Chromosome Territories

Total Page:16

File Type:pdf, Size:1020Kb

Chromosome Territories Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome Territories Thomas Cremer1,2 and Marion Cremer1 1Biozentrum, Department of Biology II (Chair of Anthropology and Human Genetics), Ludwig-Maximilians- University, Grosshadernerstrasse 2, 82152 Martinsried, Germany 2Munich Center for Integrated Protein Sciences (CIPSM), 81377 Munich, Germany Correspondence: [email protected] Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenom- ics is considered, followed bya historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT archi- tecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them. mpressive progress has been achieved during for an integrated understanding of the structural Ithe last decade with regard to the functional and functional aspects of epigenetics with nu- implications of DNA methylation, histone mo- clear architecture during the differentiation of difications, and chromatin remodeling events toti- or pluripotent cells to functionally distinct for gene regulation (Fuks 2005; Kouzarides cell types. 2007; Maier et al. 2008; Jiang and Pugh 2009). The territorial organization of chromo- It has, however, also become obvious that somes in interphase (chromosome territories, decoding the chromatin language does not suf- CTs) constitutes a basic feature of nuclear archi- fice to fully understand the ways in which the tecture. This article starts with a brief historical diploid genome contributes to the formation account of the CT concept and the compelling of the different epigenomes present in the vari- experimental evidence in favor of a territorial ous cell types of a multicellular organism. organization of chromosomes in all eukaryotes Different epigenomes and their functional studied to date. A survey of what is presently implications also depend on differences in hig- known about nonrandom arrangements of her-order chromatin organization and nuclear CTs, about changes of such arrangements in architecture at large. Epigenomic research aims cycling cells as a result of internal or external Editors: David Spector and Tom Misteli Additional Perspectives on The Nucleus available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a003889 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a003889 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press T. Cremer and M. Cremer influences and about the internal architecture 2006a): (I) CTorder is stably maintained during of CTs and their structural interactions with interphase; (II) Chromosome neighborhood each other is provided. The article concludes patterns change from prophase to metaphase; with a discussion of open questions on CT and (III) New chromosome neighborhood arra- organization and new experimental strategies ngements established in the metaphase plate are to answer them. conserved to a considerable extent throughout anaphase and telophase, resulting in rather sym- metrical arrangements of CTs in the two daugh- ter nuclei. Different opinions on the structural ORIGIN OF THE CHROMOSOME organization of CTs were put forward in the TERRITORY CONCEPT early days of the 20th century. Eduard Strasbur- Since the late 19th century, an uncounted ger (1905) published a colored cartoon claiming number of microscopic studies has appeared that CTs are built up from little chromatin on numerous aspects of nuclear structure and clumps (Fig. 1E), whereas Theodor Boveri dis- on the observation of mitotic chromosomes. cussed a sponge-like CT structure built up A territorial organization of interphase chro- from networks of anastomizing chromatin bun- mosomes was first suggested for animal cell dles (Fig. 1F). nuclei by Carl Rabl (Rabl 1885) (Fig. 1A,B), Despite light microscopic evidence in favor but it was Theodor Boveri who introduced of chromosome territories at least in some spe- the term chromosome territory (CT) in his cies and cell types (for review see Stack et al. seminal studies of blastomere stages of the 1977) the weight of electron microscopic evi- horse roundworm Parascaris equorum or Asca- dence established since the 1950s apparently ris megalocephala, as the species was called at argued for an unraveling of chromosomes in his time (Boveri 1909). The worm exists in interphase nuclei into intermingling chromatin two varieties, one with two pairs (Ascaris biva- fibers of 10–30 nm in diameter with no sign lens), the other with one pair of germ line chro- of individual chromosomes. As a consequence, mosomes (Ascaris univalens). Boveri argued the concept of chromosome territories fell into that each chromosome visible in mitosis retains oblivion or was even considered to be ex- its individuality during interphase and occupies perimentally disproved (Wischnitzer 1973). a distinct part of the nuclear space. As can be During the 1970s and 1980s, most researchers seen in his drawings, Boveri was able to distin- seemed content with the assumption that the guish chromosome ends sticking out in protru- nucleus is filled with intermingling chromatin sions of prophase nuclei (Fig. 1C) and used fibers and