Mercury's Global Contraction Much Greater Than Earlier Estimates

Total Page:16

File Type:pdf, Size:1020Kb

Mercury's Global Contraction Much Greater Than Earlier Estimates ARTICLES PUBLISHED ONLINE: 16 MARCH 2014 | DOI: 10.1038/NGEO2097 Mercury’s global contraction much greater than earlier estimates Paul K. Byrne1,2*†, Christian Klimczak1, A. M. Celâl Şengör3, Sean C. Solomon1,4, Thomas R. Watters5 and Steven A. Hauck, II6 Mercury, a planet with a lithosphere that forms a single tectonic plate, is replete with tectonic structures interpreted to be the result of planetary cooling and contraction. However, the amount of global contraction inferred from spacecraft images has been far lower than that predicted by models of the thermal evolution of the planet’s interior. Here we present a synthesis of the global contraction of Mercury from orbital observations acquired by the MESSENGER spacecraft. We show that Mercury’s global contraction has been accommodated by a substantially greater number and variety of structures than previously recognized, including long belts of ridges and scarps where the crust has been folded and faulted. The tectonic features on Mercury are consistent with models for large-scale deformation proposed for a globally contracting Earth—now obsolete—that pre-date plate tectonics theory. We find that Mercury has contracted radially by as much as 7 km, well in excess of the 0.8–3 km previously reported from photogeology and resolving the discrepancy with thermal models. Our findings provide a key constraint for studies of Mercury’s thermal history, bulk silicate abundances of heat-producing elements, mantle convection and the structure of its large metallic core. lobal contraction as a result of interior cooling was invoked MESSENGER began orbital operations at Mercury in 2011, thus as an explanation for mountain building and tectonic limiting the accuracy of earlier estimates of the amount of planetary Gdeformation on Earth in the nineteenth century1,2, but contraction accommodated by surface structures. Determining the the idea was abandoned even before the recognition of the extent to which Mercury contracted is key to understanding the horizontal mobility of tectonic plates3, with the realization that planet's thermal, tectonic and volcanic history. Earlier estimates of contraction cannot account for the amount, style and distribution Mercury's radial contraction since the last major episode of global of deformation on the Earth's surface4. Large-scale deformational resurfacing (by impact cratering and/or widespread volcanism10) systems on Earth are localized along plate margins, unlike the quasi- obtained from photogeological studies of tectonic landforms5,8,9,11,12 homogenous distribution of shortening structures predicted for a were in the range 0.8–3 km, substantially less than the ∼5–10 km contracting planet3. predicted by interior thermal history models13–15. However, other worlds in the Solar System do not exhibit plate The key to addressing these outstanding problems is to tectonics today, so the intriguing possibility exists that some of the characterize how contraction is manifest on Mercury through old concepts of contraction theory for global tectonics, long obsolete photogeological mapping of the entire planet, in as detailed a for Earth, may be valid for one-plate planets. Mercury, in particular, manner as current MESSENGER data allow. Here, we present the displays no evidence of plate boundaries that segment its globally results of the most comprehensive survey yet of Mercury's global continuous lithosphere. Yet observations made by the Mariner 10 contraction-induced tectonic features formed since the end of the and MErcury Surface, Space ENvironment, GEochemistry, and late heavy bombardment (LHB) of the inner Solar System. Wereport Ranging (MESSENGER) spacecraft have shown that the innermost the distribution, morphology and likely kinematic development of planet displays myriad landforms—lobate scarps, wrinkle ridges four classes of shortening structure on the planet. In quantifying and high-relief ridges—that have been interpreted as the tectonic the surface expression of global contraction on Mercury, we note result of horizontal shortening of the lithosphere as Mercury conceptual similarities between our observations of large-scale contracted in response to secular cooling of its interior5–9. crustal deformation on