groups, Landsteiner and Wiener immunized rabbits with the Rhesus macaque blood of the Rhesus monkeys. Rhesus (Rh) blood group 1940 Landsteiner and Wiener reported an antibody that reacted with about 85% of human red cell samples. It was supposed that anti-Rh was the specificity causing the “intragroup” incompatibilities observed. 1941 Levine found in over 90% of erythroblastosis fetalis cases, the mother was Rh-negative and the father was Rh-positive. Rhesus macaque Rhesus (Rh) blood group Human anti-Rh and animal anti- Rh are not the same. However, “Rh” was embedded into blood group antigen terminology. The
    [Show full text]
  • Rabbit Anti-Phospho-CD18-SL10462R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-Phospho-CD18 SL10462R-FITC Product Name: Anti-Phospho-CD18 (Thr758)/FITC Chinese Name: FITC标记的磷酸化整合素β2/Integrin β2抗体 CD18 (Phospho Thr758); CD18 (Phospho-Thr758); CD18 (Phospho T758); p-CD18 (T758); p-CD18 (Thr758); Integrin beta 2; 95 subunit beta; CD 18; CD18; Cell surface adhesion glycoprotein LFA 1/CR3/P150,959 beta subunit precursor); Cell surface adhesion glycoproteins LFA 1/CR3/p150,95 subunit beta; Cell surface adhesion glycoproteins LFA-1/CR3/p150; Complement receptor C3 beta subunit; Complement Alias: receptor C3 subunit beta; Integrin beta chain beta 2; Integrin beta-2; Integrin, beta 2 (complement component 3 receptor 3 and 4 subunit); ITB2_HUMAN; ITGB2; LAD; LCAMB; Leukocyte associated antigens CD18/11A, CD18/11B, CD18/11C; Leukocyte cell adhesion molecule CD18; LFA 1; LFA1; Lymphocyte function associated antigen 1; MAC 1; MAC1; MF17; MFI7; OTTHUMP00000115278; OTTHUMP00000115279; OTTHUMP00000115280; OTTHUMP00000115281; OTTHUMP00000115282. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig,Cow,Horse,Rabbit,Sheep,Guinea Pig, Flow-Cyt=1:50-200ICC=1:50-200IF=1:50-200www.sunlongbiotech.com Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 82kDa Form: Lyophilized or Liquid Concentration: 1mg/ml KLH conjugated synthesised phosphopeptide derived from human CD18 around the immunogen: phosphorylation site of Thr758 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year.
    [Show full text]
  • 3407 M16141436 19 3.Pdf
    Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 19, NUMBER 3, 2003 CONTENTS 73 DNA analysis for donor screening of Dombrock blood group antigens J.R. STORRY, C.M.WESTHOFF,D.CHARLES-PIERRE,M.RIOS,K.HUE-ROYE,S.VEGE,S.NANCE, AND M.E. REID 77 Studies on the Dombrock blood group system in non-human primates C. MOGOS,A.SCHAWALDER,G.R. HALVERSON, AND M.E. REID 83 Murine monoclonal antibodies can be used to type RBCs with a positive DAT G.R. HALVERSON,P.HOWARD,H.MALYSKA,E.TOSSAS, AND M.E. REID 86 Rh antigen and phenotype frequencies and probable genotypes for the four main ethnic groups in Port Harcourt, Nigeria Z.A. JEREMIAH AND F.I. BUSERI 89 Antibodies detected in samples from 21,730 pregnant women S. JOVANOVIC-SRZENTIC,M.DJOKIC,N.TIJANIC,R.DJORDJEVIC,N.RIZVAN,D.PLECAS, AND D. FILIMONOVIC 93 BOOK REVIEWS S. GERALD SANDLER,MD THERESA NESTER,MD 95 COMMUNICATIONS Letter to the Editors Letter From the Editors Irregular RBC antibodies in the Ortho Dedication sera of Brazilian pregnant women 97 IN MEMORIAM BERTIL CEDEGREN,MD 98 99 ANNOUNCEMENTS ADVERTISEMENTS 103 INSTRUCTIONS FOR AUTHORS EDITOR-IN-CHIEF MANAGING EDITOR Delores Mallory, MT(ASCP)SBB Mary H. McGinniss,AB, (ASCP)SBB Rockville, Maryland Bethesda, Maryland TECHNICAL EDITOR SENIOR MEDICAL EDITOR Christine Lomas-Francis, MSc Scott Murphy, MD New York, New York Philadelphia, Pennsylvania ASSOCIATE MEDICAL EDITORS S. Gerald Sandler, MD Geralyn Meny, MD Ralph Vassallo, MD Washington, District of Columbia Philadelphia, Pennsylvania Philadelphia, Pennsylvania EDITORIAL BOARD Patricia Arndt, MT(ASCP)SBB W.
    [Show full text]