loops like a dish of spaghetti, an as- these protrusions as markers for the nuclear sumption widely reflected by textbooks of cell position of the asserted CTs in interphase nuclei biology. (Fig. 1D). In fixed two-cell embryos, Boveri noted that their nuclear topography was strik- ingly similar during interphase and prophase, EXPERIMENTAL EVIDENCE FOR when chromosomes became visible as distinct CHROMOSOME TERRITORIES entities. In four cell embryos, however, he typi- cally observed two pairs of nuclei each carry- Stephen M. Stack, David B. Brown, and William ing distinctly different protrusion patterns C. Dewey were among the few researchers in (Fig. 1D). His ingenious speculative talent led the 1970s that still adhered to Boveri’s seemingly him to the following predictions on chromo- outdated concept (Stack et al. 1977; for review, some arrangements in Ascaris nuclei during see Cremer and Cremer 2006b). They squashed the first steps of postzygotic development (for fixed cells from Allium cepa root tips, as well a comprehensive review, see Cremer and Cremer as Chinese hamster cells in acetic acid, and 2 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a003889 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Chromosome Territories subjected the air-dried cells to salt solutions subset of the mitotic chromosome complement containing NaOH, and finally performed a (Fig. 2D). The labeled parts of mitotic chromo- Giemsa staining. This treatment yielded clumps somes revealed the UV damaged segments of of condensed chromatin arguably reflecting neighboring chromosome territories hit by the interphase chromosomes (Fig. 2A). The authors microbeam during the preceding interphase. concluded that “chromosomes ... remain in Consistent with this result, microirradiation of distinct domains throughout interphase.” Our a small part of the metaphase plate of a living group obtained early evidence for CTs in nuclei cell yielded a mirror-like pattern of distinctly of diploid Chinese hamster cells with the help of labeled domains in the resulting daughter nuclei laser-UV-microirradiation experiments (Zorn (Fig. 2F). These experiments provided the first et al. 1976; Zorn et al. 1979; Cremer et al. compelling, although still indirect, evidence 1982a; Cremer et al. 1982b; for review, see for the existence of chromosome territories. Cremer and Cremer 2006b; Meaburn and Mis- The direct visualization of individual CTs teli 2007). A laser microbeam (l ¼ 257 nm) was made possible by in situ hybridization was used to induce UV-damaged DNA within techniques developed during the mid 1980s. a small part of the nucleus. It was predicted Initial experiments were performed with total that DNA damage inflicted within a small human genomic DNA on cell hybrids that con- volume of the nucleus would yield different tained only one or few human chromosomes results depending on how chromosomes were in a mouse or hamster genome complement arranged. Figure 2B exemplifies the experimen- (Manuelidis 1985; Schardin et al. 1985) (Fig. tal rationale with the example of woolen threads 3A). The achievement of chromosome sorting assembled within a “nuclear” space (Cremer by flow cytometry of fluorescently labeled et al. 1982a). Each thread reflects a chromatin mitotic chromosomes (Cremer et al. 1984a; fiber constituting an individual chromosome. Gray et al. 1987; Fawcett et al. 1994) enabled In case of threads distributed throughout the the generation of chromosome specific painting whole nuclear space (upper panel), the “dam- probes for a large number of species. Subse- age” label would become scattered over many quent amplification of DNA by cloning in bac- threads. If individual threads occupy distinct terial vectors or
Recommended publications
  • 82755929.Pdf
    FEBS Letters 589 (2015) 2931–2943 journal homepage: www.FEBSLetters.org Review The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments ⇑ Thomas Cremer a, , Marion Cremer a, Barbara Hübner a,1, Hilmar Strickfaden b, Daniel Smeets a, ⇑ ⇑ Jens Popken a, Michael Sterr a,2, Yolanda Markaki a, Karsten Rippe c, , Christoph Cremer d, a Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany b University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada c German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany d Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany article info abstract Article history: Recent methodological advancements in microscopy and DNA sequencing-based methods provide Received 1 April 2015 unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear Revised 19 May 2015 machineries. We discuss a model of the underlying functional nuclear organization derived mostly Accepted 20 May 2015 from electron and super-resolved fluorescence microscopy studies. It is based on two spatially Available online 28 May 2015 co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the com- Edited by Wilhelm Just pact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the inter- chromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and Keywords: 4D nucleome export functions. The ANC is the major site of RNA synthesis.
