Calcium-Silicate Hydrates Containing Aluminium: C-A-S-H II
Total Page:16
File Type:pdf, Size:1020Kb
2nd WORKSHOP Calcium-Silicate Hydrates Containing Aluminium: C-A-S-H II © S. Churakov Empa, Dübendorf, Switzerland April 23 – 24, 2018 Calcium-Silicate Hydrates Containing Aluminium: C-A-S-H II Abstracts are ordered alphabetically according to the presentating author Presentation author Title of the abstracts Page number Andalibi, M. Reya On the mesoscale mechanism of synthetic calcium–silicate–hydrate precipitation: a population balance modeling approach ....................................1 Barzgar, Sonya Effect of aluminium on C-S-H structure, stability and solubility ......................2 Bellmann, Frank Analysis of C-S-H growth rates in supersaturated conditions ..........................3 Bernard, Ellina Effect of magnesium on C-A-S-H .....................................................................4 Blanc, Philippe Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: results from direct measurements and predictive modelling .........................................5 Churakov, Sergey Molecular level insight into ions uptale by C-(A)-S-H ......................................6 d'Espinose, Jean-Baptiste Molecular understanding of tricalcium silicate hydration in absence and in presence of aluminate ions ......................................................................7 Dufrêche, Jean-François Multi-scale modelling of silica interfaces: the role of the charges .......8 Fernandez-Martinez, Alejandro C-S-H nucleation pathways ......................................................9 Geng, Guoqing Studying the intrinsic mechanical properties of calcium (alumino)silicate hydrate using synchrotron-radiation-based high-pressure x-ray diffraction ....10 Grangeon, Sylvain Structure and reactivity of nanocrystalline calcium silicate hydrates: the parallel with clay minerals ...............................................................................11 Hay, Rotana Effect of aluminum inclusion on morphology and mechanical properties of calcium alumino silicate hydrate .....................................................................13 Heinz, Hendrik A C-S-H builder and interface modeling tools towards accurate reactive full electrolyte simulations of cement materials up to the micrometer scale ........14 John, Elisabeth The impact of the calcium to silicon ratio of C-S-H crystall seeds .................15 Kalinichev, Andrey Atomistic modeling of the structure and dynamics of water and ions in calcium silicate hydrate and calcium aluminate hydrate phases ......................16 Kangni-Foli, Ekoe Carbonation of low calcium C-A-S-H .............................................................17 Ke, Xinyuan Chloride sorption onto C-(N)-A-S-H gels as a function of Ca/Si and Al/Si ratios ................................................................................................................18 Kulik, Dmitrii C-A-S-H solid solutions: multisite vs quasichemical? ...................................19 Kunhi Mohamed, Aslam Atomic structure of Calcium Silicate Hydrate ....................................20 Labbez, Christophe From nucleation to particle assemblage: what can we learn from mesoscopic simulations ? ....................................................................................................21 Lefèvre, Grégory Probing the solid/solution interface by in situ real-time infrared spectroscopy .........................................................................................................................22 Li, Jiaqi Synchrotron-based characterization of the chemistry and structure of calcium (alumino) silicate hydrate ................................................................................23 Liu, Sanheng Effect of Al on the dissolution rates of glass in hyperalkaline solutions ........24 Lothenbach, Barbara Calcium silicate hydrates with aluminium .......................................................25 Mancini, Andrea Uptake of aluminium and iron by C-S-H .........................................................26 Miron, Dan Extending GEMSFITS to THERMOFIT for using THERMOEXP experimental database for C-(A)-S-H ..............................................................27 Miron, Dan A PHREEQC version of CEMDATA'18 generated using ThermoMatch .......28 Naber, Christoph C-S-H precipitation kinetics in C3S paste and suspension ..............................29 Nguyen Tuan, Long Simulation of growing C-S-H phases using 3D sheet growth model .............30 Palacios, Marta New insights into the early reaction of alkaliactivated slag cements ...............31 Patel, Ravi Ajitbhai Multiscale modeling of ion transport in cementitous system: Surface charge effects ...............................................................................................................32 