Understanding the Dynamic Regulation of SOCS3 – Nikoletta Kalenderoglou – November 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Modelling Explains Distinct STAT1 and STAT3
bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title Quantitative modelling explains distinct STAT1 and STAT3 activation dynamics in response to both IFNγ and IL-10 stimuli and predicts emergence of reciprocal signalling at the level of single cells. 1,2, 3 1 1 1 1 1 2 Sarma U , Maitreye M , Bhadange S , Nair A , Srivastava A , Saha B , Mukherjee D . 1: National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India. 2 : Corresponding author. [email protected] , [email protected] 3: Present address. Labs, Persistent Systems Limited, Pingala – Aryabhata, Erandwane, Pune, 411004 India. bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Cells use IFNγ-STAT1 and IL-10-STAT3 pathways primarily to elicit pro and anti-inflammatory responses, respectively. However, activation of STAT1 by IL-10 and STAT3 by IFNγ is also observed. The regulatory mechanisms controlling the amplitude and dynamics of both the STATs in response to these functionally opposing stimuli remains less understood. Here, our experiments at cell population level show distinct early signalling dynamics of both STAT1 and STAT3(S/1/3) in responses to IFNγ and IL-10 stimulation. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
SOCS3 Antibody A
Revision 1 C 0 2 - t SOCS3 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 3 2 Web: [email protected] 9 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Endogenous 26 Rabbit O14543 9021 Product Usage Information 5. Bjørbaek, C. et al. (1998) Mol Cell 1, 619-25. 6. Adams, T.E. et al. (1998) J Biol Chem 273, 1285-7. Application Dilution 7. Soriano, S.F. et al. (2002) J Exp Med 196, 311-21. 8. Emanuelli, B. et al. (2000) J Biol Chem 275, 15985-91. Western Blotting 1:1000 9. Stoiber, D. et al. (1999) J Immunol 163, 2640-7. 10. Stoiber, D. et al. (2001) J Immunol 166, 466-72. Storage 11. Roberts, A.W. et al. (2001) Proc Natl Acad Sci USA 98, 9324-9. 12. Seki, Y. et al. (2003) Nat Med 9, 1047-54. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 13. Shouda, T. et al. (2001) J Clin Invest 108, 1781-8. glycerol. Store at –20°C. Do not aliquot the antibody. 14. Fang, M. et al. (2005) Cell Mol Immunol 2, 373-7. 15. Goren, I. et al. (2006) J Invest Dermatol 126, 477-85. Specificity / Sensitivity 16. Mori, H. et al. (2004) Nat Med 10, 739-43. 17. -
Japanese Encephalitis Virus Upregulates the Expression of SOCS3 in Mouse Brain and Raw264.7 Cells
Viruses2014, 6, 4280-4293; doi:10.3390/v6114280 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Japanese Encephalitis Virus Upregulates the Expression of SOCS3 in Mouse Brain and Raw264.7 Cells Xiangmin Li 1,2, Qiaoyan Zhu 2, Qishu Cao 2, Huanchun Chen 1,2 and Ping Qian 1,2,* 1 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: [email protected] (X.L.); [email protected] (H.C.) 2 Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; E-Mails: [email protected] (Q.Z.); [email protected] (Q.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-27-87282608. External Editor: Eric O. Freed Received: 29 August 2014; in revised form: 21 October 2014 / Accepted: 23 October 2014 / Published: 10 November 2014 Abstract: Japanese encephalitis virus (JEV) is one of the pathogens that can invade the central nervous system, causing acute infection and inflammation of brain. SOCS3 protein plays a vital role in immune processes and inflammation of the central nervous system. In this study, Raw264.7 cells and suckling mice were infected with JEV, and SOCS3 expression was analyzed by the gene expression profile, semiquantitative RT-PCR, qRT-PCR, immunohistochemistry (IHC) and Western blot. Results indicated that 520 genes were found to be differentially expressed (fold change ≥ 2.0, p < 0.05) in total. The differentially regulated genes were involved in biological processes, such as stimulus response, biological regulation and immune system processes. -
Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity Article Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity Jeffrey J. Babon,1,2,5,* Nadia J. Kershaw,1,3,5 James M. Murphy,1,2,5 Leila N. Varghese,1,2 Artem Laktyushin,1 Samuel N. Young,1 Isabelle S. Lucet,4 Raymond S. Norton,1,2,6 and Nicos A. Nicola1,2,* 1Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, VIC, Australia 2The University of Melbourne, Royal Parade, Parkville, 3050, VIC, Australia 3Ludwig Institute for Cancer Research, Royal Pde, Parkville, 3050, VIC, Australia 4Monash University, Wellington Rd, Clayton, 3800, VIC, Australia 5These authors contributed equally to this work 6Present address: Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia *Correspondence: [email protected] (J.J.B.), [email protected] (N.A.N.) DOI 10.1016/j.immuni.2011.12.015 SUMMARY Genetic deletion of each individual JAK leads to various immunological and hematopoietic defects; however, aberrant Janus kinases (JAKs) are key effectors in controlling activation of JAKs can be likewise pathological. Three myelopro- immune responses and maintaining hematopoiesis. liferative disorders (polycythemia vera, essential thrombocythe- SOCS3 (suppressor of cytokine signaling-3) is a mia, and primary myelofibrosis) are caused by a single point major regulator of JAK signaling and here we investi- mutation in JAK2 (JAK2V617F)(James et al., 2005; Levine et al., gate the molecular basis of its mechanism of action. -
