Perry Pinyon Pines Protection Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pines in the Arboretum
UNIVERSITY OF MINNESOTA MtJ ARBORETUM REVIEW No. 32-198 PETER C. MOE Pines in the Arboretum Pines are probably the best known of the conifers native to The genus Pinus is divided into hard and soft pines based on the northern hemisphere. They occur naturally from the up the hardness of wood, fundamental leaf anatomy, and other lands in the tropics to the limits of tree growth near the Arctic characteristics. The soft or white pines usually have needles in Circle and are widely grown throughout the world for timber clusters of five with one vascular bundle visible in cross sec and as ornamentals. In Minnesota we are limited by our cli tions. Most hard pines have needles in clusters of two or three mate to the more cold hardy species. This review will be with two vascular bundles visible in cross sections. For the limited to these hardy species, their cultivars, and a few hy discussion here, however, this natural division will be ignored brids that are being evaluated at the Arboretum. and an alphabetical listing of species will be used. Where neces Pines are readily distinguished from other common conifers sary for clarity, reference will be made to the proper groups by their needle-like leaves borne in clusters of two to five, of particular species. spirally arranged on the stem. Spruce (Picea) and fir (Abies), Of the more than 90 species of pine, the following 31 are or for example, bear single leaves spirally arranged. Larch (Larix) have been grown at the Arboretum. It should be noted that and true cedar (Cedrus) bear their leaves in a dense cluster of many of the following comments and recommendations are indefinite number, whereas juniper (Juniperus) and arborvitae based primarily on observations made at the University of (Thuja) and their related genera usually bear scalelikie or nee Minnesota Landscape Arboretum, and plant performance dlelike leaves that are opposite or borne in groups of three. -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
Pharmaceutical Applications of a Pinyon Oleoresin;
PHARMAC E UT I CAL A PPL ICAT IONS OF A PINYON OLEORESIN by VICTOR H. DUKE A thesis submitted to the faculty of the University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pharmacognosy College of Pharmacy University of Utah May, 1961 LIBRARY UNIVERSITY elF UTAH I I This Thesis for the Ph. D. degree by Victor H. Duke has been approved by Reader, Supervisory Head, Major Department iii Acknowledgements The author wishes to acknowledge his gratitude to each of the following: To Dr. L. David Hiner, his Dean, counselor, and friend, who suggested the problem and encouraged its completion. To Dr. Ewart A. Swinyard, critical advisor and respected teacher, for inspiring his original interest in pharmacology. To Dr. Irving B. McNulty and Dr. Robert K. Vickery, true gentlemen of the botanical world, for patiently intro ducing him to its wonders. To Dr. Robert V. Peterson, an amiable faculty con sultant, for his unstinting assistance. To his wife, Shirley and to his children, who have worked with him, worried with him, and who now have succeeded with him. i v TABLE OF CONTENTS Page I. INTRODUCTION 1 II. REPORTED USES OF PINYON OLEORESI N 6 A. Internal Uses 6 B. External Uses 9 III. GENUS PINUS 1 3 A. Introduction 13 B. Pinyon Pines 14 1. Pinus edulis Engelm 18 2. Pinus monophylla Torr. and Frem. 23 3. Anatomy 27 (a) Leaves 27 (b) Bark 27 (c) Wood 30 IV. COLLECTION OF THE OLEORESIN 36 A. Ch ip Method 40 B. -
Plants Used in Basketry by the California Indians
PLANTS USED IN BASKETRY BY THE CALIFORNIA INDIANS BY RUTH EARL MERRILL PLANTS USED IN BASKETRY BY THE CALIFORNIA INDIANS RUTH EARL MERRILL INTRODUCTION In undertaking, as a study in economic botany, a tabulation of all the plants used by the California Indians, I found it advisable to limit myself, for the time being, to a particular form of use of plants. Basketry was chosen on account of the availability of material in the University's Anthropological Museum. Appreciation is due the mem- bers of the departments of Botany and Anthropology for criticism and suggestions, especially to Drs. H. M. Hall and A. L. Kroeber, under whose direction the study was carried out; to Miss Harriet A. Walker of the University Herbarium, and Mr. E. W. Gifford, Asso- ciate Curator of the Museum of Anthropology, without whose interest and cooperation the identification of baskets and basketry materials would have been impossible; and to Dr. H. I. Priestley, of the Ban- croft Library, whose translation of Pedro Fages' Voyages greatly facilitated literary research. Purpose of the sttudy.