Inborn Errors of Metabolism Page 1 of 8

Total Page:16

File Type:pdf, Size:1020Kb

Inborn Errors of Metabolism Page 1 of 8 469 Review Article on Inborn Errors of Metabolism Page 1 of 8 Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice Marisha Agana1, Julia Frueh1, Manmohan Kamboj2, Dilip R. Patel1, Shibani Kanungo1 1Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA; 2Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA Contributions: (I) Conception and design: S Kanungo; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: S Kanungo; (IV) Collection and assembly of data: M Agana, J Frueh, S Kanungo; (V) Data analysis and interpretation: S Kanungo; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Shibani Kanungo, MD, MPH. Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, USA. Email: [email protected]. Abstract: Inborn errors of metabolism (IEMs) are rare genetic or inherited disorders resulting from an enzyme defect in biochemical and metabolic pathways affecting proteins, fats, carbohydrates metabolism or impaired organelle function presenting as complicated medical conditions involving several human organ systems. They involve great complexity of the underlying pathophysiology, biochemical workup, and molecular analysis, and have complicated therapeutic options for management. Age of presentation can vary from infancy to adolescence with the more severe forms appearing in early childhood accompanied by significant morbidity and mortality. The understanding of these complex disorders requires special in- depth training, American Board of Medical Genetics and Genomics (ABMGG) certification and experience. Most primary care physicians (PCPs) are reluctant to deal with IEM due to unfamiliarity and rarity of such conditions compounded by prompt progression to crisis situations along with paucity of time involved in dealing with such complex disorders. While there are biochemical geneticists aka metabolic specialists’ expertise available, mostly in larger academic medical centers, with expertise to deal with these rare complex issues, their initial clinical presentation in most newborns, children, adolescents or adults including asymptomatic positive newborn screen (NBS), occur in the out-patient PCP settings. Therefore, it is important that PCPs’ comfort to recognize early signs and symptoms is important to initiate appropriate diagnostic and therapeutic interventions, and be able to make appropriate referrals. The following article reviews common IEM clinical presentations for a robust diagnostic differential and discuss evaluation and management approaches of patients with known or suspected IEM. Keywords: Inborn errors of metabolism (IEMs); biochemical genetics; primary care physician (PCP); acute illness protocol; D10W Submitted Dec 17, 2018. Accepted for publication Dec 17, 2018. doi: 10.21037/atm.2018.12.34 View this article at: http://dx.doi.org/10.21037/atm.2018.12.34 Introduction maintaining daily life activities. Each pathway depends on certain substrates and specific enzymes to ensure smooth The term metabolism encompasses the net result of a functioning. Inborn errors of metabolism (IEMs) are a multitude of complex biochemical processes that occur group of disorders which results from deficiency activity in living organisms to maintain cellular activities vital of a single enzyme in a metabolic pathway (2). Majority to sustain life (1). These processes are organized into of the IEMs are inherited in an autosomal recessive specific metabolic pathways with the primary function of manner. While individually they are rare, collectively they © Annals of Translational Medicine. All rights reserved. atm.amegroups.com Ann Transl Med 2018;6(24):469 Page 2 of 8 Agana et al. IEM for PCP Table 1 PCP guidelines for considering IEM Common IEM presentations In differential diagnosis of sepsis, anoxic encephalopathy or Children and adolescents with IEMs have a wide spectrum toxic ingestion of clinical presentations from appearing physically normal If symptoms persist even after treatment for suspected common to having distinctive dysmorphic physical features. conditions While majority of them appear physically normal at If typical common laboratory tests fail to determine a definitive birth, many can present with significant non-specific diagnosis signs and