The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus

Total Page:16

File Type:pdf, Size:1020Kb

The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus Cremer, Thomas; Cremer, Marion; Hübner, Barbara; Silahtaroglu, Asli; Hendzel, Michael; Lanctôt, Christian; Strickfaden, Hilmar; Cremer, Christoph Published in: BioEssays DOI: 10.1002/bies.201900132 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Cremer, T., Cremer, M., Hübner, B., Silahtaroglu, A., Hendzel, M., Lanctôt, C., Strickfaden, H., & Cremer, C. (2020). The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 42(2), [1900132]. https://doi.org/10.1002/bies.201900132 Download date: 05. okt.. 2021 PROBLEMS & PARADIGMS Prospects & Overviews www.bioessays-journal.com The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus Thomas Cremer,* Marion Cremer, Barbara Hübner, Asli Silahtaroglu, Michael Hendzel, Christian Lanctôt, Hilmar Strickfaden,* and Christoph Cremer* inseparably connected with their functional This article focuses on the role of the interchromatin compartment (IC) in tasks at all levels, from molecules to genes, shaping nuclear landscapes. The IC is connected with nuclear pore complexes chromatin domains (CDs), chromosome (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that territories, and the functional nuclear orga- the IC provides routes for imported transcription factors to target sites, for nization at large. The “top-down” approach to explore nu- export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the clear structure and function started in the intranuclear passage of regulatory RNAs from sites of transcription to remote nineteenth century with the discovery of functional sites (IC hypothesis). IC channels are lined by less-compacted the cell nucleus, its indirect division with euchromatin, called the perichromatin region (PR). The PR and IC together the formation of mitotic chromosomes, and [12–14] form the active nuclear compartment (ANC). The ANC is co-aligned with the the first description of chromatin. The inactive nuclear compartment (INC), comprising more compacted “bottom up” followed in the twentieth cen- tury culminating with the discovery that heterochromatin. It is postulated that the INC is accessible for individual chromosomes carry a text written by evolu- transcription factors, but inaccessible for larger macromolecular aggregates tion into immensely long DNA molecules. (limited accessibility hypothesis). This functional nuclear organization The direct visualization of specific genes depends on still unexplored movements of genes and regulatory sequences located on chromosomes became possi- between the two compartments. ble, when Mary Pardue and Joseph Gall invented a method for the molecular hy- bridization of DNA probes to the DNA of cytological preparations.[15] For reviews, see 1. Introduction refs. [16,17]. In 1968, David Comings published a seminal paper about During the last two decades, the compartmentalized structure of “The Rationale for an Ordered Arrangement of Chromatin in the cell nucleus and packaging of its genome has become a key is- the Interphase Nucleus” where he argued for a spaghetti-like sue for the understanding of nuclear functions.[1–8] Methodolog- assembly of chromatin fibers possibly connected to the nuclear ical progress has now reached a state where we are witnessing pore complexes (NPCs).[18,19] During the 1960s and 1970s, the the rise of a new research field, called the 4D nucleome.[9–11] It cell nucleus was still widely conceived as a chemical reaction has become evident that the structural organization of nuclei is vial with proteins and RNAs diffusing in the nuclear sap in a Prof.T.Cremer,Dr.M.Cremer,B.Hübner[+] Prof. A. Silahtaroglu Anthropology and Human Genomics, Department of Biology II Department of Cellular and Molecular Medicine Faculty of Health and Ludwig-Maximilians University (LMU) Medical Sciences Biocenter, Grosshadernerstr. 2, 82152 Martinsried, Germany University of Copenhagen E-mail: [email protected] Nørre Alle 14, Byg.18.03, 2200 Copenhagen N, Denmark Prof. M. Hendzel, Dr. H. Strickfaden Department of Oncology, Cross Cancer Institute University of Alberta The ORCID identification number(s) for the author(s) of this article 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada can be found under https://doi.org/10.1002/bies.201900132 E-mail: [email protected] [+]Present address: Institute of Structural Biology (NISB), School of Bio- Dr.C.Lanctôt logical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Integration Santé Singapore 639798, Singapore 1250 Avenue de la Station local 2-304, Shawinigan, Québec G9N 8K9, Canada © 2020 The Authors. BioEssays published by WILEY Periodicals, Inc. This Prof. C. Cremer is an open access article under the terms of the Creative Commons Institute of Molecular Biology (IMB) Ackermannweg 4, 55128 Mainz, Attribution-NonCommercial License, which permits use, distribution and Germany, and Institute of Pharmacy & Molecular Biotechnology (IPMB) reproduction in any medium, provided the original work is properly cited University Heidelberg and is not used for commercial purposes. Im Neuenheimer Feld 364, 69120 Heidelberg, Germany DOI: 10.1002/bies.201900132 E-mail: [email protected]; [email protected] BioEssays 2020, 42, 1900132 1900132 (1 of 18) © 2020 The Authors. BioEssays published by WILEY Periodicals, Inc. www.advancedsciencenews.com www.bioessays-journal.com largely unrestricted way. Only a few molecular biologists became because of a selective advantage: Inverted rod nuclei act as already interested in problems of 3D genome organization collecting lenses and allow visual orientation in a low-light envi- during the 1970s.