    [Show full text]
  • Three-Dimensional Genome Architecture: Players and Mechanisms
    REVIEWS Three-dimensional genome architecture: players and mechanisms Ana Pombo1 and Niall Dillon2 Abstract | The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus. Chromatin The 2-metre length of DNA in a mammalian cell is more than 30 years ago, it has become clear that this type immunoprecipitation organized into chromosomes, which are packaged and of genetic element can regulate gene trans­cription over A method in which chromatin folded through various mechanisms and occupy discrete large distances. Looping out of the DNA that separates bound by a protein is positions in the nucleus. The multiple levels of DNA promoters and distally located enhancers was proposed immunoprecipitated with an antibody against that protein, folding generate extensive contacts between different as a mechanism by which factors that are bound to to allow the extraction and genomic regions. These contacts are influenced by the enhancers can directly contact their target promoters analysis of the bound DNA proximity of DNA sequences to one another, by the fold- and influence the composition of transcription initiation by quantitative PCR or ing architecture of local and long-range chromatin con- complexes (FIG.
    [Show full text]
  • Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells
    REVIEWS CHROMOSOME TERRITORIES, NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS T. Cremer* ‡ and C. Cremer‡§ The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation. EPIGENETICS Despite all the celebrations associated with the tion of gene expression and other nuclear functions — Any heritable influence (in the sequencing of the human genome, and the genomes of namely the architecture of the nucleus as a whole3–14.In progeny of cells or of individuals) other model organisms, our abilities to interpret particular, we describe evidence for a compartmental- on gene activity, unaccompanied genome sequences are quite limited. For example, we ized nuclear architecture in the mammalian cell nucle- by a change in DNA sequence. cannot understand the orchestrated activity — and the us based on chromosome territories (CTs) and an silencing — of many thousands of genes in any given interchromatin compartment (IC) that contains *Institute of Anthropology cell just on the basis of DNA sequences, such as pro- macromolecular complexes that are required for repli- and Human Genetics, 12 Ludwig Maximilians moter and enhancer elements. How are the profound cation, transcription, splicing and repair (summa- University, Richard Wagner differences in gene activities established and main- rized in FIG.
    [Show full text]
  • Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells
    REVIEWS CHROMOSOME TERRITORIES, NUCLEAR ARCHITECTURE AND GENE REGULATION IN MAMMALIAN CELLS T. Cremer* ‡ and C. Cremer‡§ The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation. EPIGENETICS Despite all the celebrations associated with the tion of gene expression and other nuclear functions — Any heritable influence (in the sequencing of the human genome, and the genomes of namely the architecture of the nucleus as a whole3–14.In progeny of cells or of individuals) other model organisms, our abilities to interpret particular, we describe evidence for a compartmental- on gene activity, unaccompanied genome sequences are quite limited. For example, we ized nuclear architecture in the mammalian cell nucle- by a change in DNA sequence. cannot understand the orchestrated activity — and the us based on chromosome territories (CTs) and an silencing — of many thousands of genes in any given interchromatin compartment (IC) that contains *Institute of Anthropology cell just on the basis of DNA sequences, such as pro- macromolecular complexes that are required for repli- and Human Genetics, 12 Ludwig Maximilians moter and enhancer elements. How are the profound cation, transcription, splicing and repair (summa- University, Richard Wagner differences in gene activities established and main- rized in FIG.
