ASTRONOMY and ASTROPHYSICS Dissolving Star Cluster Candidates

Total Page:16

File Type:pdf, Size:1020Kb

ASTRONOMY and ASTROPHYSICS Dissolving Star Cluster Candidates A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: ASTROPHYSICS 05:10.15.1 Dissolving star cluster candidates E. Bica1, B.X. Santiago1, C.M. Dutra1, H. Dottori1, M.R. de Oliveira1 and D. Pavani1 Universidade Federal do Rio Grande do Sul, IF, CP 15051, Porto Alegre 91501–970, RS, Brazil Received 13.09.2000; accepted 14.11.2000 Abstract. We present a list of 34 neglected entries from dynamical stages of low mass globular clusters are still as- star cluster catalogues located at relatively high galac- sociated to relatively well populated star clusters, but one tic latitudes (|b| > 15◦) which appear to be candidate may wonder what subsequent stages would look like, prob- late stages of star cluster dynamical evolution. Although ably an underpopulated fossil core containing some double underpopulated with respect to usual open clusters, they and multiple stars. still present a high number density contrast as compared Among open clusters low MS depletion has been found to the galactic field. This was verified by means of (i) e.g. in the intermediate age (≈ 3 Gyr) cluster NGC3680 predicted model counts from different galactic subsystems (Anthony-Twarog et al. 1991). The dissolution of open in the same direction, and (ii) Guide Star Catalog equal clusters has been studied by Wielen (1971). Updated data solid angle counts for the object and surrounding fields. suggest that most open clusters dissolve in about 100 Myr This suggests that the objects are physical systems, possi- and this will probably not change much as one includes bly star clusters in the process of disruption or their fossil fainter clusters (Ahumada et al. 2000). Intermediate age remains. The sample will be useful for followup studies in open clusters are certainly survivors of initially massive view of verifying their physical nature. clusters (Friel 1995), and their updated age histogram con- taining more than 100 entries (Dutra & Bica 2000) sug- Key words: Galaxy: open clusters and associations: gen- gests a dissolution timescale of about 1 Gyr. Also, N-body eral simulations of star clusters in an external potential have shown typical dissolution times in the range 500-2500 Myr (Terlevich 1987, McMillan & Hut 1994, de la Fuente Mar- 1. Introduction cos 1997, Portegies Zwart et al. 2000). Mass segregation is expected to occur in cluster cores during one relaxation Star Clusters are known to dynamically evolve and stellar time, according to N-body simulations (Terlevich 1987, arXiv:astro-ph/0011280v1 14 Nov 2000 depletion effects eventually lead to the cluster dissolution. Portegies Zwart et al. 2000). An important effect of mass Fundamental questions are: (i) where are the clusters in segregation is the depletion of low mass MS stars by means process of dissolution? (ii) if fossils are left, can any rem- of evaporation due to the tidal field of the Galaxy and en- nant be detected? The present study aims at showing that counters with binary stars. This would imply that clusters several candidates for these effects occur in star cluster which are close to disruption have a core rich in compact catalogues themselves. and giant stars (Takahashi & Portegies Zwart 2000). Several poorly populated objects at relatively high Recently, evidence of an open cluster remnant has been galactic latitudes (from the open cluster perspective |b| > discussed by Bassino et al. (2000). They studied the rela- 15◦) are included in open cluster catalogues (Alter et al. tively high latitude concentration of stars M73 (NGC6994) 1970, Lyng˚a1987). Other objects were reported as clus- and derived an age of 2-3 Gyr from CMDs. They found ters in early studies (e.g. New General Catalogue and In- a significant number density contrast with respect to the dex Catalogue), or in modern ones like the ESO (B) Atlas galactic field CMD predicted by count models in the area. Survey Catalogue (Lauberts 1982). Carraro (2000) does not favour the object as an open clus- Depletion of Main Sequence (MS) stars has been de- ter or as a remnant. At any rate, if M73 is a physical tected or evidence of it has been found in luminosity func- system the open cluster classification is certainly not ade- tions and Colour-Magnitude Diagrams (CMDs) of some quate. Let us then suggest the acronym POCR - Possible Palomar or Palomar-like globular clusters such as E3 (Mc- Open Cluster Remnant. As an ongoing study of this ne- Clure et al 1985), ESO452-SC11 (Bica et al. 1999) and glected class of interesting objects and in view of future NGC6717 (Palomar 9) (Ortolani et al. 1999). Such evolved CMDs to determine parameters such as reddening, age Send offprint requests to: C.M. Dutra - [email protected] and distance, we present a list of candidates. We discuss 2 E. Bica et