Interaction Between Astrocytes and Adult Subventricular Zone Precursors Stimulates Neurogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Neuregulin 1–Erbb2 Signaling Is Required for the Establishment of Radial Glia and Their Transformation Into Astrocytes in Cerebral Cortex
Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex Ralf S. Schmid*, Barbara McGrath*, Bridget E. Berechid†, Becky Boyles*, Mark Marchionni‡, Nenad Sˇ estan†, and Eva S. Anton*§ *University of North Carolina Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599; †Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510; and ‡CeNes Pharamceuticals, Inc., Norwood, MA 02062 Communicated by Pasko Rakic, Yale University School of Medicine, New Haven, CT, January 27, 2003 (received for review December 12, 2002) Radial glial cells and astrocytes function to support the construction mine whether NRG-1-mediated signaling is involved in radial and maintenance, respectively, of the cerebral cortex. However, the glial cell development and differentiation in the cerebral cortex. mechanisms that determine how radial glial cells are established, We show that NRG-1 signaling, involving erbB2, may act in maintained, and transformed into astrocytes in the cerebral cortex are concert with Notch signaling to exert a critical influence in the not well understood. Here, we show that neuregulin-1 (NRG-1) exerts establishment, maintenance, and appropriate transformation of a critical role in the establishment of radial glial cells. Radial glial cell radial glial cells in cerebral cortex. generation is significantly impaired in NRG mutants, and this defect can be rescued by exogenous NRG-1. Down-regulation of expression Materials and Methods and activity of erbB2, a member of the NRG-1 receptor complex, leads Clonal Analysis to Study NRG’s Role in the Initial Establishment of to the transformation of radial glial cells into astrocytes. -
Regulation of Adult Neurogenesis in Mammalian Brain
International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways. -
Differences in Neural Stem Cell Identity and Differentiation Capacity Drive Divergent Regenerative Outcomes in Lizards and Salamanders
Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders Aaron X. Suna,b,c, Ricardo Londonoa, Megan L. Hudnalla, Rocky S. Tuana,c, and Thomas P. Lozitoa,1 aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; bMedical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and cDepartment of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved July 24, 2018 (received for review March 2, 2018) While lizards and salamanders both exhibit the ability to re- lizard tail regenerate (20), and the key to understanding this generate amputated tails, the outcomes achieved by each are unique arrangement of tissues is in identifying the patterning markedly different. Salamanders, such as Ambystoma mexicanum, signals involved. regenerate nearly identical copies of original tails. Regenerated lizard Both lizards and salamanders follow similar mechanisms of tails, however, exhibit important morphological differences compared tail development during embryonic development. The embryonic with originals. Some of these differences concern dorsoventral pat- spinal cord and surrounding structures are formed and patterned terning of regenerated skeletal and spinal cord tissues; regenerated by the neural tube (21, 22). The neural tube exhibits distinct + salamander tail tissues exhibit dorsoventral patterning, while re- domains: roof plate (characterized by expression of Pax7 , BMP- + + + grown lizard tissues do not. Additionally, regenerated lizard tails lack 2 , and Sox10 among others), lateral domain (Pax6 ), and floor + + characteristically roof plate-associated structures, such as dorsal root plate (Shh , FoxA2 ). -
Gfapd in Radial Glia and Subventricular Zone Progenitors in the Developing Human Cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A
RESEARCH ARTICLE 313 Development 137, 313-321 (2010) doi:10.1242/dev.041632 GFAPd in radial glia and subventricular zone progenitors in the developing human cortex Jinte Middeldorp1, Karin Boer2, Jacqueline A. Sluijs1, Lidia De Filippis3, Férechté Encha-Razavi4, Angelo L. Vescovi3, Dick F. Swaab5, Eleonora Aronica2,6 and Elly M. Hol1,* SUMMARY A subpopulation of glial fibrillary acidic protein (GFAP)-expressing cells located along the length of the lateral ventricles in the subventricular zone (SVZ) have been identified as the multipotent neural stem cells of the adult mammalian brain. We have previously found that, in the adult human brain, a splice variant of GFAP, termed GFAPd, was expressed specifically in these cells. To investigate whether GFAPd is also present in the precursors of SVZ astrocytes during development and whether GFAPd could play a role in the developmental process, we analyzed GFAPd expression in the normal developing human cortex and in the cortex of foetuses with the migration disorder lissencephaly type II. We demonstrated for the first time that GFAPd is specifically expressed in radial glia and SVZ neural progenitors during human brain development. Expression of GFAPd in radial glia starts at around 13 weeks of pregnancy and disappears before birth. GFAPd is continuously expressed in the SVZ progenitors at later gestational ages and in the postnatal brain. Co-localization with Ki67 proved that these GFAPd-expressing cells are able to proliferate. Furthermore, we showed that the expression pattern of GFAPd was disturbed in lissencephaly type II. Overall, these results suggest that the adult SVZ is indeed a remnant of the foetal SVZ, which develops from radial glia. -