    [Show full text]
  • Highly Structured Homolog Pairing Reflects Functional Organization Of
    ARTICLE https://doi.org/10.1038/s41467-019-12208-3 OPEN Highly structured homolog pairing reflects functional organization of the Drosophila genome Jumana AlHaj Abed 1,9, Jelena Erceg1,9, Anton Goloborodko 2,9, Son C. Nguyen 1,6, Ruth B. McCole1, Wren Saylor 1, Geoffrey Fudenberg 2,7, Bryan R. Lajoie3,8, Job Dekker 3, Leonid A. Mirny 2,4 & C.-ting Wu1,5 Trans-homolog interactions have been studied extensively in Drosophila, where homologs are 1234567890():,; paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks. 1 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. 2 Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. 3 Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA.
    [Show full text]
  • Specific Metaphase and Interphase Detection of the Breakpoint Region In
    GENES, CHROMOSOMES & CANCER 4:69-74 (1992) Specific Metaphase and lnterphase Detection of the Breakpoint Region in 8q24 of Burkitt Lymphoma Cells by Triple-Color Fluorescence In Situ Hybridization Thomas Ried, Christoph Lengauer, Thomas Cremer, Joop Wiegant, Anton K. Raap, Mels van der Ploeg, Peter Groitl, and Martin Lipp Institute of Human Genetics and Anthropology, Univenity of Heidelberg, Heidelberg, Federal Republic of Germany (T.R., C.L.. T.C.); Department of Cytochemistry and Cytometry, Medical Faculty of Leiden Univenity, Leiden, The Netherlands U.W., A.K.R., M.v.d.P.); Institute of Biochemistry, Ludwig Maximilians University, Munich, Federal Republic of Germany (P.G., M.L.) Triple fluorescence in situ hybridization with a plasmid DNA library from sorted human chromosomes 8 in combination with bacteriophage clones flanking the breakpoint in 8q24 of the Burkitt lymphoma cell line )I was used for the specific delineation of this breakpoint in individual tumor cells. With this approach, tumor-specific breakpoints in translocation chromosomes can be detected at all stages of the cell cycle with high specificity. Genes Chrorn Cancer 4:69-74 (1992). INTRODUCTION al., 1988b; Lichter et al., 1988; Pinkel et al., 1988). Its application in interphase cytogenetics, however, can Specific chromosomal translocations in Burkitt’s create problems of interpretation due to the more ex- lymphoma (BL) were first demonstrated by the pio- tended nature of the signals from painted chromo- neering work of Manolov and Manolova (1972) and some domains. The construction of nested sets of Zech et al. (1976). In addition to the translocation DNA probes that span a chromosome region of inter- t(8;14), which has been found in some 75% of cases, est has been proposed as a tool to visualize tumor- variant translocations t(2;8) and t(8;22) have been de- specific chromosome breakpoints at all stages of the scribed (for review, see Heim and Mitelman, 1987).
    [Show full text]
  • From Human Cytogenetics to Human Chromosomics
    International Journal of Molecular Sciences Review From Human Cytogenetics to Human Chromosomics Thomas Liehr Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany; [email protected]; Tel.: +49-36451-9396850 Received: 10 January 2019; Accepted: 12 February 2019; Published: 14 February 2019 Abstract: Background: The concept of “chromosomics” was introduced by Prof. Uwe Claussen in 2005. Herein, the growing insights into human chromosome structure finally lead to a “chromosomic view” of the three-dimensional constitution and plasticity of genes in interphase nuclei are discussed. This review is dedicated to the memory of Prof. Uwe Claussen (30 April 1945–20 July 2008). Recent findings: Chromosomics is the study of chromosomes, their three-dimensional positioning in the interphase nucleus, the consequences from plasticity of chromosomal subregions and gene interactions, the influence of chromatin-modification-mediated events on cells, and even individuals, evolution, and disease. Progress achieved in recent years is summarized, including the detection of chromosome-chromosome-interactions which, if damaged, lead to malfunction and disease. However, chromosomics in the Human Genetics field is not progressing presently, as research interest has shifted from single cell to high throughput, genomic approaches. Conclusion: Chromosomics and its impact were predicted correctly in 2005 by Prof. Claussen. Although some progress was achieved, present reconsiderations of the role of the chromosome and the single cell in Human Genetic research are urgently necessary. Keywords: chromosomes; cytogenetics; chromosomics; interphase-architecture; epigenetics 1. Introduction Prof. Uwe Claussen (30 April 1945–20 July 2008) was a Human Geneticist and brilliant scientist with specific interest in cytogenetics and chromosome biology [1].