[20] Francis Crick, one of the most influential ronment. This example demonstrates the profound potential for advocates of the bottom-up approach, asked “How much does major modifications of nuclear architecture enforced by selective the 3D structure of the eukaryotic genome matter for expression, pressure and also how primarily descriptive top-down strategies compared to the 1D structure?”[21] “The methods of studying 3D pave the way to the identification and further exploration of new structures with precision are far more difficult than the methods mechanisms.[24] available for sequencing DNA. Thus, if it turns out […] that the The discovery of nucleosomes in the 1970s marked the be- 3D structure is not merely a packing device needed mainly for ginning of a major change in our understanding of chromatin’s mitosis but is also of primary importance for gene expression, functional capacities.[25–28] The enigma of the nucleosome’s then […] we will need a more devious and ingenious plan of functional roles beyond DNA packaging was lifted, when it attack. Only time can show which alternative is preferred by was discovered that tightly controlled epigenetic modifications nature and how difficult the problem will turn out to be.” In a contribute directly to regulation of both chromatin structure and lecture delivered in 1977 at the Sixth International Chromosome transcription, prompting a still ongoing change of paradigm in Conference in Helsinki, Crick acknowledged the advance of the our understanding of genetic and environmental interactions. new chromosome banding techniques in genetic mapping and Nucleosomes form ≈10 nm thick chromatin fibers. The fold- the clinical importance to identify all human chromosomes and ing of these fibers into a hierarchy of higher-order chromatin larger deletions and translocations, but reminded his audience structures in nuclei of living cells has remained an intensely of cytogeneticists (one of the authors of this article [T. Cremer] debated problem.[29] At approximately 2 m before (G1) and 4 m was among them): “The metaphase chromosome, which is after DNA replication (G2 and mitosis), the DNA molecules the object of study of many of the conference members, is the contained within a diploid mammalian cell nuclei appear dullest form of chromosome: an inert package needed to make immensely long, given that they are packaged within diploid orderly mitosis possible. […] Unfortunately, this is the least mammalian cell nuclei with typical diameters of between 5 and rewarding form to study microscopically.”[22] Because of the 15 µm. However, packaging a quantity of about 6000 megabase limited resolution of cytological methods, Crick doubted that pairs (Mbp) wrapped around up to 30 million nucleosomes in a they could ever make a meaningful contribution to understand diploid mammalian cell nucleus leaves still plenty of space for the 3D organization of chromosomes. “Evolution, guided by an interchromatin compartment (IC) crowded with non-histone natural selection, must always remain the grandest theme in proteins, RNAs, and functional macromolecular aggregates. biology, but if we are to arrive at a deep understanding […] it is This article emphasizes the perspective that the IC represents a essential (among other things) to know exactly what constitutes nuclear compartment with its own functions which co-evolved a eukaryotic gene.” Crick hoped for possibilities of genetic together with the “crumpled” organization of chromatin.[30] engineering to obtain biochemically useful amounts of a “pure gene,” and ended his lecture with this statement: “I feel
Recommended publications
  • 82755929.Pdf
    FEBS Letters 589 (2015) 2931–2943 journal homepage: www.FEBSLetters.org Review The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments ⇑ Thomas Cremer a, , Marion Cremer a, Barbara Hübner a,1, Hilmar Strickfaden b, Daniel Smeets a, ⇑ ⇑ Jens Popken a, Michael Sterr a,2, Yolanda Markaki a, Karsten Rippe c, , Christoph Cremer d, a Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany b University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada c German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany d Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany article info abstract Article history: Recent methodological advancements in microscopy and DNA sequencing-based methods provide Received 1 April 2015 unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear Revised 19 May 2015 machineries. We discuss a model of the underlying functional nuclear organization derived mostly Accepted 20 May 2015 from electron and super-resolved fluorescence microscopy studies. It is based on two spatially Available online 28 May 2015 co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the com- Edited by Wilhelm Just pact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the inter- chromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and Keywords: 4D nucleome export functions. The ANC is the major site of RNA synthesis.