Mercury and explanations offered for a Still, important details of Mercury's contraction, such as the globally contracting Earth before the ascendance of plate tectonics timing, duration and spatial concentration of surface deformation, theory. From two complementary methods, we show that the have remained elusive. Until the MESSENGER flybys of Mercury planet experienced much greater contraction than has heretofore in 2008–2009, an entire hemisphere of Mercury had yet to been recognized. Our results resolve a decades-old paradox in our be imaged, so inferences made on the basis of Mariner 10 understanding of Mercury's geological history and provide the basis data could not reliably be generalized globally. Furthermore, for a general framework for investigating global tectonics on other widespread topographic data for the planet were not available until one-plate planets. 1Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA, 2Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas 77058, USA, 3Department of Geology, Faculty of Mines and the Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey, 4Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA, 5Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA, 6Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA. †Present address: Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas 77058, USA. *e-mail: [email protected] NATURE GEOSCIENCE | VOL 7 | APRIL 2014 | www.nature.com/naturegeoscience 301 © 2014 Macmillan Publishers Limited. All rights reserved. ARTICLES NATURE GEOSCIENCE DOI: 10.1038/NGEO2097 a b E B’ ° 0 1 48° E 3 60° N 62° N B A A’ Carnegie Rupes 30 150 km 30 50 250 km 50 A A’ B B’ −0.5 1.0 −0.7 0.5 −0.9 0.0 −0.5 Elevation (km) Elevation (km) 0 20 0 50 Distance (km) Distance (km) Figure 1 | Primary styles of thrust faulting on Mercury. a, A typical wrinkle ridge in the northern volcanic plains20; a topographic profile (along the line A–A’ shown in the top panel) shows its characteristic ridge-like morphology. b, Carnegie Rupes, a lobate scarp in Mercury’s northern hemisphere; in cross-section the structure is a steep, convex escarpment. Note the dierence in vertical relief across the two structures. Profiles are from MDIS stereo digital terrain models49; elevation values here and in subsequent figures are relative to a sphere of 2,440 km radius32. Azimuthal equidistant projections centred at 61.4◦ N, 49.9◦ E(a) and 59.1◦ N, 304.5◦ E(b). Classes of shortening structures In contrast to previous mapping studies that separated wrinkle Early descriptions of contractional deformation on Earth included ridges, lobate scarps and high-relief ridges (for example, ref. 9), two dominant styles of deformation. Large, stable regions (cratons), here most mapped shortening structures are classified by the outlined by mobile belts, are subject to shortening by means of primary terrain type—smooth plains18 or cratered plains (a term deeply rooted thrust faults (termed germanotype faults16) that we use to refer to both the intercrater plains and heavily cratered extend far into their interior. In contrast, the belts themselves are terrain units described from Mariner 10 images19)—in which composed of smaller, more densely grouped alpinotype faults16, they occur. Under this approach, most mapped landforms are some of which may root into the deeper structures. A third, classified as smooth plains structures or cratered plains structures now conceptually abandoned, type of shortening structure on (Supplementary Fig. 1). The remaining structures are either spatially Earth consisted of geosynclines and geanticlines, complementary associated with impact craters and so are termed crater-related long-wavelength fold structures that were hypothesized to deform or border areas of high-standing terrain and are catalogued as the entire lithosphere and were invoked to account for the high-terrain bounding. Long-wavelength undulations are mapped immense thicknesses of shallow-water sedimentary rocks observed as either troughs or crests on the basis of their elevation relative to in mountain belts1,2. surrounding terrain and the directions of tilt of crater floors on their In 1974–1975, Mariner 10 data revealed two primary tectonic flanks (Fig. 2). These structure classes are described in greater detail expressions of horizontal shortening on Mercury5. Wrinkle ridges in the accompanying Supplementary Discussion. are typically broad, low-relief arches—essentially an anticlinal fold above a blind thrust fault—often superposed by a narrow ridge Regional-scale crustal deformation (Fig. 1a). Lobate scarps are characterized by a steeply sloping scarp Shortening-related faulting is not uniformly distributed on Mercury. face and a gently sloping back limb, probably represent a monocline The northern volcanic plains, representing just ∼6% of the planet's or asymmetric hanging-wall anticline atop a blind or surface- surface20, host a disproportionately large number of contractional breaking thrust fault
