A Numerical Model for the Dynamics of Pyroclastic Flows at Galeras Volcano, Colombia

Total Page:16

File Type:pdf, Size:1020Kb

A Numerical Model for the Dynamics of Pyroclastic Flows at Galeras Volcano, Colombia View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidad de Nariño Journal of Volcanology and Geothermal Research 139 (2005) 59–71 www.elsevier.com/locate/jvolgeores A numerical model for the dynamics of pyroclastic flows at Galeras Volcano, Colombia G. Co´rdoba Engineering Faculty, Universidad de Narin˜o, Colombia Accepted 29 June 2004 Abstract This paper presents a two-dimensional model for dilute pyroclastic flow dynamics that uses the compressible Navier–Stokes equation coupled with the Diffusion–Convection equation to take into account sedimentation. The model is applied to one of the slopes of Galeras Volcano to show: (1) the temperature evolution with the time; (2) dynamic pressure change; and (3) particle concentration along the computer domain from the eruption to the impact with a topographic barrier located more than 16 km from the source. Two initial solid volumetric fractions are modeled. For both cases, some of the structures located more distant than 10 km could survive, but in all cases the flow remains deadly. This paper shows that a dynamical model of pyroclastic flows can be implemented using personal computers. D 2004 Elsevier B.V. All rights reserved. Keywords: pyroclastic flow; model; numerical; finite element; hazard 1. Introduction this hazard within its influence area. Investigations by Espinoza (1988) for historical activity of the last Galeras Volcano is regarded as one of the most 500 years at Galeras Volcano from descriptions and active volcanoes in the world. Due to its geological photographs allowed Espinoza (1988) to deduce that characteristics, it is an explosive volcano with pyroclastic flows occurred at least in five occasions, vulcanian type eruptions (Calvache et al., 1997), all of them without geological records (Banks et al., one of its hazards is the production of pyroclastic 1997). According to Banks et al. (1997), the volcano flows (Hurtado and Corte´s, 1997). Geological studies showed very small dilute surge-like flows during its performed by Calvache (1990), Calvache (1995) and active period of 1989. The fact that the historical Calvache et al. (1997) showed several occurrences of pyroclastic flows have not left a geological record is evidence that such pyroclastic flows were composed mainly of a dilute cloud with a negligible basal part. The last version of the Galeras Volcano hazard map E-mail address: [email protected]. (Hurtado and Corte´s, 1997) establishes the run-out 0377-0273/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jvolgeores.2004.06.015 60 G. Co´rdoba / Journal of Volcanology and Geothermal Research 139 (2005) 59–71 distance of the pyroclastic flows based on geological 1996a; Neri et al., 2001). The current development of records. But from the risk assessment point of view, it personal computers enables the exploration of the would also be useful to know some of the dynamical possibility that a fluid dynamics model of pyroclastic parameters like temperature, particle concentration flows can be implemented in a PC, including features and dynamical pressure due to flow evolution in space which were beyond the scope for this kind of and time. This would aide in estimating the devasta- computers a few years ago. The proposed model tion to structures or danger for people located in or focuses on the dilute turbulent companion ash cloud near the flow path (Blong, 1984; Baxter et al., 1995; of a pyroclastic flow (see fig. 6.2 in Sparks et al., 1997) Valentine, 1998, e.g.). which allows one to make some assumptions in order to Several analytical and numerical models based on reduce the number of the equations and variables fluid dynamics have been developed in order to involved. This model could be considered as an describe the above parameter fields. These range