Arylamidase Activity of Soils Verónica Acosta-Martínez Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Arylamidase Activity of Soils Verónica Acosta-Martínez Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Arylamidase activity of soils Verónica Acosta-Martínez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Soil Science Commons Recommended Citation Acosta-Martínez, Verónica, "Arylamidase activity of soils " (2000). Retrospective Theses and Dissertations. 12500. https://lib.dr.iastate.edu/rtd/12500 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dkJ not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6' x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additk)nal charge. Contact UMI directly to order. Bell & Howell Informatton and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 Arylamidase activity of soils by Ver6nica Acosta-Martinez A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Soil Science (Soil Microbiology and Biochemistry) Major Professor: M. A. Tabatabai Iowa State University Ames, Iowa 2000 UMI Number 9962791 UMI^ UMI Microfomfi9962791 Copyright 2000 by Bell & Howell Infomiatlon and Learning Company. All rights reserved. This microfomi edKion is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the Doctoral dissertation of Veronica Acosta-Martinez has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For the Major Program Signature was redacted for privacy. •or the;6waduate College m DEDICATION To my family, e^edally my son Sergio Jose iv TABLE OF CONTENTS Page INTRODUCTION I LITERATURE REVIEW 4 Soil Enzymes 4 Amidohydiolases 7 Glycosidases 10 Phosphatases and Arysulfatase 11 Nitrogen Mineralization 14 Arylamidase 19 Soil Quality 24 Liming Effect on Soil Quality 26 Tillage and Residue Management Effects on Enzyme Activities in Soil 29 PART L ASSAY OF ARYLAMIDASE ACTIVITY IN SOILS 32 INTRODUCTION 33 MATERIALS AND METHODS 35 Soils and their Properties 35 Reagents 35 Assay Procedure 38 Experiments 41 V Page RESULTS AND DISCUSSION 43 Buffer pH 43 Substrate Concentration and Amount of Soil 45 Procedure to Terminate the Reaction after Incubation 45 Time and Temperature of Incubation 48 Activation Energy, Enthalpy of Activation, and Kinetic Parameters 54 Effects of Various Treatments 63 Precision of the Method 66 PART II. ARYLAMIDASE ACTIVITY OF SOILS: EFFECT OF TRACE ELEMENTS AND RELATIONSHIPS TO ACTIVITIES OF AMIDOHYDROLASES 68 INTRODUCTION 69 MATERIALS AND METHODS 72 Soils 72 Trace Elements 72 Assay of Arylamidase Activity 75 RESULTS AND DISCUSSION 76 Effect of Trace Elements 76 Effect of Soil Properties 80 Relationship between Arylamidase Activity and Activities of Amidohydrolases 85 vi Page PART m. EFFECT OF TOLUENE ON ARYLAMTOASE ACTIVITY IN SOILS 88 INTRODUCTION 89 MATERIAL AND METHODS 92 Soils and their Properties 92 Reagents 92 Experiments 92 Assay of Arylamidase Activity 94 RESULTS AND DISCUSSION 96 Buffer pH 96 Substrate Concentration and Amount of SoU 98 Time and Temperature of Incubation 100 Activation Energy, Enthalpy of Activation and Kinetic Parameters 104 PART IV. SUBSTRATE SPECIFICITY OF ARYLAMTOASE IN SOILS 117 INTRODUCTION 118 MATERIALS AND METHODS 119 Soils and their Properties 119 Reagents 119 Assay of Arylamidase Activity 119 vii Page RESULTS AND DISCUSSION 123 Buffer pH 123 Substrate Specificity 126 Kinetic Parameters 126 Activation Energy, Qio, and Enthalpy of Activation 130 PART V. ENZYME ACTIVITIES IN A LIMED AGRICULTURAL SOIL 137 INTRODUCTION 138 MATERIALS AND METHODS 140 Experimental Design 140 Sampling and Laboratory Analyses 140 RESULTS AND DISCUSSION 144 Activities of Glycosidases 144 Activities of Amidohydrolases and Arylamidase 150 Activities of Phosphatases and Arylsulfatase 154 PART VI. EFFECT OF TILLAGE AND RESIDUE MANAGEMENT ON ARYLAMIDASE ACTIVITY IN SOILS 159 INTRODUCTION 160 viii Page MATERIALS AND METHODS 163 Treatments Description 163 Soil Sampling and Laboratory Analyses 164 Assay of Arylamidase Activity 164 Statistical Analysis 167 RESULTS AND DISCUSSION 168 SUMMARY AND CONCLUSIONS 175 APPENDIX 180 LITERATURE CITED 