Recommended publications
  • Ices on Mercury: Chemistry of Volatiles in Permanently Cold Areas of Mercury’S North Polar Region
    Icarus 281 (2017) 19–31 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region ∗ M.L. Delitsky a, , D.A. Paige b, M.A. Siegler c, E.R. Harju b,f, D. Schriver b, R.E. Johnson d, P. Travnicek e a California Specialty Engineering, Pasadena, CA b Dept of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA c Planetary Science Institute, Tucson, AZ d Dept of Engineering Physics, University of Virginia, Charlottesville, VA e Space Sciences Laboratory, University of California, Berkeley, CA f Pasadena City College, Pasadena, CA a r t i c l e i n f o a b s t r a c t Article history: Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008– Received 3 January 2016 2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury’s Revised 29 July 2016 north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen Accepted 2 August 2016 organics that can persist over long geologic timescales and evolve under the influence of the Mercury Available online 4 August 2016 space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot Keywords: reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. Mercury surface ices magnetospheres However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles radiolysis and induce ice chemistry.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Bepicolombo - a Mission to Mercury
    BEPICOLOMBO - A MISSION TO MERCURY ∗ R. Jehn , J. Schoenmaekers, D. Garc´ıa and P. Ferri European Space Operations Centre, ESA/ESOC, Darmstadt, Germany ABSTRACT BepiColombo is a cornerstone mission of the ESA Science Programme, to be launched towards Mercury in July 2014. After a journey of nearly 6 years two probes, the Magneto- spheric Orbiter (JAXA) and the Planetary Orbiter (ESA) will be separated and injected into their target orbits. The interplanetary trajectory includes flybys at the Earth, Venus (twice) and Mercury (four times), as well as several thrust arcs provided by the solar electric propulsion module. At the end of the transfer a gravitational capture at the weak stability boundary is performed exploiting the Sun gravity. In case of a failure of the orbit insertion burn, the spacecraft will stay for a few revolutions in the weakly captured orbit. The arrival conditions are chosen such that backup orbit insertion manoeuvres can be performed one, four or five orbits later with trajectory correction manoeuvres of less than 15 m/s to compensate the Sun perturbations. Only in case that no manoeuvre can be performed within 64 days (5 orbits) after the nominal orbit insertion the spacecraft will leave Mercury and the mission will be lost. The baseline trajectory has been designed taking into account all operational constraints: 90-day commissioning phase without any thrust; 30-day coast arcs before each flyby (to allow for precise navigation); 7-day coast arcs after each flyby; 60-day coast arc before orbit insertion; Solar aspect angle constraints and minimum flyby altitudes (300 km at Earth and Venus, 200 km at Mercury).
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon
    remote sensing Article Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon Paul M. Schenk 1,* , Chloe B. Beddingfield 2,3, Tanguy Bertrand 3, Carver Bierson 4 , Ross Beyer 2,3, Veronica J. Bray 5, Dale Cruikshank 3 , William M. Grundy 6, Candice Hansen 7, Jason Hofgartner 8 , Emily Martin 9, William B. McKinnon 10, Jeffrey M. Moore 3, Stuart Robbins 11 , Kirby D. Runyon 12 , Kelsi N. Singer 11 , John Spencer 11, S. Alan Stern 11 and Ted Stryk 13 1 Lunar and Planetary Institute, Houston, TX 77058, USA 2 SETI Institute, Palo Alto, CA 94020, USA; chloe.b.beddingfi[email protected] (C.B.B.); [email protected] (R.B.) 3 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (T.B.); [email