from intermediate between the abovementioned models, simple models which assume a non-transient, homoge- due to the fact that only one set of Navier–Stokes neous, one-dimensional or radial flow (Sheridan, 1980; equations is used. Bursik and Woods, 1991, 1996, e.g.) describing the This model is applied to the channelized slope of main physical processes that occur from the column the river basin of the Azufral River, which flows down collapse to emplacement to the so-called supercom- from the active cone (located in the same direction) to puter models (Valentine and Wohletz, 1989; Dobran the Guaitara River canyon, about 16 km away (Fig. and Neri, 1993; Neri and Macedonio, 1996a,b, e.g.) 1). The main part of the Azufral river is confined which model a tansient two-phase, compressible flow within deep and nearly vertical walls which allows us and a multiparticle solid phase (Neri and Macedonio, to assume a 2D approach. Fig. 1. Regional location of Galeras Volcano showing the Azufral River along which the proposed model is applied. Also, some towns under threat can be seen. G. Co´rdoba / Journal of Volcanology and Geothermal Research 139 (2005) 59–71 61 2. Mathematical model expressed in the Einstein summation convention (Lai et al., 1974). From the point of view of physics, the dynamics of a pyroclastic flow is controlled by the mass, 2.1.1. Mass momentum and energy balance equations. It is a Bb Bðbu Þ Bðw h q Þ þ j ¼À s s s d ð1Þ multiphase and multicomponent mixture, which Bt Bx Bx 2j carries gas (including water vapor), liquid drops of j j water and magma, clasts and fine ash. The pyro- 2.1.2. Momentum clastic flows at Galeras Volcano that occurred in the B B B B last 500 years were clearly dominated by fine ash as ðbuiÞ ðbuiujÞ p sij þ ¼À þðb À qgÞgi þ was pointed out above. As demonstrated by Sparks Bt Bxj Bxi Bxj B and Wilson (1976) and Neri and Macedonio (1996b), ðwshsqsuiÞ À d2j ð2Þ fine ash carried by some pyroclastic flows could Bxj comprise most of the flow in weight and volume. Thus for the model it is assumed that the dilute flow 2.1.3. Energy is composed of dry gas and a solid phase consisting The energy equation expressed in its internal (for simplicity) of one size spherical particles of 1 energy form: mm diameter. First, this size lets us assume a thermal equilibrium between particles and surrounding gas BðbeÞ Bðbeu Þ B BT Bu Bs u (Woods and Bursik, 1991). Additionally, for small j j ij j B þ B ¼ B kT B À p B þ B particles, the Biot number, which relates the thermal t xj xj xj xj xi conductivity with the heat transfer coefficient (Fan ð3Þ and Zhu, 1998), will be less than the unity, therefore only one equation is needed for the energy balance. 2.1.4. Convection–Diffusion equation Moreover, for Biot numbers less than 0.1, the For small particles in a dilute suspension, and temperature distribution in the solid can be consid- neglecting cohesive forces, the concentration of ered uniform with a maximum error of 5% (Fan and particles can be approximated by the convection– Zhu, 1998). diffusion equation (Larock and Schamber, 1981; Also, for very small particles, the two phases will Chippada et al., 1993; Hermann et al., 1994): move nearly at equal velocities (Stewart and Wendr- off, 1984). Thus it will be assumed that the velocity B B B B B of the solid phase will be the same as the gas phase bhs bhsuj hs ðqswshsÞ B þ B ¼ B lt B À B d2j ð4Þ and the material can be treated as a continuum with t xj xj xj xj bulk flow properties (Freunt and Bursik, 1998) or the so-called two phase flow model with equal velocities where b = bulk density, u = velocity field, p = pressure, (Stewart and Wendroff, 1984). In this way, only one lt= turbulent eddy viscosity, g = gravity force, hs = set of Navier–Stokes equations will be used. How- volume fraction of solids, qs = density of solids, ever, it is considered that the change in the qg = gas phase density, ws=characteristic settling concentration of particles and its correspondent velocity, kT = bulk thermal conductivity, cp = specific change in bulk density are a consequence of heat of the mixing, T = bulk temperature, dij = Kro- sedimentation by means of the Convection–Diffusion neker’s delta and: equation. e ¼ cpT ð5Þ 2.1. Government equations 2.2. Constitutive equations The following equation system includes mass, momentum and energy conservation, coupled with The above equations system is closed by the the diffusion–convection equation, all equations following constitutive equations. 