    [Show full text]
  • Chromosome Territories
    Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome Territories Thomas Cremer1,2 and Marion Cremer1 1Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians- University, Grosshadernerstrasse 2, 82152 Martinsried, Germany 2Munich Center for Integrated Protein Sciences (CIPSM), 81377 Munich, Germany Correspondence: [email protected] Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenom- ics is considered, followed bya historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT archi- tecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them. mpressive progress has been achieved during for an integrated understanding of the structural Ithe last decade with regard to the functional and functional aspects of epigenetics with nu- implications of DNA methylation, histone mo- clear architecture during the differentiation of difications, and chromatin remodeling events toti- or pluripotent cells to functionally distinct for gene regulation (Fuks 2005; Kouzarides cell types. 2007; Maier et al. 2008; Jiang and Pugh 2009). The territorial organization of chromo- It has, however, also become obvious that somes in interphase (chromosome territories, decoding the chromatin language does not suf- CTs) constitutes a basic feature of nuclear archi- fice to fully understand the ways in which the tecture.
    [Show full text]
  • Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells
    REVIEWS CHROMOSOME TERRITORIES, NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS T. Cremer* ‡ and C. Cremer‡§ The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation. EPIGENETICS Despite all the celebrations associated with the tion of gene expression and other nuclear functions — Any heritable influence (in the sequencing of the human genome, and the genomes of namely the architecture of the nucleus as a whole3–14.In progeny of cells or of individuals) other model organisms, our abilities to interpret particular, we describe evidence for a compartmental- on gene activity, unaccompanied genome sequences are quite limited. For example, we ized nuclear architecture in the mammalian cell nucle- by a change in DNA sequence. cannot understand the orchestrated activity — and the us based on chromosome territories (CTs) and an silencing — of many thousands of genes in any given interchromatin compartment (IC) that contains *Institute of Anthropology cell just on the basis of DNA sequences, such as pro- macromolecular complexes that are required for repli- and Human Genetics, 12 Ludwig Maximilians moter and enhancer elements. How are the profound cation, transcription, splicing and repair (summa- University, Richard Wagner differences in gene activities established and main- rized in FIG.