al.: Dissolving star cluster candidates their possible physical nature by checking whether they In the following we comment on some objects. The des- present a significant number density contrast with respect ignation NGC 1963 is often applied to an edge-on galaxy to their fields. In Section 2 we present the sample. In Sec- ≈ 11′ east of the POCR. However the New General Cata- tion 3 we analyze the significance of the excesses of stars logue describes a star cluster, and the original position by means of (i) equal solid angle counts in the object and (available e.g. in Sulentic & Tifft 1973) coincides with field areas, and (ii) galactic model counts. In Section 4 we that of the POCR. Lauberts (1982) correctly identified the discuss the results. Finally, in Section 5 we present the present object (NGC 1963 or ESO363SC5) and the galaxy concluding remarks. (IC 2135 or ESO363G7). On the other hand the POCR NGC 2314A has a neighbouring bright galaxy (NGC 2314 itself) located ≈ 5′ north. The New General Catalogue de- 2. The sample scription clearly refers to the galaxy, but the designation NGC 2314 has been applied to the stellar concentration In trying to identify fossil cluster remains we browsed rel- (Alter et al. 1970), which is also known as OCl-374. We ◦ atively high galactic latitude (|b| > 15 ) zones by means suggest the extension ’A’ to the POCR designation. NGC of 1st and 2nd generation Digitized Sky Survey Images 2664, NGC 1557 and NGC 1641 are poorly populated con- and Guide Star Catalog maps, searching for poorly pop- centrations of stars reported as clusters in the NGC cata- ulated objects described as star clusters in open cluster logue, but not included in modern open cluster catalogues. catalogues (Alter at al. 1970, Lyng˚a1987, Lauberts 1982), NGC 2664 is projected just a few cluster diameters away and also neglected NGC or IC entries originally described from the populous intermediate age open cluster M67, an as clusters. Although cluster remnants must be common old disk template spatially located quite high in the plane ◦ at low galactic latitudes we chose |b| > 15 because of (z = 430 pc - see Mermilliod’s (1996) WEBDA Open Clus- lower field contamination, also avoiding young disk and ter database for essential cluster parameters in the Web dust distribution details which affect models of low lati- interface http://obswww.unige.ch/webda). NGC 1901 is an tude zones (Section 3). open cluster or stellar group (Sanduleak & Philip 1968) Table 1 lists the 34 POCRs and two comparison clus- that is projected to the north of the LMC bar, whereas ters, by columns: (1) object designation, (2) and (3) galac- NGC 1641 and NGC 1557 are projected onto the outer tic coordinates, (4) and (5) J2000 equatorial coordinates, parts of the LMC. If physical stellar systems, these objects (6) and (7) the major and minor diameters, and finally (8) are clearly related to the Milky Way due to the brightness E(B-V)FIR reddening values. We measured coordinates of of their stars. The close projection of some open clusters the POCR centers and diameters on Digitized Sky Survey and POCRs also leaves the possibility of future investiga- images. The list is not intended to be extensive or com- tions, such as common origin, early cluster pairs or multi- plete, reflecting only the most interesting objects found in plets, fossil associations, or perhaps debris of dwarf galaxy the present search. We obtained the E(B-V)FIR reddening captures. values from Schlegel et al. (1998) dust emission reddening We show in Figure 1 the angular distribution of the 34 maps. From the study of star cluster directions Dutra & sample objects and the two comparison clusters. POCRs Bica (2000) called attention to the fact that Schlegel et can be basically found in any direction along the plane. al.’s reddening values reflect foreground and background The number of POCRs is small but concentrations could dust contributions. Most objects in Table 1 have rela- be present in the third Quadrant, which would suggest tively high galactic latitudes and their reddening values that several objects therein had common origin. We em- are quite low, probably corresponding to foreground dust phasize that our survey of POCRs was based on previ- in the pathsight. The only exception is NGC1901, which ously catalogued objects, and it would be important to is projected onto the LMC disk and the high reddening carry out a systematic search for new objects with similar value in Table 1 arises mainly from LMC dust (Dutra & characteristics in the same part of sky, as well as for |b| < Bica 2000). 15◦. Some POCRs present differences between their ma- Figure 2 shows a 2nd generation Digitized Sky Survey jor and minor diameters (Table 1) indicating ellipticity. (XDSS) image of the comparison cluster NGC 3680 which Numerical simulations by Terlevich (1987) and Portegies has low MS depletion (Anthony-Twarog et al.