Reaction of Ependymal Cells to Spinal Cord Injury: a Potential Role for Oncostatin Pathway and Microglial Cells
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.428106; this version posted February 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Reaction of ependymal cells to spinal cord injury: a potential role for oncostatin pathway and microglial cells *1 *1 *1 2 2 1 R. Chevreau , H Ghazale , C Ripoll , C Chalfouh , Q Delarue , A.L. Hemonnot , H 1 3 4 5 *2 *1 Hirbec , S Wahane , F Perrin , H Noristani , N Guerout , JP Hugnot *equal contribution, listed in alphabetic order 1 Université de Montpellier, INSERM CNRS IGF, France 2 Université de Rouen, France 3 Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095-1763, USA. 4 University of Montpellier, INSERM MMDN France 5 Shriners Hospitals Pediatric Research Center, NY, USA Abstract Ependymal cells with stem cell properties reside in the adult spinal cord around the central canal. They rapidly activate and proliferate after spinal cord injury, constituting a source of new cells. They produce neurons and glial cells in lower vertebrates but they mainly generate glial cells in mammals. The mechanisms underlying their activation and their glial-biased differentiation in mammals remain ill-defined. This represents an obstacle to control these cells. We addressed this issue using RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling during injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. -
Differential Timing and Coordination of Neurogenesis and Astrogenesis
brain sciences Article Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions Allison M. Bond 1, Daniel A. Berg 1, Stephanie Lee 1, Alan S. Garcia-Epelboim 1, Vijay S. Adusumilli 1, Guo-li Ming 1,2,3,4 and Hongjun Song 1,2,3,5,* 1 Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (A.M.B.); [email protected] (D.A.B.); [email protected] (S.L.); [email protected] (A.S.G.-E.); [email protected] (V.S.A.); [email protected] (G.-l.M.) 2 Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 5 The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development. -
NEUROGENESIS in the ADULT BRAIN: New Strategies for Central Nervous System Diseases
7 Jan 2004 14:25 AR AR204-PA44-17.tex AR204-PA44-17.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.pharmtox.44.101802.121631 Annu. Rev. Pharmacol. Toxicol. 2004. 44:399–421 doi: 10.1146/annurev.pharmtox.44.101802.121631 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on August 28, 2003 NEUROGENESIS IN THE ADULT BRAIN: New Strategies for Central Nervous System Diseases ,1 ,2 D. Chichung Lie, Hongjun Song, Sophia A. Colamarino,1 Guo-li Ming,2 and Fred H. Gage1 1Laboratory of Genetics, The Salk Institute, La Jolla, California 92037; email: [email protected], [email protected], [email protected] 2Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; email: [email protected], [email protected] Key Words adult neural stem cells, regeneration, recruitment, cell replacement, therapy ■ Abstract New cells are continuously generated from immature proliferating cells throughout adulthood in many organs, thereby contributing to the integrity of the tissue under physiological conditions and to repair following injury. In contrast, repair mechanisms in the adult central nervous system (CNS) have long been thought to be very limited. However, recent findings have clearly demonstrated that in restricted areas of the mammalian brain, new functional neurons are constantly generated from neural stem cells throughout life. Moreover, stem cells with the potential to give rise to new neurons reside in many different regions of the adult CNS. These findings raise the possibility that endogenous neural stem cells can be mobilized to replace dying neurons in neurodegenerative diseases. -
Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone
13078 • The Journal of Neuroscience, September 14, 2011 • 31(37):13078–13087 Development/Plasticity/Repair Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone Jessica B. Lennington,1,2 Sara Pope,1,2 Anna E. Goodheart,1 Linda Drozdowicz,1 Stephen B. Daniels,1 John D. Salamone,3 and Joanne C. Conover1,2 1Department of Physiology and Neurobiology, 2Center for Regenerative Biology, and 3Department of Psychology, University of Connecticut, Storrs, Connecticut 06269 Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson’s disease and in animal models of Parkinson’s disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing. -