symptoms common to other serious medical Can present either as acute illness or as chronic, recurrent or conditions (7). It is imperative to keep a high index progressive disease at any age of suspicion in differential diagnosis for prompt IEM Can occur even in the context of negative family history for identification as the institution of appropriate therapy, genetic or metabolic disorder. preventive measures and compliance helps avoid severe In cases of neonatal death from undetermined causes. morbidity or even mortality in some cases. PCP, primary care physician; IEM, inborn error of metabolism. In the antenatal period, true irreversible major malformations due to IEMs can be found in O-glycosylation disorder; in cholesterol synthesis defects, in amino acid are common with an overall incidence of greater than synthesis disorders (glutamine and asparagine) and in 1:1,000 (3). With onset of universal expanded newborn mitochondrial disorders (8,9). screening (NBS), as noted in another article in this issues on NBS, the current data on IEMs detected by NBS is 1 Newborn/infancy period (<12 months) in 3,234 (4). Examination of a newborn for subtle signs of IEMs starts from a cursory examination of the infant from head to Classification toe. It may be practical first to examine areas that require IEMs can be categorized based on their onset, predominant auscultation while the infant is quiet as he or she may be signs and symptoms, main organs or systems affected, somewhat irritable in early transition and undressing the or acuity or chronicity of presentation (5). Disorders infant or moving him or her around may be disruptive. in category 1 usually involve a single organ or uniform In a seemingly healthy newborn most of the information presenting symptom, identified by specific laboratory tests is structural involving the hair, skin, skeleton or all three and managed by specific organ system subspecialty practices that may anticipate future problems. Examination findings like endocrinology, hematology, allergy/immunology and usually relate to major organ dysfunction or failure, most will not be discussed in this review. commonly hepatic, neurologic or immunologic and less Disorders in category 2 affecting specific biochemical or commonly cardiac or pulmonary. While it is apparent that metabolic pathways in cytosol or organelle or intracellular some IEMs present with characteristic dysmorphic features, transport or cofactors can be common to a large number of majority of the newborns with IEM appear otherwise cells or organs presenting with more variable symptoms and normal but clinically sick presenting with overwhelming co-morbid conditions that include multiple organ systems. septicemia or failure to thrive (see Table 1). These disorders can be classified into three sub-groups including: (I) intoxication due to defects in the intermediary Dermatologic metabolic pathway resulting in the accumulation of toxic Absence of hair or alopecia can signal defects in mineral and compounds proximal to the metabolic block [example: urea vitamin metabolism such as acrodermatitis enteropathica (a cycle defect (UCD), amino acid disorders]; (II) deficiency disorder in zinc metabolism), biotin (vitamin B) responsive in energy production or utilization [example: mitochondrial multiple carboxylase deficiency (MCD), calciferol (vitamin disorders, glycogen metabolism disorders, fatty acid D) metabolism defects; nutritional deficit related fatty acid oxidation disorders (FAO)]; and (III) complex molecules deficiency as well as “classical” organic aciduria/acidemia. involving organelles (example: lysosomes, peroxisomes, Brittle hair can be seen in copper metabolism disorders, Golgi and endoplasmic reticulum) and cofactors (6). argininosuccinic aciduria or citrullinemia as well as © Annals of Translational Medicine. All rights reserved. atm.amegroups.com Ann Transl Med 2018;6(24):469 Annals of Translational Medicine, Vol 6, No 24 December 2018 Page 3 of 8 mucopolysaccharidosis. consider IEMs. Ichthyosis or dry, thickened scaly skin can be seen in lysosomal storage disorders (LSD), complex phospholipids Hepatic and fatty acid synthesis/remodeling defects, cholesterol In the examination of the abdomen, the presence of synthesis defects, peroxisomal disorders; dolichol synthesis organomegaly (liver, spleen