    [Show full text]
  • Specific Metaphase and Interphase Detection of the Breakpoint Region In
    GENES, CHROMOSOMES & CANCER 4:69-74 (1992) Specific Metaphase and lnterphase Detection of the Breakpoint Region in 8q24 of Burkitt Lymphoma Cells by Triple-Color Fluorescence In Situ Hybridization Thomas Ried, Christoph Lengauer, Thomas Cremer, Joop Wiegant, Anton K. Raap, Mels van der Ploeg, Peter Groitl, and Martin Lipp Institute of Human Genetics and Anthropology, Univenity of Heidelberg, Heidelberg, Federal Republic of Germany (T.R., C.L.. T.C.); Department of Cytochemistry and Cytometry, Medical Faculty of Leiden Univenity, Leiden, The Netherlands U.W., A.K.R., M.v.d.P.); Institute of Biochemistry, Ludwig Maximilians University, Munich, Federal Republic of Germany (P.G., M.L.) Triple fluorescence in situ hybridization with a plasmid DNA library from sorted human chromosomes 8 in combination with bacteriophage clones flanking the breakpoint in 8q24 of the Burkitt lymphoma cell line )I was used for the specific delineation of this breakpoint in individual tumor cells. With this approach, tumor-specific breakpoints in translocation chromosomes can be detected at all stages of the cell cycle with high specificity. Genes Chrorn Cancer 4:69-74 (1992). INTRODUCTION al., 1988b; Lichter et al., 1988; Pinkel et al., 1988). Its application in interphase cytogenetics, however, can Specific chromosomal translocations in Burkitt’s create problems of interpretation due to the more ex- lymphoma (BL) were first demonstrated by the pio- tended nature of the signals from painted chromo- neering work of Manolov and Manolova (1972) and some domains. The construction of nested sets of Zech et al. (1976). In addition to the translocation DNA probes that span a chromosome region of inter- t(8;14), which has been found in some 75% of cases, est has been proposed as a tool to visualize tumor- variant translocations t(2;8) and t(8;22) have been de- specific chromosome breakpoints at all stages of the scribed (for review, see Heim and Mitelman, 1987).
    [Show full text]
  • From Human Cytogenetics to Human Chromosomics
    International Journal of Molecular Sciences Review From Human Cytogenetics to Human Chromosomics Thomas Liehr Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany; [email protected]; Tel.: +49-36451-9396850 Received: 10 January 2019; Accepted: 12 February 2019; Published: 14 February 2019 Abstract: Background: The concept of “chromosomics” was introduced by Prof. Uwe Claussen in 2005. Herein, the growing insights into human chromosome structure finally lead to a “chromosomic view” of the three-dimensional constitution and plasticity of genes in interphase nuclei are discussed. This review is dedicated to the memory of Prof. Uwe Claussen (30 April 1945–20 July 2008). Recent findings: Chromosomics is the study of chromosomes, their three-dimensional positioning in the interphase nucleus, the consequences from plasticity of chromosomal subregions and gene interactions, the influence of chromatin-modification-mediated events on cells, and even individuals, evolution, and disease. Progress achieved in recent years is summarized, including the detection of chromosome-chromosome-interactions which, if damaged, lead to malfunction and disease. However, chromosomics in the Human Genetics field is not progressing presently, as research interest has shifted from single cell to high throughput, genomic approaches. Conclusion: Chromosomics and its impact were predicted correctly in 2005 by Prof. Claussen. Although some progress was achieved, present reconsiderations of the role of the chromosome and the single cell in Human Genetic research are urgently necessary. Keywords: chromosomes; cytogenetics; chromosomics; interphase-architecture; epigenetics 1. Introduction Prof. Uwe Claussen (30 April 1945–20 July 2008) was a Human Geneticist and brilliant scientist with specific interest in cytogenetics and chromosome biology [1].
    [Show full text]
  • Simultaneous Visualization of Seven Different DNA Probes by in Situ
    Proc. Nat!. Acad. Sci. USA Vol. 89, pp. 1388-1392, February 1992 Genetics Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy (PCR-probe labeling/CCD camera/gene mappilg/centromere repeats/cytogenetics) THOMAS RIED*, ANTONIO BALDINI, TIMOTHY C. RAND, AND DAVID C. WARD Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510-8005 Communicated by Nina Federoff, December 2, 1991 ABSTRACT Combinatorial labeling of probes (i.e., with Blue. With four labeling and fluorescent detection systems, two or more different reporters) increases the number oftarget the number ofdifferent targets could be increased to 15, again sequences that can be detected simultaneously by fluorescence assuming that only equimolar mixtures of reporters in all in situ hybridization. We have used an epifluorescence micro- pairwise and triple-labeling combinations are used. Using a scope equipped with a digital imaging camera and computer conventional epifluorescence microscope and photomicros- software for pseudocoloring and merging images to disuish copy, these theoretical possibilities would be difficult to up to seven different probes using only three fluorochromes. achieve in practice, mainly because multiple exposures of Chromosome-specific centromere repeat clones and chromo- color film cannot adequately display and resolve images from some-specific "composite" probe sets were generated by PCR combinatorially labeled probes. This restriction should be in which different mixtures of modified nucleotides, including overcome with digital imaging camera systems, such as fluorescein-coijugated dUTP, were incorporated. Cosmid silicon intensified tube or charge coupled device (CCD) clones were labeled similarly by nick-translation.