Recommended publications
  • The Stellar Group NGC 1901 in Front of the Large Magellanic Cloud,
    A&A 466, 931–941 (2007) Astronomy DOI: 10.1051/0004-6361:20066687 & c ESO 2007 Astrophysics Observational templates of star cluster disruption The stellar group NGC 1901 in front of the Large Magellanic Cloud, G. Carraro1,2, R. de la Fuente Marcos3, S. Villanova1, C. Moni Bidin2, C. de la Fuente Marcos3,H.Baumgardt4, and G. Solivella5 1 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2, 35122 Padova, Italy e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Suffolk University Madrid Campus, C/ Viña 3, 28003 Madrid, Spain 4 AIfA, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 5 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina Received 3 November 2006 / Accepted 23 January 2007 ABSTRACT Context. Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long-lived stellar groups are known as open clusters. They gradually lose stars and are severely disrupted in their final evolutionary stages, leaving an open cluster remnant made up of a few stars. Aims. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC 1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age, and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.
    [Show full text]
  • LCSH Section H
    H (The sound) H.P. 15 (Bomber) Giha (African people) [P235.5] USE Handley Page V/1500 (Bomber) Ikiha (African people) BT Consonants H.P. 42 (Transport plane) Kiha (African people) Phonetics USE Handley Page H.P. 42 (Transport plane) Waha (African people) H-2 locus H.P. 80 (Jet bomber) BT Ethnology—Tanzania UF H-2 system USE Victor (Jet bomber) Hāʾ (The Arabic letter) BT Immunogenetics H.P. 115 (Supersonic plane) BT Arabic alphabet H 2 regions (Astrophysics) USE Handley Page 115 (Supersonic plane) HA 132 Site (Niederzier, Germany) USE H II regions (Astrophysics) H.P.11 (Bomber) USE Hambach 132 Site (Niederzier, Germany) H-2 system USE Handley Page Type O (Bomber) HA 500 Site (Niederzier, Germany) USE H-2 locus H.P.12 (Bomber) USE Hambach 500 Site (Niederzier, Germany) H-8 (Computer) USE Handley Page Type O (Bomber) HA 512 Site (Niederzier, Germany) USE Heathkit H-8 (Computer) H.P.50 (Bomber) USE Hambach 512 Site (Niederzier, Germany) H-19 (Military transport helicopter) USE Handley Page Heyford (Bomber) HA 516 Site (Niederzier, Germany) USE Chickasaw (Military transport helicopter) H.P. Sutton House (McCook, Neb.) USE Hambach 516 Site (Niederzier, Germany) H-34 Choctaw (Military transport helicopter) USE Sutton House (McCook, Neb.) Ha-erh-pin chih Tʻung-chiang kung lu (China) USE Choctaw (Military transport helicopter) H.R. 10 plans USE Ha Tʻung kung lu (China) H-43 (Military transport helicopter) (Not Subd Geog) USE Keogh plans Ha family (Not Subd Geog) UF Huskie (Military transport helicopter) H.R.D. motorcycle Here are entered works on families with the Kaman H-43 Huskie (Military transport USE Vincent H.R.D.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • 1. Introduction 2. Hyades Supercluster
    THE ASTRONOMICAL JOURNAL, 116:284È292, 1998 July ( 1998. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE AGE RANGE OF HYADES STARS OLIN J. EGGEN Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories,1 Casilla 603, La Serena, Chile; oeggen=noao.edu Received 1997 December 29; revised 1998 March 12 ABSTRACT On the basis of canonical models, the age of Hyades supercluster stars, whether in the Hyades and Praesepe clusters or the noncluster Ðeld, ranges from (5È6) ] 108 to 109 yr. The di†erence between the parallax derived from the supercluster motion and that obtained from Hipparcos observations has a dis- persion only twice that of the mean dispersion of the individual Hipparcos values. The supercluster appears not to contain red giants on the Ðrst ascent of the red giant branch, but only asymptotic giant branch (““ clump