and kidney) associated with and recycling defects and other lipid metabolism disorders. jaundice and findings of liver damage can be seen in The presence of vesicular or bullous lesions can suggest the form of: storage (glycogen, neutral lipids, complex acrodermatitis enteropathica, biotinidase deficiency, lipids); cholestasis, fibrosis/cirrhosis and inflammatory and holocarboxylase synthetase deficiency, lipin 2 deficiency, immune changes. A firm or rock-hard consistency of the zinc deficiency, classical organic acidurias/acidemias. liver indicates tyrosinemia type I, galactosemia, GSD type Cutis laxa syndrome is comprised of diseases IV, alpha 1 antitrypsin deficiency,
Recommended publications
  • Leading Article the Molecular and Genetic Base of Congenital Transport
    Gut 2000;46:585–587 585 Gut: first published as 10.1136/gut.46.5.585 on 1 May 2000. Downloaded from Leading article The molecular and genetic base of congenital transport defects In the past 10 years, several monogenetic abnormalities Given the size of SGLT1 mRNA (2.3 kb), the gene is large, have been identified in families with congenital intestinal with 15 exons, and the introns range between 3 and 2.2 kb. transport defects. Wright and colleagues12 described the A single base change was identified in the entire coding first, which concerns congenital glucose and galactose region of one child, a finding that was confirmed in the malabsorption. Subsequently, altered genes were identified other aZicted sister. This was a homozygous guanine to in partial or total loss of nutrient absorption, including adenine base change at position 92. The patient’s parents cystinuria, lysinuric protein intolerance, Menkes’ disease were heterozygotes for this mutation. In addition, it was (copper malabsorption), bile salt malabsorption, certain found that the 92 mutation was associated with inhibition forms of lipid malabsorption, and congenital chloride diar- of sugar transport by the protein. Since the first familial rhoea. Altered genes may also result in decreased secretion study, genomic DNA has been screened in 31 symptomatic (for chloride in cystic fibrosis) or increased absorption (for GGM patients in 27 kindred from diVerent parts of the sodium in Liddle’s syndrome or copper in Wilson’s world. In all 33 cases the mutation produced truncated or disease)—for general review see Scriver and colleagues,3 mutant proteins.
    [Show full text]
  • Incidence of Inborn Errors of Metabolism by Expanded Newborn
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results.
    [Show full text]
  • EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies
    Focusing on Personalised Medicine EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies Extended carrier screening is an important tool for prospective parents to help them determine their risk of having a child affected with a heritable disease. In many cases, parents aren’t aware they are carriers and have no family history due to the rarity of some diseases in the general population. What is covered by the screening? Genomics For Life offers a comprehensive Extended Carrier Screening test, providing prospective parents with the information they require when planning their pregnancy. Extended Carrier Screening has been shown to detect carriers who would not have been considered candidates for traditional risk- based screening. With a simple mouth swab collection, we are able to test for over 419 genes associated with inherited diseases, including Fragile X Syndrome, Cystic Fibrosis and Spinal Muscular Atrophy. The assay has been developed in conjunction with clinical molecular geneticists, and includes genes listed in the NIH Genetic Test Registry. For a list of genes and disorders covered, please see the reverse of this brochure. If your gene of interest is not covered on our Extended Carrier Screening panel, please contact our friendly team to assist you in finding a gene test panel that suits your needs. Why have Extended Carrier Screening? Extended Carrier Screening prior to pregnancy enables couples to learn about their reproductive risk and consider a complete range of reproductive options, including whether or not to become pregnant, whether to use advanced reproductive technologies, such as preimplantation genetic diagnosis, or to use donor gametes.