    [Show full text]
  • Simultaneous Visualization of Seven Different DNA Probes by in Situ
    Proc. Nat!. Acad. Sci. USA Vol. 89, pp. 1388-1392, February 1992 Genetics Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy (PCR-probe labeling/CCD camera/gene mappilg/centromere repeats/cytogenetics) THOMAS RIED*, ANTONIO BALDINI, TIMOTHY C. RAND, AND DAVID C. WARD Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510-8005 Communicated by Nina Federoff, December 2, 1991 ABSTRACT Combinatorial labeling of probes (i.e., with Blue. With four labeling and fluorescent detection systems, two or more different reporters) increases the number oftarget the number ofdifferent targets could be increased to 15, again sequences that can be detected simultaneously by fluorescence assuming that only equimolar mixtures of reporters in all in situ hybridization. We have used an epifluorescence micro- pairwise and triple-labeling combinations are used. Using a scope equipped with a digital imaging camera and computer conventional epifluorescence microscope and photomicros- software for pseudocoloring and merging images to disuish copy, these theoretical possibilities would be difficult to up to seven different probes using only three fluorochromes. achieve in practice, mainly because multiple exposures of Chromosome-specific centromere repeat clones and chromo- color film cannot adequately display and resolve images from some-specific "composite" probe sets were generated by PCR combinatorially labeled probes. This restriction should be in which different mixtures of modified nucleotides, including overcome with digital imaging camera systems, such as fluorescein-coijugated dUTP, were incorporated. Cosmid silicon intensified tube or charge coupled device (CCD) clones were labeled similarly by nick-translation.
    [Show full text]
  • Network Analysis Identifies Chromosome Intermingling Regions
    Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription Anastasiya Belyaevaa,b, Saradha Venkatachalapathyc, Mallika Nagarajanc, G. V. Shivashankarc,d, and Caroline Uhlera,b,1 aLaboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139; bInstitute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139; cMechanobiology Institute, National University of Singapore, Singapore 117411; and dInstitute of Molecular Oncology, Italian Foundation for Cancer Research, Milan 20139, Italy Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved November 13, 2017 (received for review May 15, 2017) The 3D structure of the genome plays a key role in regulatory con- transcriptional machinery, and regulatory factors to coordinate trol of the cell. Experimental methods such as high-throughput expression, also known as transcription factories, has been pro- chromosome conformation capture (Hi-C) have been developed posed as a model for gene regulation (14–16). Collectively, to probe the 3D structure of the genome. However, it remains these studies suggest that interchromosomal regions could har- a challenge to deduce from these data chromosome regions bor coregulated gene clusters. However, missing in this picture is that are colocalized and coregulated. Here, we present an inte- a systematic analysis linking 1D epigenetic marks and 3D inter- grative approach that leverages 1D functional genomic features mingling regions and their roles in transcription control. (e.g., epigenetic marks) with 3D interactions from Hi-C data to Various methods have been developed to infer the spatial con- identify functional interchromosomal interactions. We construct nectivity of the whole genome from Hi-C data.