62 G. Co´rdoba / Journal of Volcanology and Geothermal Research 139 (2005) 59–71 The Reynolds stress tensor sij is: 2.3. Equations of state As usual in this kind of models, we assume an ideal Bui Buj 2 Buj ÀÀÀÀÀ sij ¼ l þ À dij À buiVujV ð6Þ gas law: Bxj Bxi 3 Bxj p ¼ bRT ð11Þ The fluctuating part of the tensor can be approxi- mated using the Boussinesq analogy (Wilcox, 1998): where R is the gas constant of the mixture, R ¼ R , R Mg being the universal gas constant and the molecular ÀÀÀÀÀ Bui Buj 2 Buj À buiVujV ¼Àlt þ À dij : ð7Þ weigh of the gas is assumed as the same of the air Bxj Bxi 3 Bxj Mg=28.964 kg/kg mol. For a dilute flow, and neglecting particle interactions, A bulk thermal conductivity is proposed, which the characteristic settling velocity can be approxi- relates the volumetric fractions of solids and gas with mated by (Sparks et al., 1997): their respective thermal conductivities, as: 1 k ¼ h k þð1: À h Þk : ð12Þ 4 q gs 2 T s s s g w ¼ s ð8Þ s 3 C b d The bulk density can be estimated in a similar manner as (Stewart and Wendroff, 1984): where: s=size of the pyroclasts and Cd is the Drag coefficient given by (Dobran and Neri, 1993): b ¼ hsqs þð1 À hsÞqg ð13Þ ( 24 ½1: þ 0:15Re0:687; if Re b1000 where the gas density is calculated using the C ¼ p p d Rep Boussinesq approach (Zienkiewicz and Taylor, 1994): 0:44; if Repz1000 q q ¼ a ð14Þ g 1: þ hðT À T Þ where Rep is the Reynolds number based on particle a diameter.
Recommended publications
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Genesis and Mechanisms Controlling Tornillo Seismo-Volcanic Events in Volcanic Areas Received: 5 October 2018 Marco Fazio 1,2, Salvatore Alparone3, Philip M
    www.nature.com/scientificreports OPEN Genesis and mechanisms controlling tornillo seismo-volcanic events in volcanic areas Received: 5 October 2018 Marco Fazio 1,2, Salvatore Alparone3, Philip M. Benson1, Andrea Cannata3,4,6 & Accepted: 29 April 2019 Sergio Vinciguerra5 Published: xx xx xxxx Volcanic activity is often preceded or accompanied by diferent types of seismo-volcanic signals. Among these signals, the so-called tornillo (Spanish for “screw”) events are considered to belong to a unique class of volcano-seismicity characterised by a long-duration coda, amplitude modulation and high- quality factor. These data constitute important evidence for the gas fraction inside magmatic fuids. However, the mechanism behind this unique signal remains not fully understood. Here we report new laboratory evidence showing that two diferent processes have either scale-invariant or scale- dependent efects in generating tornillo-like events. These processes are respectively the gas pressure gradient, which triggers the event and regulates the slow decaying coda, and the fuid resonance into small scale structures which, in turn, control the frequency content of the signal. Considering that the gas pressure gradient is proportional to the fuid fow, these new fndings, as applied to volcanoes, provide new information to better quantify both gas rate and volume, and the dimension of the resonator. Tornillo Seismic Events Interpreting the diverse seismological signals generated by active volcanoes is fundamental in order to better understand the physics of the underlying process. Among these signals, the class of volcano-tectonic (VT) earth- quakes are connected to the stability of the local volcanic system and thought to be diagnostic of deformation processes within it1, particularly of rock shear failure2.