protected] (D.C.); [email protected] (J.M.M.) 4 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85202, USA; [email protected] 5 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85641, USA; [email protected] 6 Lowell Observatory, Flagstaff, AZ 86001, USA; [email protected] 7 Planetary Science Institute, Tucson, AZ 85704, USA; [email protected] 8 Jet Propulsion Laboratory, Pasadena, CA 91001, USA; [email protected] 9 National Air & Space Museum, Washington, DC 20001, USA; [email protected] 10 Department of Earth and Planetary Sciences, Washington University in Saint Louis, Saint Louis, MO 63101, USA; [email protected] 11 Southwest Research Institute, Boulder, CO 80301, USA; [email protected] (S.R.); [email protected] (K.N.S.); [email protected] (J.S.); [email protected] (S.A.S.) Citation: Schenk, P.M.; Beddingfield, 12 Johns Hopkins Applied Physics Laboratory, Laurel, MD 20707, USA; [email protected] 13 C.B.; Bertrand, T.; Bierson, C.; Beyer, Humanities Division, Roane State Community College, Harriman, TN 37748, USA; [email protected] R.; Bray, V.J.; Cruikshank, D.; Grundy, * Correspondence: [email protected] W.M.; Hansen, C.; Hofgartner, J.; et al.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • Mercury Redux
    FEATURE Mercury redux In January 2008, 33 years after Mariner 10 fl ew past the solar system’s innermost planet, MESSENGER crossed Mercury’s magnetosphere. Ancient volcanoes, contractional faults, and a rich soup of exospheric ions give clues to Mercury’s structure and dynamical evolution. Th e Mercury fl yby of the MESSENGER two have not been ruled out, but for those (Mercury surface, space environment, mechanisms shorter-wavelength magnetic geochemistry and ranging) probe was the features would be expected, which were not fi rst of three braking manoeuvres for the observed during the MESSENGER fl yby1. spacecraft , in preparation for its insertion Recent libration observations that require into a polar orbit in 2011. Th e probe a partially molten core11, and the limited achieved the closest approach (201 km) of contraction of Mercury, which implies a Mercury’s surface yet, and took a variety largely molten core, favour a convective of measurements in the magnetosphere, dynamo origin for Mercury’s magnetic fi eld. exosphere and on Mercury’s surface. Some Although Mercury’s magnetosphere of the fi rst results of the MESSENGER looks like a miniature version of Earth’s, mission1–6 reveal Mercury as a planet with Mercury’s relatively weak magnetic richly interconnected dynamics, from fi eld implies that its dynamo must work the dynamo in its molten outer core, a diff erently from that of the Earth. Th e crust and surface with great lobate faults geodynamo, which gives the Earth its and relatively young volcanoes, to a strong magnetic fi eld, is thought to operate magnetosphere that interacts with the core in a magnetostrophic regime in which the dynamo and the interplanetary solar wind.
    [Show full text]
  • Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B
    Claremont Colleges Scholarship @ Claremont Pomona Faculty Publications and Research Pomona Faculty Scholarship 1-1-2011 Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B. Grosfils Pomona College Sylvan M. Long Elizabeth M. Venechuk Debra M. Hurwitz Joseph W. Richards See next page for additional authors Recommended Citation Grosfils, E.B., Long, S.M., Venechuk, E.M., Hurwitz, D.M., Richards, J.W., Kastl, Brian, Drury, D.E., and Hardin, Johanna, 2011, Geologic map of the Ganiki Planitia quadrangle (V-14), Venus: U.S. Geological Survey Scientific nI vestigations Map 3121. This Report is brought to you for free and open access by the Pomona Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Authors Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna S. Hardin This report is available at Scholarship @ Claremont: http://scholarship.claremont.edu/pomona_fac_pub/303 Prepared for the National Aeronautics and Space Administration Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus By Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna Hardin Pamphlet to accompany Scientific Investigations Map 3121 75° 75° V–1 V–3 V–6 50° 50° V–4 V–5 V–11 V–16 V–12 V–15 V–13 V–14 25° 25° V–23 V–28 V–24 V–27 V–25 V–26 90° 120° 150° 180° 210° 240° 270° 0° 0° V–37 V–38 V–36 V–39 V–35 V–40 –25° –25° V–49 V–50 V–48 V–51 V–47 V–52 V–58 V–59 –50° –50° V–57 V–60 2011 V–62 –75° –75° U.S.