ÏÏ) stars. The masses obtained for individual components of binary stars in the super- cluster show a dispersion of less than 10% when compared with model predictions. Key words: open clusters and associations: individual (Hyades) È stars: evolution 1. INTRODUCTION where (t, q) are the components of the proper motion in the direction of the convergent point (a, d) and perpendicular to The Hyades cluster, because of its depth-to-distance that direction, respectively; and ratio, has become the basis for the universal metric. The lowest mass cluster members form a cluster halo, and the n \ 4.74t/(V sin j) , (3) cluster itself, together with its near-twin the Praesepe clus- clus tot whereV is total space motion of the supercluster relative ter, is part of the Hyades supercluster.
    [Show full text]
  • The GALAH Survey and Gaia DR2: (Non-)Existence of five Sparse High-Latitude Open Clusters
    MNRAS 480, 5242–5259 (2018) doi:10.1093/mnras/sty2171 Advance Access publication 2018 August 13 The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters Janez Kos,1‹ Gayandhi de Silva,1,2 Sven Buder ,3† Joss Bland-Hawthorn,1,4,5 Downloaded from https://academic.oup.com/mnras/article-abstract/480/4/5242/5071959 by University of New South Wales user on 22 December 2019 Sanjib Sharma,1 Martin Asplund,4,6 Valentina D’Orazi,7 Ly Duong,6 Ken Freeman,6 Geraint F. Lewis,1 Jane Lin,4,6 Karin Lind,3,8 Sarah L. Martell ,3,9 Katharine J. Schlesinger,6 Jeffrey D. Simpson ,9 Daniel B. Zucker,10 Tomazˇ Zwitter ,11 Timothy R. Bedding,1,13 Klemen Cotar,ˇ 11 Jonathan Horner,12 Thomas Nordlander,4,6 Denis Stello,9,13 Yuan-Sen Ting14,15,16 and Gregor Traven11 1Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia 2AAO-MQ, Macquarie University, Sydney 2109, Australia 3Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117 Heidelberg, Germany 4ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D), Australia 5Sydney Astrophotonic Instrumentation Labs, School of Physics, A28, The University of Sydney, Camperdown, NSW 2006, Australia 6Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 7Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122, Padova, Italy 8Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
    [Show full text]
  • Investigation of Galactic Open Cluster Remnants: the Case of NGC 7193*
    Research in Astronomy and Astrophysics Related content - Ruprecht 147: The Oldest Nearby Open Investigation of Galactic open cluster remnants: Cluster as a New Benchmark for Stellar Astrophysics * Jason L. Curtis, Angie Wolfgang, Jason T. the case of NGC 7193 Wright et al. - Optical Photometric and Polarimetric To cite this article: Mateus de Souza Angelo et al 2017 Res. Astron. Astrophys. 17 4 Investigation of NGC 1931 A. K. Pandey, C. Eswaraiah, Saurabh Sharma et al. - The Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing View the article online for updates and enhancements. Binary, Turnoff Star Pulsation, and Giant Asteroseismology Eric L. Sandquist, J. Jessen-Hansen, Matthew D. Shetrone et al. Recent citations - Clusters and mirages: cataloguing stellar aggregates in the Milky Way T. Cantat-Gaudin and F. Anders - Investigating dynamical properties of evolved Galactic open clusters M. S. Angelo et al - Accurate radial velocity and metallicity of the Large Magellanic Cloud old globular clusters NGC 1928 and NGC 1939 A E Piatti et al This content was downloaded from IP address 168.96.240.2 on 21/04/2021 at 13:22 RAA 2017 Vol. 17 No. 1, 4 (24pp) doi: 10.1088/1674–4527/17/1/4 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Investigation of Galactic open cluster remnants: the case of NGC 7193 ⋆ Mateus de Souza Angelo1, Jo˜ao Francisco Coelho dos Santos Jr1, Wagner Jos´eBarbosa Corradi1, Francisco Ferreira de Souza Maia1 and Andr´es Eduardo Piatti2,3 1 Departamento de F´ısica, ICEx, Universidade Federal de Minas Gerais, Av.