    [Show full text]
  • Petrographic and Geochemical Studies of the Southwestern Colombian Volcanoes
    Second ISAG, Oxford (UK),21-231911993 355 PETROGRAPHIC AND GEOCHEMICAL STUDIES OF THE SOUTHWESTERN COLOMBIAN VOLCANOES Alain DROUX (l), and MichelDELALOYE (1) (1) Departement de Mineralogie, 13 rue des Maraîchers, 1211 Geneve 4, Switzerland. RESUME: Les volcans actifs plio-quaternaires du sud-ouest de laColombie sontsitues dans la Zone VolcaniqueNord (NVZ) des Andes. Ils appartiennent tous B la serie calcoalcaline moyennement potassique typique des marges continentales actives.Les laves sont principalementdes andesites et des dacites avec des teneurs en silice variant de 53% il 70%. Les analyses petrographiqueset geochimiques montrent que lesphtfnomBnes de cristallisation fractionnee, de melange de magma et de contamination crustale sont impliquesil divers degres dans la gknkse des laves des volcans colombiens. KEY WORDS: Volcanology, geochemistry, geochronology, Neogene, Colombia. INTRODUCTION: This publication is a comparative of petrographical, geochemical and geochronological analysis of six quaternary volcanoes of the Northem Volcanic Zone of southwestem Colombia (O-3"N): Purace, Doiia Juana, Galeras, Azufral, Cumbal and Chiles.The Colombian volcanic arc is the less studied volcanic zone of the Andes despite the fact that some of the volcanoes, whichlie in it, are ones of the most actives inthe Andes, i.e. Nevado del Ruiz, Purace and Galeras. Figure 1: Location mapof the studied area. Solid triangles indicatethe active volcanoes. PU: PuracC; DJ: Doiia Juana; GA: Galeras;AZ :Azufral; CB: Cumbal; CH: Chiles; CPFZ: Cauca-Patia Fault Zone; DRFZ: Dolores-Romeral Fault Zone;CET: Colombia-Ecuador Trench. Second ISAG, Oxford (UK),21 -231911993 The main line of active volcanoes of Colombia strike NNEi. It lies about 300 Km east of the Colombia- Ecuador Trench, the underthrusting of the Nazca plate beneath South America The recent volcanoes are located 150 ICm above a Benioff Zone whichdips mtward at25"-30", as defined by the work ofBaraangi and Isacks (1976).
    [Show full text]
  • Volcanes. Colombia
    Colombia...un país con actividad volcánica La Tierra está viva, y como tal nos manifiesta su actividad a través de las transformaciones de la corteza terrestre, como es el caso de los terremotos, maremotos, huracanes y erupciones volcánicas, entre otros. Colombia, es un país que en virtud de su ubicación estratégica en el extremo norte de América del Sur, es atravesada por la Cordillera de los Andes, la cual es una cadena montañosa que viene desde las costas del sur de Chile, continua por las sierras del Perú y Ecuador y, finalmente, llega a las cordilleras Oriental, Central y Occidental de Colombia; en su conjunto, la Cordillera de los Andes es denominada el Cinturón de Fuego del Pacífico. Este nombre se debe a la actividad volcano-tectónica en virtud de la juventud de sus montañas sometidas a procesos de generación de montañas o procesos orogénicos. Para los colombianos no es una novedad escuchar que vivimos entre volcanes, debido a que el 70% de la población se encuentra asentada en la zona montañosa del país, y además, es una certeza que en Colombia existen cerca de 15 volcanes activos, los cuales se encuentran clasificados en cinco grupos, de acuerdo con su ubicación geográfica 1, de la siguiente manera: 1. Nevado de Cumbal, Serranía de Colimba, Chiles y Cerro Mayasquer, son volcanes vecinos al Ecuador 2. Galeras, Morosurco, Patascoi, Bordoncillo, Campanero, Páramo del Frailejón y Azufral, volcanes que se encuentran alrededor de Túquerres y Pasto 3. Cerro Petacas, Doña Juana, Cerro de las Ánimas, Juanoi y Tajumbina, están sobre la Cordillera Oriental, se encuentran entre Popayán y Pasto 4.
    [Show full text]
  • Outlook on Climate Change Adaptation in the Tropical Andes Mountains
    MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement.