    [Show full text]
  • Beagle Run Farm Beagle Run Farm
    , ~ Farms & Estates Realty ~ ♣ Premier Properties ♣ Beagle Run Farm 4®©≥ ®°§≥ •¨ £≤°¶•§ •≥°• ® • ©≥ ¨ £°•§ ©®© • ¶ 7•§§© ≥ ¶©•≤ £ ©©•≥ , £°•§ © ®• ©±• "•°¨• 2 &°≤ §••¨ • ®©≥ ≥± ¶ ≥ ≤ 7©¨¨©° ≥!≤ ≥ ¨• ≤•≥©§•£• ¶•°≤•≥ " ¢•§≤ ≥ # !®≥ ° ≥°£© ≥ ≤ • $©£®• °§%°£• ®• ! ©§ •§ !•°$¶°≥ ≤ °§ ≤°§©© °¨ ¨©© °§ ≤•° ≤ ≥ &¨°≥≥©£ °≤£®©•£≤°¨ •¨• •≥ °≤• •©§• ! ® ©≥©§• °§ ¶ ®©≥ ≤•≥©§•£• 4®• •'•≤© ≤ ©≥ °®•©£°¨¨ £ ≥≤£•§ °≥ ° 7©¨¨©° ≥!≤ ≤•≤ §£© ≤•∞¨•• ©® (¨• ©≥® ) § !©£$ ≤$ )£$©®° ≥¨°• ≤ ¶ £ ∞∞•≤ ≤ ¶•§ £ ¨ •§ ¶≤ ≤£® °§ ≥ •≤©£°¨¨ ≥©© •§ ©§ ≥ °§ £®© • ≥ 4®• ©•≤© ≤ ©≥ °§ ≤•§ ©® £≥ §•≥©•§ °¨•≥ ¶ ≤ ®• ®≤•• § !≤© ¶©≤•∞¨°£•≥ ≥ ≤ ¶ •≤ ©® •®°£•§ £≤ ¨§© °§ ° ≤°§•§ $©£®• £≥ ≥©•§ ¶ ≤ ° ≤ • £ $ /•≤¨ $© ° ≥®°≤•§ § ©®© ° •¨•° +, °£≤• ≥•© ¶ °©£≤•§ ¨°≥ ! ' §≥ °§ © ° ®• •§ ¶ ° ∞≤©°• ∞°•§ §≤©• ®©≥ ≤ ∞•≤ ¶¶•≤≥ ° •'£¨≥©• £ ≤ ≥•© °§ ©≥ • ¶ ¨ ¶©• ® •≥ ©®© ®©≥ ¨°≤• ≤°£ §••¨ • 4®• •≥°• ©≥ ¨ £°•§ ©®© ®• © ≤•≥≥©• -°≤© .©§• ≥£® ¨ £ ∞¨•' °¨¨ ®≤•• ¶ ®©£® °≤• %≥ ©•≥ °° °§ ©≥ ©®© •°≥ £ • © • &®°≤¨ • 9 ≤ ¶° ©¨ °§ •≥≥ ©¨¨ ¨©• £ ¶ ≤°! ®•≤• ° "•°¨• 2 °§ ©¨¨ ≥ £ • ≤•°¨©0• ®•≤• ©≥ ¶°≤ ≤• ≤• £ ≤ ¨©© ®° £° ¢• ¶ § 1 °£≤• ¨ ≥ Farms & Estates Realty, Inc. www.farmsandestates.com 101 W. South Main Street ~ P. O. Bo 808 Wa haw, NC 28173 704 . 843 . 1107 Fact Sheet ♣ Beagle Run Farm ♣ Multiple Listing: Price: Land: ! ! "! # $ %& & ! ! ! ! $ !! ! '! $ $ '! # && !& # &&( ) # & # $ House: "% $ *C! . - ! # & ! Size: ! # Rooms: Main - . " C ! ! I C 0 12 0 3 ! .$# 0 14a .4t I# .! 2nd Floor - a . ! # ! . . 7 " ! # ! 1 ! 8#48& 0 Attic:
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Late movement of basin-edge lobate scarps on Mercury Journal Item How to cite: Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J. and Anand, M. (2017). Late movement of basin-edge lobate scarps on Mercury. Icarus, 288 pp. 226–324. For guidance on citations see FAQs. c 2017 Elsevier Inc https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.icarus.2017.01.005 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 1 Late movement of basin-edge lobate scarps on Mercury 2 Fegan E.R.1*, Rothery D.A.1, Marchi S.2, Massironi M.3, Conway S.J.1,4, Anand M.1,5, 3 1Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK. 2NASA 4 Lunar Science Institute, Southwest Research Institute, Boulder, Colorado 80302, USA. 3Dipartimento di 5 Geoscienze, Università di Padova, Via Giotto 1, 35137 Padova, Italy. 4LPG Nantes - UMR CNRS 6112, 2 rue de la 6 Houssinière - BP 92208, 44322 Nantes Cedex 3, France 5Department of Earth Science, The Natural History 7 Museum, Cromwell Road, London, SW7 5BD, UK. 8 9 *Corresponding author (email: [email protected]) 10 Keywords: Planetary; geology; Mercury; tectonics; model ages; lobate scarps; planetary volcanism.
    [Show full text]
  • Download DARWIN, Beagle Diary.Pdf