-There is perhaps no phase of American Indian culture which is better known, at least outside strictly anthro- pological circles, than basketry. Indian baskets are not only concrete, durable, and easily handled, but also beautiful, and may serve a variety of purposes beyond mere ornament in the civilized household. Hence they are to be found in. our homes as well as our museums, and much has been written about the art from both the scientific and the popular standpoints. To these statements, California, where American basketry. -
Chapter 6 Pinyon-Juniper Woodlands
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Chapter 6 Pinyon-Juniper Woodlands Gerald J. Gottfried, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Flagstaff, Arizona Thomas W. Swetnam, University of Arizona, Tucson, Arizona Craig D. Allen, USDI National Biological Service, Los,Alamos, New Mexico Julio L. Betancourt, USDI Geological Survey, Tucson, Arizona Alice L. Chung-MacCoubrey, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Albuquerque, New Mexico INTRODUCTION system management generally is accepted, the USDA Forest Service, other public land management agen Pinyon-juniper woodlands are one of the largest cies, American Indian tribes, and private landown ecosystems in the Southwest and in the Middle Rio ers may have differing definitions of what constitutes Grande Basin (Fig. 1). The woodlands have been desired conditions. important to the region's inhabitants since prehis Key questions about the pinyon-juniper ecosys toric times for a variety of natural resources and tems remain unanswered. Some concern the basic amenities. The ecosystems have not been static; their dynamics of biological and physical components of distributions, stand characteristics, and site condi the pinyon-juniper ecosystems. Others concern the tions have been altered by changes in climatic pat distribution of woodlands prior to European settle terns and human use and, often, abuse. Management ment and changes since the introduction of livestock of these lands since European settlement has varied and fire control. This relates to whether tree densi from light exploitation and benign neglect, to attempts ties have been increasing or whether trees are invad to remove the trees in favor of forage for livestock, and ing grasslands and, to a lesser extent, drier ponde then to a realization that these lands contain useful re rosa pine (Pinus ponderosa) forests. -
Idaho's Registry of Champion Big Trees 06.13.2019 Yvonne Barkley, Director Idaho Big Tree Program TEL: (208) 885-7718; Email: [email protected]
Idaho's Registry of Champion Big Trees 06.13.2019 Yvonne Barkley, Director Idaho Big Tree Program TEL: (208) 885-7718; Email: [email protected] The Idaho Big Tree Program is part of a national program to locate, measure, and recognize the largest individual tree of each species in Idaho. The nominator(s) and owner(s) are recognized with a certificate, and the owners are encouraged to help protect the tree. Most states, including Idaho, keep records of state champion trees and forward contenders to the national program. To search the National Registry of Champion Big Trees, go to http://www.americanforests.org/bigtrees/bigtrees- search/ The National Big Tree program defines trees as woody plants that have one erect perennial stem or trunk at least 9½ inches in circumference at DBH, with a definitively formed crown of foliage and at least 13 feet in height. There are more than 870 species and varieties eligible for the National Register of Big Trees. Hybrids, minor varieties, and cultivars are excluded from the National listing but all but cultivars are accepted for the Idaho listing. The currently accepted scientific and common names are from the USDA Plants Database (PLANTS) http://plants.usda.gov/java/ and the Integrated Taxonomic Information System (ITIS) http://www.itis.gov/ Champion trees status is awarded using a point system. To calculate a tree’s total point value, American Forests uses the following equation: Trunk circumference (inches) + height (feet) + ¼ average crown spread (feet) = total points. The registered champion tree is the one in the nation with the most points. -
Disturbances Influence Trait Evolution in Pinus
Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework. -