Expression of SOCS1 and SOCS3 Genes Is Differentially Regulated in Breast Cancer Cells in Response to Proinflammatory Cytokine and Growth Factor Signals
Oncogene (2007) 26, 1941–1948 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals MK Evans1, C-R Yu2, A Lohani1, RM Mahdi2, X Liu2, AR Trzeciak1 and CE Egwuagu2 1Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA and 2Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA DNA-hypermethylation of SOCS genes in breast, ova- Keywords: breast-cancer cells; SOCS; breast cancer; STAT; rian, squamous cell and hepatocellular carcinoma has led BRCA1; DNA hypermethylation; interferon to speculation that silencing of SOCS1 and SOCS3 genes might promote oncogenic transformation of epithelial tissues. To examine whether transcriptional silencing of SOCS genes is a common feature of human carcinoma, we have investigated regulation of SOCS genes expression by Introduction IFNc, IGF-1 and ionizing radiation, in a normal human mammary epithelial cell line (AG11134), two breast- Development of the mammary gland is regulated by cancer cell lines (MCF-7, HCC1937) and three prostate factors that coordinate proliferation, differentiation, cancer cell lines. Compared to normal breast cells, we maturation and apoptosis of mammary epithelial cells. observe a high level constitutive expression of SOCS2, Exquisite control of the initiation, strength and duration SOCS3, SOCS5, SOCS6, SOCS7, CIS and/or SOCS1 of signals from the diverse array of cytokines and genes in the human cancer cells. In MCF-7 and HCC1937 growth factors in mammalian breast is essential to the breast-cancer cells, transcription of SOCS1 is dramati- timely initiation of the menstrual cycle, lactation or cally up-regulated by IFNc and/or ionizing-radiation breast lobule involution (Medina, 2005). -
Structural Insights Into Substrate Recognition by the SOCS2 E3 Ubiquitin Ligase
bioRxiv preprint doi: https://doi.org/10.1101/470187; this version posted March 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title 2 Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase 3 4 Authors 5 Wei-Wei Kung*, Sarath Ramachandran*, Nikolai Makukhin*, Elvira Bruno, Alessio Ciulli 6 *These authors contributed equally to this work 7 8 Address 9 Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of 10 Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom 11 12 Abstract 13 The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a 14 Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes 15 as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of 16 substrate recognition has remained elusive. We solved co-crystal structures of SOCS2- 17 ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth 18 hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 19 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the 20 canonical SH2 domain-pY pose, yet capture different conformations of the EF loop via 21 specific hydrophobic interactions. The flexible BG loop, for the first time fully defined in the 22 electron density, does not contact the substrate degrons directly. Cancer-associated SNPs 23 located around the pY pocket weaken substrate-binding affinity in biophysical assays. -
The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia
cancers Review The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia Esra’a Keewan 1,2 and Ksenia Matlawska-Wasowska 1,2,* 1 Department of Pediatrics, Division of Hematology and Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; [email protected] 2 Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA * Correspondence: [email protected]; Tel.: +1-505-272-6177 Simple Summary: The suppressors of cytokine signaling (SOCS) are known cytokine-inducible negative regulators of JAK/STAT and other cell signaling pathways. Deregulation of SOCS expression is linked to various tumor types and inflammatory diseases. While SOCS play a crucial role in the regulation of immune cell function, their roles in hematological malignancies have not been elucidated thus far. In this review, we summarize the current knowledge on the roles of SOCS in leukemia development and progression. We delineate the paradoxical activities of SOCS in different leukemia types and the regulatory mechanisms underlying SOCS deregulation in leukemia. Lastly, we discuss the possible implications of SOCS deregulation for leukemia diagnosis and prognosis. This paper provides new insights into the roles of SOCS in the pathobiology of leukemia and leukemia research. Abstract: Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular Citation: Keewan, E.; signaling cascades in the target cell that bring about a wide range of cellular responses, including Matlawska-Wasowska, K. The induction of cell proliferation, migration, differentiation, and apoptosis. -
Potential Implications for SOCS in Chronic Wound Healing