    [Show full text]
  • Dissolving Star Cluster Candidates
    A&A 366, 827–833 (2001) Astronomy DOI: 10.1051/0004-6361:20000248 & c ESO 2001 Astrophysics Dissolving star cluster candidates E. Bica, B. X. Santiago, C. M. Dutra, H. Dottori, M. R. de Oliveira, and D. Pavani Universidade Federal do Rio Grande do Sul, IF, CP 15051, Porto Alegre 91501–970, RS, Brazil Received 13 July 2000 / Accepted 10 November 2000 Abstract. We present a list of 34 neglected entries from star cluster catalogues located at relatively high galactic latitudes (|b| > 15◦) which appear to be candidate late stages of star cluster dynamical evolution. Although underpopulated with respect to usual open clusters, they still present a high number density contrast as compared to the galactic field. This was verified by means of (i) predicted model counts from different galactic subsystems in the same direction, and (ii) Guide Star Catalog equal solid angle counts for the object and surrounding fields. This suggests that the objects are physical systems, possibly star clusters in the process of disruption or their fossil remains. The sample will be useful for followup studies in view of verifying their physical nature. Key words. galaxy: open clusters and associations: general 1. Introduction of open clusters has been studied by Wielen (1971) and de la Fuente Marcos (1998). Updated data suggest that Star Clusters are known to dynamically evolve and stellar most open clusters dissolve in about 100 Myr and this will depletion effects eventually lead to the cluster dissolution. probably not change much as one includes fainter clusters Fundamental questions are: (i) where are the clusters in (Ahumada et al.
    [Show full text]
  • South Best Winter
    South Best Winter (103 objects) Object Type Mag Size Information NGC 1187 GX 10.6 4.2'x3.2' R03:02:37.6 D-22:52:02 Eridanus Type: SBc, SB: 13.3, mag_b: 11.3 NGC 1232 GX 9.8 7.4'x6.5' R03:09:45.3 D-20:34:45 Eridanus Type: SBc, SB: 13.9, mag_b: 10.5 NGC 1291 GX 8.5 11.0'x9.5' R03:17:18.3 D-41:06:26 Eridanus Type: SB0-a, SB: 13.4, mag_b: 9.4 NGC 1300 GX 10.3 6.2'x4.1' R03:19:40.7 D-19:24:41 Eridanus Type: SBbc, SB: 13.7, mag_b: 11.1 NGC 1421 GX 11.4 3.4'x0.8' R03:42:29.4 D-13:29:16 Eridanus Type: SBbc, SB: 12.3, mag_b: 12.2 32 Eri * G5 5.00 R03:54:17.5 D-02:57:16.9 Eridanus SAO 130806 NGC 1515 GX 11.3 5.4'x1.3' R04:04:02.1 D-54:06:00 Dorado Type: SBbc, SB: 13.3, mag_b: 12.1 NGC 1533 GX 10.7 2.8'x2.3' R04:09:51.9 D-56:07:04 Dorado Type: SB0, SB: 12.6, mag_b: 11.7 NGC 1532 GX 9.8 11.6'x3.4' R04:12:03.8 D-32:52:23 Eridanus Type: SBb, SB: 13.6, mag_b: 10.6 NGC 1535 PN 9.6 0.9' R04:14:15.8 D-12:44:20 Eridanus Type: PN, mag_b: 9.6 39 Eri * K0 5.10 R04:14:23.7 D-10:15:22.7 Eridanus SAO 149478 NGC 1546 GX 11.0 3.2'x1.9' R04:14:36.7 D-56:03:37 Dorado Type: S0-a, SB: 12.8, mag_b: 11.9 Keid * G5 4.50 R04:15:16.3 D-07:39:09.9 Eridanus 2 Eri Vulcan SAO 131063 NGC 1549 GX 9.6 4.9'x4.1' R04:15:45.0 D-55:35:29 Dorado Type: E0, SB: 12.9, mag_b: 10.6 NGC 1553 GX 9.0 4.5'x2.8' R04:16:10.6 D-55:46:46 Dorado Type: S0, SB: 11.6, mag_b: 10.0 NGC 1566 GX 9.4 8.2'x6.5' R04:20:00.5 D-54:56:14 Dorado Type: SBbc, SB: 13.6, mag_b: 10.2 NGC 1617 GX 10.5 4.3'x2.1' R04:31:39.5 D-54:36:07 Dorado Type: SBa, SB: 12.7, mag_b: 11.4 55 Eri * F5 6.70 R04:43:35.1 D-08:47:45.8
