bioRxiv preprint doi: https://doi.org/10.1101/122226; this version posted March 30, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosome Conformation Paints Reveal the Role of Lamina Association in Genome Organization and Regulation Teresa R Luperchio1 , Michael EG Sauria2 , Xianrong Wong1, Marie-Cécile Gaillard1, Peter Tsang3, Katja Pekrun3, ,∗ ,∗ Robert A Ach 3, N Alice Yamada3, James Taylor2 , Karen L Reddy1 4 ,† , ,† 1 Center for Epigenetics and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore MD 212015 2 Departments of Biology and Computer Science, Johns Hopkins University, Baltimore MD 21218 3 Agilent Technologies, Santa Clara CA 95051 4 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine These authors contributed equally to this work ∗ Correspondence should be addressed to JT (
[email protected]) and KLR (
[email protected]) † Summary Non-random, dynamic three-dimensional organization of the nucleus is important for regulation of gene ex- pression. Numerous studies using chromosome conformation capture strategies have uncovered ensemble organizational principles of individual chromosomes, including organization into active (A) and inactive (B) com- partments. In addition, large inactive regions of the genome appear to be associated with the nuclear lamina, the so-called Lamina Associated Domains (LADs). However, the interrelationship between overall chromosome conformation and association of domains with the nuclear lamina remains unclear. In particular, the 3D organiza- tion of LADs within the context of the entire chromosome has not been investigated.