    [Show full text]
  • Prof. Thomas Cremer
    Thomas Cremer Four decades ago most molecular biologists viewed the nucleus as a scarcely structured organelle with intermingling chromatin fibres drifting around in the nuclear sap. Thomas Cremer was one of the first supporters of the idea that cell type specific higher order chromatin arrangements of the nucleus are essential for cardinal nuclear functions, such as DNA replication, DNA repair and regulation of gene transcription. Spatial organization of chromatin, now considered as the highest level of epigenetic gene regulation, has been the main focus of the T. Cremer’s research since the early 1970s. Together with two physicists, his brother Christoph Cremer and Christian Zorn, T. Cremer pioneered laser-UV-microbeam experi- ments (1974). They demonstrated that after microirradiation of a small portion of an interphase nucleus, damage was restricted to a few chromosomes in the subsequent mitosis. This result implied a territorial organization of chromosomes in the interphase nucleus. In 1978 Thomas Cremer (again, in collaboration with Christoph Cremer) published a proposal for the construction of a confocal laser scanning fluorescence microscope with the goal of 3D imaging of cells. In the 1980s T. Cremer contributed to the development of a method for the visualization of individual chromosome territories by in situ hybridization (initially, using radioactive labeling) with chromosome–specific DNA probes. His concept of interphase cytogenetics (1976) had a broad impact in the field of clinical and tumor cytogenetics. Together with P. Lichter, T. Cremer also belongs to the pioneers of comparative genomic hybridization (CGH) performed on diploid metaphase spreads (1983) and of CGH arrays performed on a matrix with an ordered set of defined nucleic acid target sequences (1997).
    [Show full text]
  • Thursday April 7
    Cellular Oncology 27 (2005) 105–118 105 IOS Press Thursday April 7 PREMIER LECTURE SERIES (ICCond) with a concomitant enlargement of the IC Location: PFC G07 occurs rapidly, when living cells are exposed to a hyper- osmotic medium. Cells, which were kept up to 30 min in the ICCond state, before they were released to normal PL5 09.00-09.40 osmotic conditions, retained their viability. Exposure of cells to several, short cycles of ICCond and decondensa- Professor Thomas Cremer tion yielded highly reproducible patterns of condensed Department Biology II, Ludwig and normal chromatin textures. During ICCond individ- Maximilians University, Munich, ual CTs could still be delineated as distinct objects using Germany chromosome painting. Interestingly, neighboring CTs were not fully separated from each other, but formed a 3D higher order chromatin network. The contact sites of chromatin from different CTs have not yet been identi- fied. Splicing speckles, nuclear bodies and several pro- FROM CHROMOSOME TERRITORIES TO A teins, described as markers for a nuclear matrix, were FUNCTIONAL NUCLEAR ARCHITECTURE detected within the enlarged IC. Nascent transcripts, pulse-labeled immediately prior to ICCond with BrUTP, Thomas Cremer, Heiner Albiez, Andreas Bolzer, Daniela were detected at the surface of condensed chromatin Köhler, Katrin Küpper, Stefan Müller, Michaela Neusser, streaks lining the enlarged IC. This and other experi- Lothar Schermelleh, Heinrich Leonhardt, Babett Wagler, ments argue that for transcription genes must be posi- Roman Zinner, Marion Cremer, Irina Solovei tioned in perichromatin regions lining the IC or on chro- Department Biology II, Ludwig Maximilians University, matin loops expanding into the IC. Transcription as well Munich, Grosshadernerstr.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,197,501 B1 Cremer Et Al