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 38: 1349-1358, 2016 Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing YI FENG1, ANDREW J. SANDERS1, FIONA RUGE1,2, CERI-ANN MORRIS2, KEITH G. HARDING2 and WEN G. JIANG1 1Cardiff China Medical Research Collaborative and 2Wound Healing Research Unit, Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, UK Received April 12, 2016; Accepted August 2, 2016 DOI: 10.3892/ijmm.2016.2733 Abstract. Cytokines play important roles in the wound an imbalance between proteinases and their inhibitors, and healing process through various signalling pathways. The the presence of senescent cells is of importance in chronic JAK-STAT pathway is utilised by most cytokines for signal wounds (1). A variety of treatments, such as dressings, appli- transduction and is regulated by a variety of molecules, cation of topical growth factors, autologous skin grafting and including suppressor of cytokine signalling (SOCS) proteins. bioengineered skin equivalents have been applied to deal SOCS are associated with inflammatory diseases and have with certain types of chronic wounds in addition to the basic an impact on cytokines, growth factors and key cell types treatments (1). However, the specific mechanisms of each trea- involved in the wound-healing process. SOCS, a negative ment remain unclear and are under investigation. Therefore, regulator of cytokine signalling, may hold the potential more insight into the mechanisms responsible are required to regulate cytokine-induced signalling in the chronic to gain a better understanding of the wound-healing process. wound-healing process. Wound edge tissues were collected Further clarification of this complex system may contribute to from chronic venous leg ulcer patients and classified as non- the emergence of a prognositc marker to predict the healing healing and healing wounds. -
SOCS7 Antibody Cat
SOCS7 Antibody Cat. No.: 58-953 SOCS7 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse This SOCS7 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 458-486 amino acids from the C-terminal region of human SOCS7. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 63 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig October 2, 2021 1 https://www.prosci-inc.com/socs7-antibody-58-953.html CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: SOCS7 Suppressor of cytokine signaling 7, SOCS-7, Nck, Ash and phospholipase C gamma-binding ALTERNATE NAMES: protein, Nck-associated protein 4, NAP-4, SOCS7, NAP4, SOCS6 ACCESSION NO.: O14512 GENE ID: 30837 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Regulates signaling cascades probably through protein ubiquitination and/or sequestration. Functions in insulin signaling and glucose homeostasis through IRS1 ubiquitination and subsequent proteasomal degradation. Inhibits also prolactin, growth BACKGROUND: hormone and leptin signaling by preventing STAT3 and STAT5 activation, sequestering them in the cytoplasm and reducing their binding to DNA. -
Opposing Roles of STAT1 and STAT3 in IL-21 Function in + CD4 T Cells
Opposing roles of STAT1 and STAT3 in IL-21 function in + CD4 T cells Chi-Keung Wana,1, Allison B. Andraskia,1,2, Rosanne Spolskia, Peng Lia, Majid Kazemiana, Jangsuk Oha, Leigh Samselb, Phillip A. Swanson IIc, Dorian B. McGavernc, Elizabeth P. Sampaiod, Alexandra F. Freemand, Joshua D. Milnere, Steven M. Hollandd, and Warren J. Leonarda,3 aLaboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674; bFlow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674; cViral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1674; dLaboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1674; and eLaboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1674 Contributed by Warren J. Leonard, June 18, 2015 (sent for review May 19, 2015; reviewed by Thomas R. Malek and Howard A. Young) + IL-21 is a type I cytokine essential for immune cell differentiation STAT1 to promote CD8 T-cell cytotoxicity and apoptosis of and function. Although IL-21 can activate several STAT family mantle cell lymphoma (16, 17). We now have elucidated the transcription factors, previous studies focused mainly on the role roles of STAT1 in IL-21 signaling and identified an interplay of STAT3 in IL-21 signaling. Here, we investigated the role of STAT1 between STAT1 and STAT3 in mediating the actions of IL-21 + and show that STAT1 and STAT3 have at least partially opposing in CD4 T cells, and have also found increased IL-21–mediated rolesinIL-21signalinginCD4+ T cells. -
Negative Regulation of Cytokine Signaling in Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Negative Regulation of Cytokine Signaling in Immunity Akihiko Yoshimura, Minako Ito, Shunsuke Chikuma, Takashi Akanuma, and Hiroko Nakatsukasa Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan Correspondence: [email protected] Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene tran- scriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4þ T cells and the maturation of CD8þ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity. here are four types of the cytokine receptors: (ERK) pathway (see Fig. 1). Any receptor that T(1) receptors that activate nuclear factor activates intracellular signaling pathways has (NF)-kB and mitogen-activated protein (MAP) multiple negative feedback systems, which en- kinases (mainly p38 and c-Jun amino-terminal sures transient activation of the pathway and kinase [JNK]), such as receptors for the tumor downstream transcription factors. Typical neg- necrosis factor (TNF)-a family, the interleukin ative regulators are shown in Figure 1. Lack of (IL)-1 family, including IL-1b, IL-18, and IL- such negative regulators results in autoimmune 33, and the IL-17 family; (2) receptors that diseases, autoinflammatory diseases, and some- activate the Janus kinase and signal transducers times-fatal disorders, including cancer.