    [Show full text]
  • Galeras, Chiles, Cerro Negro, Cumbal, Azufral, Doña Juana Y Las Ánimas
    BOLETÍN MENSUAL No. 10-2018 Volcanes: Galeras, Chiles, Cerro Negro, Cumbal, Azufral, Doña Juana y Las Ánimas. Periodo evaluado: Octubre de 2018 Fecha: 4 de Noviembre de 2018 EL SERVICIO GEOLÓGICO COLOMBIANO INFORMA QUE: En cumplimiento de su misión institucional y por intermedio del Observatorio Vulcanológico y Sismológico de Pasto (OVSP), se mantuvo el estudio y monitoreo continuo de la actividad de los volcanes activos del segmento sur de Colombia: Chiles, Cerro Negro, Cumbal, Azufral, Galeras, Doña Juana y Las Ánimas, a partir de observaciones y mediciones de manifestaciones de la actividad de cada uno de estos volcanes, el procesamiento, análisis y evaluación de datos registrados, con el propósito de brindar información de manera efectiva a las autoridades, instituciones gubernamentales, público en general y, en especial, a las comunidades que se asientan en las zonas de influencia de estos volcanes. VOLCÁN GALERAS Durante octubre de 2018, la actividad sísmica mantuvo un nivel de ocurrencia ligeramente más alto al registrado durante los dos meses anteriores, pasando de 120 sismos en septiembre, a 147 eventos en octubre; la mayoría de los cuales, estuvieron asociados con fractura de roca (VT) como consecuencia de la propagación de esfuerzos en la estructura volcánica. Los sismos ocurridos en este mes liberaron una energía sísmica de ondas de cuerpo total de 1.51 x 1014 ergios, disminuyendo respecto a la energía liberada en el mes anterior (4.27 x 1014 ergios). Los sismos tipo VT se localizaron dispersos alrededor del edificio volcánico
    [Show full text]
  • Redalyc. VULCANITAS DEL S-SE DE COLOMBIA: RETRO-ARCO
    Boletín de Geología ISSN: 0120-0283 [email protected] Universidad Industrial de Santander Colombia Borrero, C. A.; Castillo, H. VULCANITAS DEL S-SE DE COLOMBIA: RETRO-ARCO ALCALINO Y SU POSIBLE RELACION CON UNA VENTANA ASTENOSFERICA Boletín de Geología, vol. 28, núm. 2, julio-diciembre, 2006, pp. 23-34 Universidad Industrial de Santander Bucaramanga, Colombia Available in: http://www.redalyc.org/articulo.oa?id=349631992007 Abstract The Neogene volcanism outcropping to the south of 2°N Latitude at the Upper Magdalena Valley in the Huila department and the Northwestern of Putumayo department (Colombia) defines a volcanic back-arc with monogenetic pyroclastic cones and rings associated to lava flows and pyroclastic fall deposits. The composition according to the TAS classification include basanites, alkaline basalts, nephelinites, trachyandesites, and in lesser proportion basaltic andesites. The back-arc volcanism was geochemically compared with the calc-alkaline Quaternary volcanoes that define the southern Colombian front arc (Chiles, Cumbal, Azufral, Galeras, Bordoncillo - Campanero y Doña Juana volcanoes). The alkaline volcanism has contents of TiO2 from 1,24 to 2.46% in wt. and the distribution tendency of major elements in the Harker diagrams is similar to the OIB-Type basalts, especially comparable to the volcanic rocks of the Central European Volcanic Province. This volcanism is possibly the result of the Carnegie Ridge collision since 8 Ma, with the Malpelo Rift coupled, against the Colombian Trench. This collision permitted the formation of slab window into the subducted Nazca plate, where the astenopheric mantle passes through of this window and possibly was the source of the OIB-type magmas in the Southern Colombia.
    [Show full text]
  • Cartilla Riesgo Volcanico Final
    Manual de Sistema Nacional para la Prevención y Capitalización Atención de Desastres Cruz Roja Colombiana Cruz Roja Española de Experiencias Cruz Roja Francesa COLOMBIA Cuatro proyectos DIPECHO de reducción del riesgo volcánico en Colombia e s i h a s i ç l n g a n r E F Fotografías de la portada: • Mural realizado en una escuela, Volcán Galeras - DIPECHO IV - CRF/CRC. • Equipo compuesto de un miembro de un Equipo Comunitario de Emergencia (en adelante ECE), un voluntario de la Cruz Roja Colombiana, un miembro de la Defensa Civil y un bombero en un simulacro, Volcán Nevado del Huila - DIPECHO VI - CRF/CRC. • Miembro de un ECE en un simulacro, Volcán Cerro Machín - DIPECHO VI - CRE/CRC. Fuente de las fotos: Cruz Roja. Fotografías de la contraportada: • Volcán Galeras. l • Volcán Nevado del Huila. o ñ • Volcán Cerro Machín. a p Fuente de las fotos: Ingeominas. s E Diseño y Diagramación: Marcelo Geraldino Berrío, Oscar Javier Nomesque Suárez. Impreso en Bogotá, Colombia. Septiembre de 2010. Esta capitalización fue realizada a través del liderazgo de la Cruz Roja Francesa encargada de dirigir el trabajo del consultor (Fundación para la Gestión del Riesgo), coordinar y orientar el trabajo del Comité Técnico compuesto por la Cruz Roja Española, la Cruz Roja Colombiana, la Dirección de Gestión de Riesgo del Ministerio del Interior y de Justicia de Colombia (DGR) e Ingeominas. El presente documento ha sido elaborado con la contribución financiera de la Comunidad Europea y con el apoyo técnico de los Socios Implementadores Cruz Roja Francesa y Cruz Roja Española así como de su contraparte, la Cruz Roja Colombiana.