Pinyon Jay Movement, Nest Site Selection, Nest Fate
PINYON JAY MOVEMENT, NEST SITE SELECTION, NEST FATE, AND RENESTING IN CENTRAL NEW MEXICO By MICHAEL COULTER NOVAK Bachelor of Science in Zoology University of California, Santa Barbara Santa Barbara, California 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2019 PINYON JAY MOVEMENT, NEST SITE SELECTION, NEST FATE, AND RENESTING IN CENTRAL NEW MEXICO Thesis Approved: Dr. Loren M. Smith Thesis Adviser Dr. Scott T. McMurry Dr. Craig A. Davis ii ACKNOWLEDGEMENTS I want to thank my advisor, Dr. Loren Smith, for his expert assistance guiding me through my thesis. Through his mentorship I learned to be a more effective writer and scientist. Thank you to my committee members, Dr. Scott McMurry and Dr. Craig Davis, for their valuable input on my research. Much thanks to Oklahoma State University for providing excellent academic resources and being a great place to develop professional skills required for today’s workforce. I want to thank my parents, Michael Novak and Kathleen Murphy, who have always encouraged me to work hard and be happy. I’m especially grateful for their understanding and encouragement throughout my transient career as a seasonal field biologist. Thanks, Dad, for encouraging me to find a job where they pay me to travel. Thanks, Mom, for encouraging me to pursue higher education and for keeping me on track. Thanks to my sister, Marisol Novak, for her siblingship and being a willing ear to vent my problems to. My family has always believed in me and they inspire me to continue putting one foot in front of the other, even when things are difficult. -
North American Pinyon-Juniper Woodlands: Ecological Composition, Dynamics, and Future Trends
North American Pinyon–Juniper Woodlands: Ecological Composition, Dynamics, and Future Trends Esteban Muldavin and F Jack Triepke, University of New Mexico, Albuquerque, NM, United States © 2019 Elsevier Inc. All rights reserved. Introduction 1 Types of Pinyon–Juniper Woodlands 3 Detailed Pinyon–Juniper Woodland Descriptions 4 G198 Californian Conifer Forest & Woodland Group 4 G487 Madrean Juniper Open Woodland Group 5 G200 Madrean Pinyon–Juniper Woodland Group 5 G900 Colorado Plateau Pinyon–Juniper Woodland Group 5 G248 Columbia Plateau Western Juniper Open Woodland Group 6 G899 Great Basin Pinyon–Juniper Woodland Group 6 G249 Intermountain Basins Curl-leaf Mountain-mahogany Woodland & Scrub 6 G252 Southern Rocky Mountain Juniper Open Woodland Group 6 G253 Southern Rocky Mountain Pinyon–Juniper Woodland Group 6 Ecological Dynamics in Pinyon–Juniper Woodlands 7 Fire Regimes 7 Insect Pathogens 8 Ecosystem Services and the Changing Land Use of Pinyon–Juniper Woodlands 9 History and Land Use Impacts (e.g., Involving Herbivory, Changes in Fire Regime) 10 Pinyon nuts 10 Livestock use 10 Fuelwood 11 Pinyon–Juniper Woodlands and Climate 12 Tree Mortality and Plant Composition Changes 12 Carbon Storage as an Ecosystem Service 13 Conclusion—Climate and Carbon 13 Future Trends and Conservation 14 References 14 Abstract Pinyon and juniper woodland is a major biome type centered on the Basin and Range and Colorado Plateau physiographic regions of interior western North America. It covers over 40 million ha from western Oregon in the northwest United States, eastward to Wyoming and southward to northern Chihuahua in Mexico, then westward to Baja California. Climatically, these woodlands lie within both the warm and cold temperate zones of North America but at the wetter and cooler portion of the semiarid realm where precipitation seldom exceeds 400 mm. -
ISA Certified Arborist Exam Tree List Northern Nevada
ISA Certified Arborist Exam Tree List May 2007 Page 1 Northern Nevada Common Name Botanical Name 1. American Arborvitae Thuja occidentalis 2. American Elm Ulmus americana 3. American Linden Tilia americana 4. Amur Maple Acer ginnala 5. Arizona Cypress Cupressus arizonica 6. Austrian Pine Pinus nigra 7. Baldcypress Taxodium distichum 8. Black Locust Robinia pseudoacacia 9. Black Walnut Juglans nigra 10. Blue Ash Fraxinus quadrangulata 11. Blue Atlas Cedar Cedrus atlantica 'Glauca' 12. Border Pine Pinus strobiformis 13. Box Elder Acer negundo 14. Bristlecone Pine Pinus aristata 15. Bur Oak Quercus macrocarpa 16. Callery Pear Pyrus calleryana 17. Canada Red Chokecherry Prunus virginiana 18. Colorado Blue Spruce Picea pungens 'Glauca' 19. Common Hackberry Celtis occidentalis 20. Dawn Redwood Metasequoia glyptostroboides 21. Deodar Cedar Cedrus