    [Show full text]
  • The GALAH Survey and Gaia DR2:(Non) Existence of Five Sparse
    MNRAS 000,1{9 (2018) Preprint 4 July 2018 Compiled using MNRAS LATEX style file v3.0 The GALAH Survey and Gaia DR2: (Non)existence of five sparse high-latitude open clusters Janez Kos,1? Gayandhi de Silva,1;2 Joss Bland-Hawthorn,1;3;4 Martin Asplund,5;3 Sven Buder,6;7 Valentina D'Orazi,8 Ly Duong,5 Ken Freeman,5 Geraint F. Lewis,1 Jane Lin,5;3 Karin Lind,6;9 Sarah L. Martell,10;3 Katharine J. Schlesinger,5 Sanjib Sharma,1 Jeffrey D. Simpson,2 Daniel B. Zucker,11 TomaˇzZwitter,12 Timothy R. Bedding,1;14 Klemen Cotar,ˇ 12 Jonathan Horner,13 Thomas Nordlander,5;3 Denis Stello,10;14 Yuan-Sen Ting,15;16;17 and Gregor Traven12 1Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia 2Australian Astronomical Observatory, 105 Delhi Rd, North Ryde, NSW 2113, Australia 3ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO-3D), Australia 4Sydney Astrophotonic Instrumentation Labs, School of Physics, A28, The University of Sydney, NSW 2006, Australia 5Research School of Astronomy & Astrophysics, Australian National University, ACT 2611, Australia 6Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, 69117 Heidelberg, Germany 7Fellow of the International Max Planck Research School for Astronomy & Cosmic Physics at the University of Heidelberg, Germany 8Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122, Padova, Italy 9Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden 10School of Physics,
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • ESO ASTROPHYSICS SYMPOSIA European Southern Observatory ——————————————————— Series Editor: Bruno Leibundgut S
    ESO ASTROPHYSICS SYMPOSIA European Southern Observatory ——————————————————— Series Editor: Bruno Leibundgut S. Hubrig M. Petr-Gotzens A. Tokovinin (Eds.) Multiple Stars Across the H-R Diagram Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005 Volume Editors Swetlana Hubrig Andrei Tokovinin European Southern Observatory Inter-American Observatory 3107 Alonso de Cordova Cerro Tololo (CTIO ) Santiago, Vitacura La Serena Chile Chile Monika Petr-Gotzens European Southern Observatory Karl-Schwar schild-Str. 2 85748 Garching Germany Series Editor Bruno Leibundgut European Southern Observatory Karl-Schwarzschild-Str. 2 85748 Garching Germany Library of Congress Control Number: 2007936287 ISBN 978-3-540-74744-4 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2008 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign, Heidelberg Typesetting: by the authors Production: Integra Software Services Pvt.
    [Show full text]