    [Show full text]
  • Amino Acid Disorders 105
    AMINO ACID DISORDERS 105 Massaro, A. S. (1995). Trypanosomiasis. In Guide to Clinical tions in biological fluids relatively easy. These Neurology (J. P. Mohrand and J. C. Gautier, Eds.), pp. 663– analyzers separate amino acids either by ion-ex- 667. Churchill Livingstone, New York. Nussenzweig, V., Sonntag, R., Biancalana, A., et al. (1953). Ac¸a˜o change chromatography or by high-pressure liquid de corantes tri-fenil-metaˆnicos sobre o Trypanosoma cruzi in chromatography. The results are plotted as a graph vitro: Emprego da violeta de genciana na profilaxia da (Fig. 1). The concentration of each amino acid can transmissa˜o da mole´stia de chagas por transfusa˜o de sangue. then be calculated from the size of the corresponding O Hospital (Rio de Janeiro) 44, 731–744. peak on the graph. Pagano, M. A., Segura, M. J., DiLorenzo, G. A., et al. (1999). Cerebral tumor-like American trypanosomiasis in Most amino acid disorders can be diagnosed by acquired immunodeficiency syndrome. Ann. Neurol. 45, measuring the concentrations of amino acids in 403–406. blood plasma; however, some disorders of amino Rassi, A., Trancesi, J., and Tranchesi, B. (1982). Doenc¸ade acid transport are more easily recognized through the Chagas. In Doenc¸as Infecciosas e Parasita´rias (R. Veroesi, Ed.), analysis of urine amino acids. Therefore, screening 7th ed., pp. 674–712. Guanabara Koogan, Sa˜o Paulo, Brazil. Spina-Franc¸a, A., and Mattosinho-Franc¸a, L. C. (1988). for amino acid disorders is best done using both South American trypanosomiasis (Chagas’ disease). In blood and urine specimens. Occasionally, analysis of Handbook of Clinical Neurology (P.
    [Show full text]
  • Insurance Coverage of Medical Foods for Treatment of Inherited Metabolic Disorders
    ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Open Insurance coverage of medical foods for treatment of inherited metabolic disorders Susan A. Berry, MD1, Mary Kay Kenney, PhD2, Katharine B. Harris, MBA3, Rani H. Singh, PhD, RD4, Cynthia A. Cameron, PhD5, Jennifer N. Kraszewski, MPH6, Jill Levy-Fisch, BA7, Jill F. Shuger, ScM8, Carol L. Greene, MD9, Michele A. Lloyd-Puryear, MD, PhD10 and Coleen A. Boyle, PhD, MS11 Purpose: Treatment of inherited metabolic disorders is accomplished pocket” for all types of products. Uncovered spending was reported by use of specialized diets employing medical foods and medically for 11% of families purchasing medical foods, 26% purchasing necessary supplements. Families seeking insurance coverage for these ­supplements, 33% of those needing medical feeding supplies, and products express concern that coverage is often limited; the extent of 59% of families requiring modified low-protein foods. Forty-two this challenge is not well defined. ­percent of families using modified low-protein foods and 21% of families using medical foods reported additional treatment-related Methods: To learn about limitations in insurance coverage, parents expenses of $100 or more per month for these products. of 305 children with inherited metabolic disorders completed a paper survey providing information about their use of medical foods, mod- Conclusion: Costs of medical foods used to treat inherited meta- ified low-protein foods, prescribed dietary supplements, and medical bolic disorders are not completely covered by insurance or other feeding equipment and supplies for treatment of their child’s disorder resources. as well as details about payment sources for these products.
    [Show full text]
  • Disease Reference Book
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients
    Article Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients Cedric Simillion 1,2, Nasser Semmo 2,3, Jeffrey R. Idle 2,3,4, and Diren Beyoğlu 2,4,* 1 Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; [email protected] 2 Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; [email protected] (N.S.); [email protected] (J.R.I.) 3 Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland 4 Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, 11201 New York, NY, USA * Correspondence: [email protected]; Tel.: +41-31-632-87-11 Received: 11 September 2017; Accepted: 5 October 2017; Published: 8 October 2017 Abstract: About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV) or C (HCV), with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls.