    [Show full text]
  • Prof. Thomas Cremer
    Thomas Cremer Four decades ago most molecular biologists viewed the nucleus as a scarcely structured organelle with intermingling chromatin fibres drifting around in the nuclear sap. Thomas Cremer was one of the first supporters of the idea that cell type specific higher order chromatin arrangements of the nucleus are essential for cardinal nuclear functions, such as DNA replication, DNA repair and regulation of gene transcription. Spatial organization of chromatin, now considered as the highest level of epigenetic gene regulation, has been the main focus of the T. Cremer’s research since the early 1970s. Together with two physicists, his brother Christoph Cremer and Christian Zorn, T. Cremer pioneered laser-UV-microbeam experi- ments (1974). They demonstrated that after microirradiation of a small portion of an interphase nucleus, damage was restricted to a few chromosomes in the subsequent mitosis. This result implied a territorial organization of chromosomes in the interphase nucleus. In 1978 Thomas Cremer (again, in collaboration with Christoph Cremer) published a proposal for the construction of a confocal laser scanning fluorescence microscope with the goal of 3D imaging of cells. In the 1980s T. Cremer contributed to the development of a method for the visualization of individual chromosome territories by in situ hybridization (initially, using radioactive labeling) with chromosome–specific DNA probes. His concept of interphase cytogenetics (1976) had a broad impact in the field of clinical and tumor cytogenetics. Together with P. Lichter, T. Cremer also belongs to the pioneers of comparative genomic hybridization (CGH) performed on diploid metaphase spreads (1983) and of CGH arrays performed on a matrix with an ordered set of defined nucleic acid target sequences (1997).
    [Show full text]
  • Chromosome Conformation Paints Reveal the Role of Lamina Association in Genome Organization and Regulation
    bioRxiv preprint doi: https://doi.org/10.1101/122226; this version posted March 30, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosome Conformation Paints Reveal the Role of Lamina Association in Genome Organization and Regulation Teresa R Luperchio1 , Michael EG Sauria2 , Xianrong Wong1, Marie-Cécile Gaillard1, Peter Tsang3, Katja Pekrun3, ,∗ ,∗ Robert A Ach 3, N Alice Yamada3, James Taylor2 , Karen L Reddy1 4 ,† , ,† 1 Center for Epigenetics and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore MD 212015 2 Departments of Biology and Computer Science, Johns Hopkins University, Baltimore MD 21218 3 Agilent Technologies, Santa Clara CA 95051 4 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine These authors contributed equally to this work ∗ Correspondence should be addressed to JT ([email protected]) and KLR ([email protected]) † Summary Non-random, dynamic three-dimensional organization of the nucleus is important for regulation of gene ex- pression. Numerous studies using chromosome conformation capture strategies have uncovered ensemble organizational principles of individual chromosomes, including organization into active (A) and inactive (B) com- partments. In addition, large inactive regions of the genome appear to be associated with the nuclear lamina, the so-called Lamina Associated Domains (LADs). However, the interrelationship between overall chromosome conformation and association of domains with the nuclear lamina remains unclear. In particular, the 3D organiza- tion of LADs within the context of the entire chromosome has not been investigated.
    [Show full text]
  • The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus
    The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus Cremer, Thomas; Cremer, Marion; Hübner, Barbara; Silahtaroglu, Asli; Hendzel, Michael; Lanctôt, Christian; Strickfaden, Hilmar; Cremer, Christoph Published in: BioEssays DOI: 10.1002/bies.201900132 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Cremer, T., Cremer, M., Hübner, B., Silahtaroglu, A., Hendzel, M., Lanctôt, C., Strickfaden, H., & Cremer, C. (2020). The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 42(2), [1900132]. https://doi.org/10.1002/bies.201900132 Download date: 05. okt.. 2021 PROBLEMS & PARADIGMS Prospects & Overviews www.bioessays-journal.com The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus Thomas Cremer,* Marion Cremer, Barbara Hübner, Asli Silahtaroglu, Michael Hendzel, Christian Lanctôt, Hilmar Strickfaden,* and Christoph Cremer* inseparably connected with their functional This article focuses on the role of the interchromatin compartment (IC) in tasks at all levels, from molecules to genes, shaping nuclear landscapes. The IC is connected with nuclear pore complexes chromatin domains (CDs), chromosome (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that territories, and the functional nuclear orga- the IC provides routes for imported transcription factors to target sites, for nization at large. The “top-down” approach to explore nu- export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the clear structure and function started in the intranuclear passage of regulatory RNAs from sites of transcription to remote nineteenth century with the discovery of functional sites (IC hypothesis).
    [Show full text]