    USOO61975O1B1 (12) United States Patent (10) Patent No.: US 6,197,501 B1 Cremer et al. (45) Date of Patent: *Mar. 6, 2001 (54) ARRANGEMENT OF NUCLEIC ACID OTHER PUBLICATIONS SEQUENCES FOR COMPARATIVE GENOMIC HYBRDIZATION Ng et al., “Methods for analysis of multiple cystic fibrosis mutations”, Hum. Genet. 87:613-617, 1991.* (75) Inventors: Thomas Cremer; Thomas Ried; Bentz et al., “Comparative genomic hybridization in the Michael Speicher, all of Heidelberg; investigation of myeloid leukemias', Genes Chromosomes Anna Jauch, Heddesheim; Peter Cancer 12:193–200, 1995.* Lichter, Gaiberg, all of (DE) Speicher et al., “Correlation of microscopic phenotype with genotype in a formalin fixed, paraffin embedded testicular (73) Assignee: Deutsches Krebsforschungszentrum, germ cell tumor with universal DNA amplification, com Heidelberg (DE) parative genomic hybridization and interphase cytogenics', Am. J. Pathology 146(6) Jun. 1995.* (*) Notice: This patent issued on a continued pros “Oncogene Amplification”, Seminars in Cancer Biology, ecution application filed under 37 CFR Feb. 1993. 1.53(d), and is subject to the twenty year O.P. Kallioniemi et al., “Comparqative Genomic Hybridiza patent term provisions of 35 U.S.C. tion: A Rapid New Method for Detecting and Mapping DNA 154(a)(2). Amplification in Tumors”, Seminars in Cancer Biology, vol. 4, 1993: pp. 41–46. Subject to any disclaimer, the term of this S. Du Manoir et al. “Detection of Complete and Partial patent is extended or adjusted under 35 Chromosome Gains and LOSSes by Comparative Genomic in U.S.C. 154(b) by 0 days. Situ Hybridization”, Human Genetics (1993) 90: 590-610. Dudin et al., "Sorting of chromosomes by magnetic Sepera (21) Appl.
    [Show full text]
  • Considerations on a Laser-Scanning-Microscope With
    ^ E21954F MICROSCOPICA ACTA JOURNAL OF MICROSCOPIC EQUIPMENT, METHODS AND APPLICATIONS EDITORS R. D. Allen, Hanover/USA-W. Boguth, Basel-L. Jenny, Basel-O. Johari, Chicago E. Kellenberger, Basel • H. Rohr, Basel • W. Stockem, Bonn NUMBER 1 . VOLUME 81 • SEPTEMBER 1978 S. HIRZEL VERLAG STUTTGART Microsc Acta ISSN 0044-376 X MICROSCOPICA ACTA Journal of microscopic equipment, methods and applications formerly Zeitschrift für wissenschaftliche Mikroskopie und mikroskopische Technik Editors: Prof. Dr. R. D. Allen, Prof. Dr. W. Boguth, Prof. Dr. L. Jenny, Dr. O. Johari, Prof. Dr. E. Kellenberger, Prof. Dr. H. Rohr, Prof. Dr. W. Stockem Co-Editiorial Board L. Albert, Karlsruhe • O. von Deimling, Freiburg i. Br. • D. Gerlach, Erlangen • H. Hasel• mann, Tübingen • H. Haug, Lübeck • L. Hottinger, Basel • G. Kiefer, Freiburg i. Br. • A. Läuchli, Hannover • K. Lickfeld, Essen • M.-Th. Mackowsky, Essen • K. Michel, Aalen • H. Mörtel, Erlangen • J. S. Ploem, Leiden • M. Pluta, Warszawa • H. Raith, Dortmund • A. Schaefer, Heerbrugg • Kl. P. SchindT, Wien • F. Thon, Berlin • E. Treiber, Stockholm MICROSCOPIA ACTA publishes reviews, original papers, reports and references to literature covering the whole field of light and electron microscopy with regard to the aspect of micro- scopy technique. MICSROSCOPIA ACTA veröffentlichen Übersichtsbeiträge, Originalarbeiten, Berichte und Literaturhinweise, die das Gebiet der Lichtmikroskopie und der Elektronenmikroskopie unter dem Gesichtspunkt der mikroskopischen Technik behandeln. Contributions will be accepted in English, Ger• MICROSCOPIA ACTA man or French and should be submitted to the Prof. Dr. Louis Jenny, Bäumlihofstr. 375 Acting Etidor: CH-4125 Riehen/Switzerland Manuskripte können in deutscher, englischer oder französicher Sprache abgefaßt sein. Sie Tel. Private: (0 61) 49 59 69 sind bei der Redaktion einzureichen: Institute: (0 61) 43 44 15 Terms of delivery The Journal is published in issues combined to a volume of approximately 450 pages.