    [Show full text]
  • What I Tell My Patients About Cystinuria
    BRITISH JOURNAL OF RENAL MEDICINE 2016; Vol 21 No 1 Patient information John A Sayer MB ChB FRCP PhD Consultant What I tell my patients Nephrologist1,2 Charles Tomson MA BM BCh FRCP DM Consultant Nephrologist2 about cystinuria 1 Institute of Genetic Medicine, Newcastle Cystinuria is an inherited condition that causes kidney stones in children and adults. University 2 Renal Services, Newcastle upon Tyne John A Sayer and Charles Tomson describe the effects of this condition and how to Hospitals NHS Foundation Trust, manage it successfully. Freeman Hospital, Newcastle upon Tyne Cystine is an amino acid found in high- Box 1. You say stones… I say calculi protein foods such as meat, eggs and dairy. High concentrations of cystine, particularly ‘Kidney stone’ and ‘renal calculus’ means the same thing – a solid piece of material that forms in the in acidic urine, result in crystallisation of kidneys. The word ‘calculus’ is derived from Latin, cystine, leading to the formation of kidney literally meaning ‘small pebble’, as used on an stones (see Box 1). These cystine stones are a abacus; the plural of calculus is calculi. ‘Nephrolith’ rare form of kidney stone, accounting for is another name for a kidney stone around 6% of kidney stones in children and around 1% of those in adults.1 Cystinuria is inherited in different ways and this can Cystinuria is estimated to affect 1 in 7,000 people.2 be confusing. Most patients have to inherit two faulty Despite the condition being present from birth, most copies of the gene involved (one inherited from their people affected will get their first stone in their mother and one from their father) to be affected by twenties, although a quarter of patients present in the condition.
    [Show full text]
  • Inborn Errors of Metabolism
    Inborn Errors of Metabolism Mary Swift, Registered Dietician (R.D.) -------------------------------------------------------------------------------- Definition Inborn Errors of Metabolism are defects in the mechanisms of the body which break down specific parts of food into chemicals the body is able to use. Resulting in the buildup of toxins in the body. Introduction Inborn Errors of Metabolism (IEM) are present at birth and persist throughout life. They result from a failure in the chemical changes that are metabolism. They often occur in members of the same family. Parents of affected individuals are often related. The genes that cause IEM are autosomal recessive. Thousands of molecules in each cell of the body are capable of reactions with other molecules in the cell. Special proteins called enzymes speed up these reactions. Each enzyme speeds up the rate of a specific type of reaction. A single gene made up of DNA controls the production of each enzyme. Specific arrangements of the DNA correspond to specific amino acids. This genetic code determines the order in which amino acids are put together to form proteins in the body. A change in the arrangement of DNA within the gene can result in a protein or enzyme that is not able to carry out its function. The result is a change in the ability of the cell to complete a particular reaction resulting in a metabolic block. The areas of the cell these errors occur determine the severity of the consequences of the break down in metabolism. For example if the error occurs in critical areas of energy production, the cell will die.
    [Show full text]
  • Amyloid Like Aggregates Formed by the Self-Assembly of Proline And
    Please do not adjust margins Journal Name ARTICLE Amyloid like aggregates formed by the self-assembly of proline and Hydroxyproline Bharti Koshtia, Ramesh Singh Chilwalb, Vivekshinh Kshtriyaa, Shanka Walia c, Dhiraj Bhatiac, K.B. Joshib* and Nidhi Goura* a Department of Chemistry, Indrashil University, Mehsana, Gujarat, India b Department of Chemistry, Dr. Hari Singh Gour, Sagar University, Madhya Pradesh, India c Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, India Abstract: Single amino acid based self-assembled structures have gained a lot of interest recently owing to their pathological significance in metabolite disorders. There is plethora of significant research work which illustrate amyloid like characteristics of assemblies formed by aggregation of single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine and its implications in pathophysiology of single amino acid metabolic disorders like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. Hence, studying aggregation behaviour of single amino acids is very crucial to assess the underlying molecular mechanism behind metabolic disorders. In this manuscript we report for the very first time the aggregation properties of non-aromatic single amino acids Hydroxy-proline and Proline. The morphologies of these were studied extensively by Optical microscopy (OM), ThT binding fluorescence microscopy, Scanning Electron Microscopy (SEM) and Atomic force microscopy (AFM). It can be assessed that these amino acids form globular structures at lower concentrations and gradually changes to tape like structures on increasing the This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1 Please do not adjust margins Please do not adjust margins Journal Name ARTICLE concentration as assessed by AFM.