    [Show full text]
  • Colombia – Las Galeras, Nariño
    Mercanta Limited 2 Princeton Mews 167-169 London Road Kingston Upon Thames KT2 6PT United Kingdom Telephone: +44 (0)20 8439 7778 Fax: +44 (0)20 8439 7729 E-mail: [email protected] Website: www.coffeehunter.com Colombia – Las Galeras, Nariño Farm: Various Farmers from Nariño Dept. Varietal(s): Caturra, Castillo & Colombia Processing: Fermented for between 12 to 48 hours and dried on open or covered patios Altitude: 1,700 to 2,200 metres above sea level Owner: Various small holder farmers Town: Pasto Region: Nariño – regions surrounding the Galeras Volcano: La Florida, Sandona, Consaca Country: Colombia Total size of farm: Average size 1 hectares Area under coffee: Average .75 hectares Additional information: The Department of Nariño is located in the southwest of Colombia, just above the equator and on the border with Ecuador. The region is strikingly mountainous and boasts no fewer than five volcanoes: Chiles (4,718 metres), Cumbal (4,764 metres), Azufral (4,070 metres), Doña Juana (4,250 metres) and Galeras (4,276 metres). This coffee was, indeed, grown on the slopes of the latter - ‘Las Galeras’. Las Galeras, as a volcano, has an interesting peculiarity: it had been active for at least a million years before going through a period of 10 years of dormancy up until 1988, when it became active again. Since then it has been fairly active, with the last eruption in 2013, when it affected some of the settlements at the base of the volcano. It sits looming over the region’s main city of Pasto, and coffee is grown on all of the surrounding hillsides, in which the soils have benefited from the volcanic compounds that have been produced over time.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • 6 Three-Dimensional Spatial Distribution of Scatterers in Galeras Volcano, South- Western Colombia
    6 THREE-DIMENSIONAL SPATIAL DISTRIBUTION OF SCATTERERS IN GALERAS VOLCANO, SOUTH- WESTERN COLOMBIA 6.1 INTRODUCTION In this chapter we will focus on the imaging of small-scale heterogeneities by the estimation of three-dimensional spatial distribution of relative scattering coefficients from shallow earthquakes occurred under the Galeras volcano region. The technique for the inversion of coda-wave envelopes was previously developed in Chapters 3 and 4. In this case, among the possible inversion methods to use for solving the problem, we will use the Filtered Backprojection method, because in Chapter 5 it was demonstrated that the results were almost independent of the inversion method used. Moreover, the FBP method required much less computation time to perform the inversion. Galeras is a 4276-m high andesitic stratovolcano in south-western Colombia near the border to Ecuador (see Figure 6-1). It is a 4,500 years old active cone of a more than 1 Ma old volcanic complex located in the Central Cordillera of the south-western Colombian Andes. It is historically the most active volcano in Colombia and it has been reactivated frequently in historic times [65]. It awakened again gradually in 1988 after more than 40 years of repose. Galeras is situated at 1°14'N and 77°'22'W, and its active summit raises 150 m up from the 80 m deep and 320 m wide caldera, which is open to the west (see Figure 6-2). The present active crater lies about 6 km west of Pasto, which has a population of more than 300,000 and with another 100,000 people living around the volcano.
    [Show full text]