Wnt/Β-Catenin Signaling Regulates Ependymal Cell Development and Adult Homeostasis
Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis Liujing Xinga, Teni Anbarchiana, Jonathan M. Tsaia, Giles W. Plantb, and Roeland Nussea,c,1 aDepartment of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305; and cHoward Hughes Medical Institute, Stanford, CA 94305 Contributed by Roeland Nusse, May 22, 2018 (sent for review February 23, 2018; reviewed by Bin Chen and Samuel Pleasure) In the adult mouse spinal cord, the ependymal cell population that precursors and are present before the onset of neurogenesis. surrounds the central canal is thought to be a promising source of They give rise to radial glial cells, which then become the pre- quiescent stem cells to treat spinal cord injury. Relatively little is dominant progenitors during gliogenesis (19, 20). Eventually, known about the cellular origin of ependymal cells during spinal ependymal cells are formed as the ventricle and the ventricular cord development, or the molecular mechanisms that regulate zone retract through the process of obliteration. This process is ependymal cells during adult homeostasis. Using genetic lineage accompanied by terminal differentiation and exit of radial glial tracing based on the Wnt target gene Axin2, we have character- cells from the ventricular zone (18, 19, 21–24). ized Wnt-responsive cells during spinal cord development. Our Compared with our knowledge about ependymal cells in the results revealed that Wnt-responsive progenitor cells are restricted brain, little is known about the cellular origin of spinal cord to the dorsal midline throughout spinal cord development, which ependymal cells. -
Neurogenesis in the Adult Brain
The Journal of Neuroscience, February 1, 2002, 22(3):612–613 Neurogenesis in the Adult Brain Fred H. Gage Laboratory of Genetics, The Salk Institute, La Jolla, California 92037 A milestone is marked in our understanding of the brain with the (Palmer et al., 1995; Shihabuddin et al., 2000), even where no recent acceptance, contrary to early dogma, that the adult ner- neurons existed (Palmer et al., 1999; Kondo and Raff, 2000). vous system can generate new neurons. One could wonder how These studies demonstrating that cells with stem cell properties this dogma originally came about, particularly because all organ- exist in the adult brain were conducted in vitro, so it is not clear isms have some cells that continue to divide, adding to the size of whether these cultured cells have the same potential in vivo as in the organism and repairing damage. All mammals have replicat- vitro. Nevertheless, they showed that we no longer had to consider ing cells in many organs and in some cases, notably the blood, that a complex neuron was required to divide for adult neuro- skin, and gut, stem cells have been shown to exist throughout life, genesis to occur. Now we know that these neurons can be gener- contributing to rapid cell replacement. Furthermore, insects, fish, ated from primitive cells, similar to what happens in and amphibia can replicate neural cells throughout life. An ex- development. ception to this rule of self-repair and continued growth was A second change in thinking was more gradual and conceptual, thought to be the mammalian brain and spinal cord. -
Prenatal Ethanol Exposure Impairs the Formation of Radial Glial Fibers and Promotes the Transformation of Gfapδ‑Positive Radial Glial Cells Into Astrocytes
MOLECULAR MEDICINE REPORTS 23: 274, 2021 Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes YU LI1,2*, LI‑NA ZHANG3*, LI CHONG3, YUE LIU3, FENG‑YU XI4, HONG ZHANG1 and XIANG‑LONG DUAN2,5 1Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University;2 Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology; 3The Third Department of Neurology, 4Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University; 5The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China Received July 18, 2020; Accepted January 12, 2021 DOI: 10.3892/mmr.2021.11913 Abstract. During embryonic cortical development, radial glial development. In the present study, the effects of PEE on the cells (RGCs) are the major source of neurons, and these also expression and distribution of GFAPδ during early cortical serve as a supportive scaffold to guide neuronal migration. development were assessed. It was found that PEE signifi‑ Similar to Vimentin, glial fibrillary acidic protein (GFAP) cantly decreased the expression levels of GFAP and GFAPδ. is one of the major intermediate filament proteins present in Using double immunostaining, GFAPδ was identified to be glial cells. Previous studies confirmed that prenatal ethanol specifically expressed in apical and basal RGCs, and was exposure (PEE) significantly affected the levels of GFAP co‑localized with other intermediate filament proteins, such as and increased the disassembly of radial glial fibers.