    [Show full text]
  • Adverse Reactions to Foods 2003
    AAAAI Work Group Reports Work Group Reports of the AAAAI provide further comment or clarification on appropriate methods of treatment or care. They may be created by committees or work groups, and the end goal is to aid practitioners in making patient decisions. They do not constitute official statements of the AAAAI but serve to bring attention to key clinical or even controversial issues. They contain a bibliography, but typically not one as extensive as that contained within a Position Statement. AAAAI Work Group Report: Current Approach to the Diagnosis and Management of Adverse Reactions to Foods October 2003 The statement below is not to be construed as dictating an exclusive course of action nor is it intended to replace the medical judgment of healthcare professionals. The unique circumstances of individual patients and environments are to be taken into account in any diagnosis and treatment plan. This statement reflects clinical and scientific advances as of the date of publication and is subject to change. Prepared by the AAAAI Adverse Reactions to Foods Committee (Scott H. Sicherer, M.D., Chair and Suzanne Teuber, M.D., Co-Chair) Purpose: To provide a brief overview of the diagnosis and management of adverse reactions to foods. Database: Recent review articles by recognized experts, consensus statements, and selected primary source documents. Definitions “Adverse food reaction” is a broad term indicating a link between an ingestion of a food and an abnormal response. Reproducible adverse reactions may be caused by: a toxin, a pharmacological effect, an immunological response, or a metabolic disorder. Food allergy is a term that is used to describe adverse immune responses to foods that are mediated by IgE antibodies that bind to the triggering food protein(s); the term is also used to indicate any adverse immune response toward foods (e.g., including cell mediated reactions).
    [Show full text]
  • Chapter 15 ENDOCRINE and METABOLIC IMPAIRMENT
    Table of Disabilities - Chapter 15 - Endocrine and Metabolic Impairment April 2006 Chapter 15 ENDOCRINE AND METABOLIC IMPAIRMENT Introduction This chapter provides criteria used to rate permanent impairment resulting from endocrine disorders and disorders of metabolism. The endocrine system is composed of the hypothalamic-pituitary axis, the thyroid gland, the parathyroid glands, the adrenal glands, the islet cell tissue of the pancreas and the gonads. Common endocrine disorders and disorders of metabolism assessed within this chapter include: • hyperthyroidism • hypothyroidism • hyperparathyroidism • hypoparathyroidism • hyperadrenocorticism (e.g. Cushing’s disease) • hypoadrenalism (e.g. Addison’s disease) • diabetes mellitus • hyperlipidemia • metabolic bone disease (e.g. osteoporosis). Also assessed within this chapter are hypothalmic-pituitary axis disorders and Paget’s disease of the bone. The pituitary gland, influenced by the hypothalmus, releases several hormones which control the activity of other endocrine glands or directly effect tissues of the body. The hormones released include: • thyrotropin (TSH) controls activity of the thyroid gland • corticotropin (ACTH) controls the activity of the adrenal glands • luteinizing hormone (LH) and follicle-stimulating hormone (FSH) control the activity of the gonads • growth hormone (GH) • prolactin • antidiuretic hormone (ADH) • oxytocin. Veterans Affairs Canada Page 1 Table of Disabilities - Chapter 15 - Endocrine and Metabolic Impairment April 2006 Disorders of the hypothalmic-pituitary axis may affect one or several of these hormones. Each affected hormone may result in permanent impairment. Paget’s disease of the bone is a non-metabolic bone disease; however, for assessment purposes, this condition is rated by using the criteria contained within Table 15.3. A rating is not given from this chapter for conditions listed below.
    [Show full text]