deodara 22. Douglas Fir Pseudotsuga menziesii 23. Eastern Redbud Cercis canadensis 24. English Oak Quercus robur 25. English Walnut Juglans regia 26. European Beech Fagus sylvatica 27. European Hornbeam Carpinus betulus 28. European Mountain Ash Sorbus aucuparia 29. European White Birch Betula pendula 30. Flowering Crabapple Malus spp. 31. Flowering Dogwood (many species) Cornus florida 32. Fremont Western Cottonwood Populus fremontii 33. Giant Sequoia Sequoiadendron giganteum 34. Ginkgo Ginkgo biloba 35. Golden Rain Tree Koelreuteria paniculata 36. Golden-Chain Tree Laburnum watereri 37. Green Ash Fraxinus pennsylvanica 38. Hawthorn (many species) Crataeus spp. 39. Honey Locust Gleditsia triacanthos 40. Horse Chestnut Aesculus hippocastanum ISA Certified Arborist Exam Tree List May 2007 Page 2 Northern Nevada Common Name Botanical Name 41. Idaho Locust Robinia x ambigua 'Idahoensis' 42. Japanese Black Pine Pinus thunbergiana 43. Incense Cedar Calocedrus decurrens 44. -
California Partners in Flight the USDA Forest Service Klamath Bird Observatory and PRBO Conservation Science
The Coniferous Forest Bird Conservation Plan A Strategy for Protecting and Managing Coniferous Forest Habitats and Associated Birds in California Version 1.1 March 2002 A project of California Partners in Flight The USDA Forest Service Klamath Bird Observatory and PRBO Conservation Science Conservation Plan Lead Authors: John C. Robinson, USDA Forest Service John Alexander, Klamath Bird Observatory Conservation Plan Supporting Authors, PRBO Conservation Science: Sue Abbott Diana Humple Grant Ballard Melissa Pitkin Dan Barton Sandy Scoggin Gregg Elliott Diana Stralberg Sacha Heath Focal Species Account Authors: Black-backed Woodpecker – Kerry Farris Black-throated Gray Warbler – Tina Mark, USDA Forest Service Brown Creeper – Danielle LeFer, San Francisco Bay Bird Observatory Dark-eyed Junco – Jim DeStaebler, PRBO Conservation Science Flammulated Owl – Susan Yasuda, USDA Forest Service Fox Sparrow – Anne King, EDAW, Inc. Golden-crowned Kinglet – John C. Robinson, USDA Forest Service MacGillivray's Warbler – Chris Otahal, USDA Forest Service Olive-sided Flycatcher – Paul Brandy, Endangered Species Recovery Program Pileated Woodpecker – John C. Robinson, USDA Forest Service Red-breasted Nuthatch – Tina Mark and John C. Robinson, USDA Forest Service Vaux's Swift – John Sterling, Jones and Stokes Associates Western Tanager – Cory Davis, USDA Forest Service Financial Contributors: USDA Forest Service Packard Foundation National Fish and Wildlife Foundation PRBO Conservation Science Klamath Bird Observatory Acknowledgements: California Partners in Flight wishes to thank everyone who helped write, promote, and produce this document. Special thanks to Laurie Fenwood, Geoffrey Geupel, Aaron Holmes, Genny Wilson, Ryan Burnett, and Doug Wallace, and to Sophie Webb for her cover illustration. Recommended Citation: CalPIF (California Partners in Flight). 2002. -
Pinus Monophylla
One of a Kind: Pinus monophylla Nancy Rose ’ve led many plant identification classes and Pinus monophylla grows in a semi-arid native walks in my career as a horticulturist. When range that runs from northern Baja California to Iit comes to pines (Pinus), I’ve taught that southern and eastern California, Nevada, the pines always carry multiple needles grouped southeastern corner of Idaho, western Utah, in fascicles (bundles), which readily differenti- and parts of Arizona and New Mexico. It is cold ates them from spruces (Picea) and firs (Abies) hardy enough (USDA Zone 6, average annual (the other common “tall, pointy evergreens”), minimum temperature -10 to 0°F [-23.3 to which both bear single needles. To then identify -17.8°C]) for Boston, but our much wetter cli- individual pine species, the first step is to see mate may be part of the reason this pine has if the bundles hold two, three, or five needles. been difficult to grow at the Arboretum. That’s still good advice about 99 percent of the We have tried a number of P. monophylla time, but when I came to the Arnold Arbore- accessions through the years, the first one in tum I discovered a notable exception to those 1908, but we currently have no living speci- rules: Pinus monophylla, the single-leaf pine. mens in the collections. The last one was Pinus monophylla is a member of the pine accession 400-88-B, which was a repropagation family (Pinaceae) and is one of 114 species in (by grafting) of a 1964 accession (287-64), which the genus Pinus.