    CHARLES DARWIN'S BEAGLE DIARY Edited by Richard Darwin Keynes, CBE, ScD, FRS Emeritus Professor of Physiology in the University of Cambridge, and Fellow of Churchill College CAMBRIDGE UNIVERSITY PRESS [page iv] PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 1988 September 7th, 1835 The Beagle sailed for the Galapagos: 15th on the 15th she was employed in surveying the outer coast of Chatham Isd1 the S. Eastern one of the Archipelago. |604| 1 The Spanish name of Chatham Island now used is Isla San Cristobal. 16th The next day we ran near Hoods Isd1 & there left a Whale boat. — In the evening the Yawl was also sent away on a surveying cruize of some length. — The weather, now & during the passage, has continued as on the coast of Peru, a steady, gentle breeze of wind & gloomy sky. — We landed for an hour on the NW end of Chatham Isd. — These islands at a distance have a sloping uniform outline, excepting where broken by sundry paps & hillocks. — The whole is black Lava, completelycovered by small leafless brushwood & low trees. — The fragments of Lava where most porous are reddish & like cinders; the stunted trees show [page] 352 GALAPAGOS ISDS SEPTEMBER 1835 Chart of the Galapagos Islands (from part of a map in Narrative 1).
    [Show full text]
  • 1 Archives of Natural History, 47, 147-165. Accepted Version. Robert
    Archives of Natural History, 47, 147-165. Accepted version. Robert McCormick’s geological collections from Antarctica and the Southern Ocean, 1839–1843 PHILIP STONE British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK (e-mail: [email protected]) ABSTRACT: Robert McCormick (1800–1890) took part in three mid-nineteenth- century British Polar expeditions, two to the Arctic and one to the Antarctic. The latter, from 1839 to 1843 and led by James Clark Ross, is the best known. McCormick served as senior surgeon on HMS Erebus and was responsible for the collection of zoological and geological specimens. Despite the novelty and potential scientific importance of these early geological collections from Antarctica and remote islands in the Southern Ocean, they received surprisingly little attention at the time. Ross deposited an official collection with the British Museum in 1844, soon after the expedition’s return, and this was supplemented by McCormick’s personal collection, bequeathed in 1890. McCormick had contributed brief and idiosyncratic geological notes to the expedition report published by Ross in 1847, but it was not until 1899 that an informed description of the Antarctic rocks was published, and only in 1921 were McCormick’s palaeobotanical specimens from Kerguelen examined. His material from other Southern Ocean islands received even less attention; had it been utilized at the time it would have supplemented the better-known collections made by the likes of Charles Darwin. In later life, McCormick became increasingly embittered over the lack of recognition afforded to him for his work in the Polar regions.
    [Show full text]