    [Show full text]
  • Dimensional Organization of Chromosome Territories In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Three - Dimensional Organization of Chromosome Territories in provided by Erasmus University Digital Repository the Human Interphase Cell Nucleus Human 3D Genome Study Group Tobias A. Knoch, Christian Münkel and Jörg Langowski 1) 2) 3) Joachim Rauch, Harald Bornfleth and Christoph Cremer with Irina Solovei and Thomas Cremer 1) Division Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 280 D - 69120 Heidelberg, Federal Republic of Germany German Human 2) Instiute for Applied Physics, Albert Ueberle Str. 3-5, 3) Institute for Anthropology and Human Genetics, 69120 Heidelberg, FRG http://www.DKFZ-Heidelberg.de/Macromol/Welcome.html Richard Wagner Str. 10, 8033Munich, FRG Genome Project PURPOSE SIMULATIONS The eukaryotic cell is a prime example of a functioning nano With Monte Carlo and Brownian Dynamics methods Random Walk / Giant Loop model Multi-Loop-Subcompartment model machinery. The synthesis of proteins, maintenance of structure and we simulated various models (see sketch left) of human (RW/GL) (MLS) interphase chromosome 15 assuming a flexible polymer chain. To save computer power we start with duplication of the eukaryotic cell itself are all fine-tuned biochemical Sachs et al. (1995) Münkel et al. (1997) ~3,500 300nm=31kbp and later we relax with ~21,000 50nm=5,2 kbp long segments. For simulation of a single processes that depend on the precise structural arrangement of the chromosome it is placed in a potential well whose height R bands is related to the excluded volume interaction (EVI). The cellular components. The regulation of genes – their transcription G bands EVI keeps the chain from self crossing.
    [Show full text]
  • Nuclear Chromodynamics
    Nuclear chromodynamics KITP UCSB January 11, 2016 Alexander Grosberg Center for Soft Matter Research Department of Physics, New York University Problem: why is it difficult to manage DNA? • Human genome length about 2 meters; • Nucleus size 10 micron; • Increase all scales by a factor of a million: • length 2000 kilometers; • diameter 2 mm; • packed in a few meters sized car... Ropes, threads, wires… Viruses do it Francoise Livolant, ENS Paris Some examples, with numbers: Organism Genome Stored in… Ratio length Human 2 m 10 mm 200,000 Mouse 1.8 m 8 mm 200,000 Fruit Fly 5 cm 5 mm 10,000 Yeast 4 mm 2 mm 2000 Bacteria 1.5 mm 1 mm 1500 (E.coli) Virus (T4) 0.05 mm 0.05 mm 1000 Chromatin and cell nucleus Interphase: swollen chromosomes Metaphase: chromosomes are condensed Walther Flemming, 1880 Hierarchial organization Luger & Richmond,Luger 1997 Image from the cover of: “Molecular and Cellular Biology,” Stephen L. Wolfe, 1993 Figure 4-22 Molecular Biology of the Cell (© Garland Science 2008) Chromosome territories Christoph Cremer, Heidelberg/Mainz a | 4,6-diamidino-2-phenylindole (DAPI)-stained, diploid, chicken metaphase spread with macro- and microchromosomes. b | The same metaphase spread after multicolour fluorescence in situ hybridization with pseudocoloured chromosomes. Chicken chromosome paint probes (image courtesy of Johannes Thomas Cremer, Wienberg) were labelled by a combinatorial scheme with oestradiol (1, 4, 5, 6), LMU Munich digoxigenin (2, 4, 6, Z) and biotin (3, 5, 6, Z). c | Oestradiol- and digoxigenin- labelled probes were detected using secondary antibodies labelled with Cy3 and fluorescein isothiocyanate (FITC); biotinylated probes were detected with Cy5- conjugated streptavidin.
    [Show full text]