Plusquellec, Gilles Interaction between C-(A-)S-H and anions .....................................................33 Prentice, Dale Thermodynamic modelling of synthetic C(-A)-S-H using the pitzer model – what is gained? .................................................................................................34 Rößler, Christiane Characterisation of C-(A)-S-H phases using selected area diffraction in the TEM ................................................................................................................35 Siramont, Jirawan Synthetic Calcium Silicate Hydrate –formation kinetics – the key to understanding cement microstructures ............................................................36 Steindl, Florian Roman Uptake of heavy metal ions during C-S-H precipitation .....................37 Taube, Franziska Investigations on the intercalation of An(III)/Ln(III)-malate complexes in CSH phases ......................................................................................................38 Veryazov, Valera Multiscale (force field - semiempirical - density functional - ab initio) modelling of C-A-S-H .....................................................................................39 Walker, Colin C-S-H gel solubility modeling at high temperatures .......................................40 Wolter, Jan-Martin Stability of U(VI) and CM(III) doped calcium silicate hydrate phases in high saline brines .....................................................................................................41 Yamada, Kazuo Alkali uptake evaluations of C-A-S-H with structure analysis by NMR and degradated OPC paste ......................................................................................42 Yan, Yiru Structural and mechanical property determination of calcium silicate hydrate (C-S-H): a theoretical and experimental study ................................................43 Yang, Sheng-Yu The role of Aluminum in Calcium Silicate Hydrate Phases: A Multinuclear Solid-State NMR investigation ........................................................................44 Yin, Chennying Influence of calcium to silica ratio on H2 gas production in calcium silicate hydrate .............................................................................................................45 On the mesoscale mechanism of synthetic calcium–silicate–hydrate precipitation: a population balance modeling approach Andalibi, M. R.1,2), Bowen, P.2) , Testino, A.1) 1) Energy and Environment Research Department, Paul Scherrer Institute (PSI), Villigen-PSI, Switzerland 2) Materials Institute, Powder Technology Laboratory (LTP), EPFL, Lausanne, Switzerland Corresponding author: Andalibi, M. R., email: [email protected] Calcium–silicate–hydrate (C–S–H) is the most important product of cement hydration. Despite this importance, its formation mechanism is not well-understood. Here, we describe the novel application of a coupled thermodynamic-kinetic computational model based on a population balance equation in order to unravel the overall mechanism of synthetic C–S–H precipitation. The framework, embracing primary nucleation, true secondary nucleation, and molecular growth as the constituting sub-processes, is regressed to experimental Ca2+(aq) concentration vs. time data collected on a model synthetic C–S–H with Ca : Si = 2. Upon the critical appraisal of the model's adjustable parameters, which turn out to adopt rational values, simulations were performed to estimate various characteristics of the aforementioned model system (e.g., the kinetic speciation during the precipitation process, or the mechanisms and activation free energies of nucleation and growth phenomena). We mechanistically account for the evolution of the C–S–H mesostructure which is made up of defective crystallites around 3–6 nm thick, nematically packing together in two dimensions giving rise to foil- like polycrystalline particles around 100 nm in breadth, close to the experimentally observed values. The computational framework is generic and can be applied to other precipitation systems and cement hydration scenarios. Figure 1: Schematic representation of C-S-H structure, from atomistic- to particle scale (~ 100 nm), and the proposed precipitation pathway (on the right); the differential equation at the bottom is the population balance equation which constitutes the core component of our computational framework. 1 Effect of aluminium on C-S-H structure, stability and solubility Barzgar, S.1,2), Lothenbach, B.1), Ludwig, C. 2,3) 1) Empa, Laboratory of Concrete/ Construction Chemistry, 8610 Dübendorf, Switzerland 2) École Polytechnique Fédéral de Lausanne (EPFL), ENAC IIE GR-LUD, 1015 Lausanne, Switzerland 3) Paul Scherrer Institute (PSI), ENE LBK