182 ACKNOWLEDGEMENTS 205 1 INTRODUCTION Soil, as a living system contains many enzymes. Most soil enzymes are primarily of microbial origin, but may also originate firom animal and plant residues (Kiss et al., 1975; Bums, 1982). Enzjrmes are present in soils inside (intracellular) living cells, in the periplasmic space and outer cell surfaces stabilized on the clay-organic matter complexes (Bums, 1982). Soil enzymes play a key role in the decomposition of various organic compounds, and in the decomposition and the formation of the soil organic matter. Thus, enzymes are important components involved in the dynamics of the cycling of the nutrients C, N, P, and S in soils. Among the most important nutrients in soils, N is the most needed by most agricultural crops but only trace quantities are available in the mineral form. The organic form is a major component of soil organic matter and may account for greater than 95% of the total N in most surface soils. About half of this organic N has not yet been identified. It has been estimated that about 20- 40 % of the total N in soils is present in the form of amino adds, but only a small portion of the amino adds is present in a "free" state and the major portion is bound to soil organic matter (Bremner, 1951). Several researchers (Grov, 1963; Grov and Alvsaker, 1963; Ivarson andSowden, 1966, 1970; Paul and Schmidt, 1960; Stevenson, 1982, 1985; Monreal and McGill, 1985) have studied the portion of "firee" amino adds in soils because it is an available energy source for 2 soil microorganisms (Ivarson and Sowden, 1966) and an available N source for plant growth (Broadbent, 1984). The amino acids bound to the soil organic matter are most likely in the form of proteins or associated to the clay-organic matter complexes as peptides, amides or arylamides. These amino acids are released from the soil organic matter by the activities of enzsrmes such as arylamidase, and later the "free" amino acids are hydrolyzed by specific enzymes, producing NH4'^, which, in turn, is nitrified for plant uptake. Among the amidohydrolases, L-aspartase, L-asparaginase, and L- glutaminase are enzjones acting on "free" amino adds of soils. The amidohydrolases are very specific in that they act on the C-N bonds other than peptide bonds in linear amides releasing NH4'*'. Many researchers have reported about the activities of such amidohydrolases and the factors that affect their activities (Frankenberger and Tabatabai, 1991c,d; Tabatabai, 1994; Senwo and Tabatabai, 1996,1999). The enzyme amino add arylamidase [a-aminoacyl-peptide hydrolase (microsomal) EC 3.4.11.2] catalyzes the hydrolysis of an N-terminal amino add from peptides, amides, or arylamides. This enzyme has been detected in the tissues and body fluids of all animals (Hiwada et al., 1980), plants, and microorganisms (Appel, 1974). Arylamidase may play a key role in the initial reactions of the mineralization of amino adds in soils but no information is available about this enzyme in soils. Studies to understand the role of arylamidase in soil N cycling and the factors (i.e., soil properties, trace elements, 3 liming, tillage and crop residues management practices) that affect the activity of this enzyme will aid in decision making important for the fertility, productivity and sustainabiUty of soils. The objectives of this work were: (1) to develop a method to assay the activity of arylamidase in soils, (2) to assess the factors affecting arylamidase activity in soils and its relationship to the amidohydrolases, (3) to assess the effect of trace elements on the activity of this enzyme in soils, (4) to determine the effect of toluene on the activity of arylamidase, (5) to study the substrate specificity of arylamidase, (6) to evaluate the effect of liming on the activities of 14 different enzymes, including arylamidase, and (7) to evaluate the influence of tillage and residue management on the activity of arylamidase. The resiilts obtained are presented in six parts. The results obtained under objective (1) are presented in Part I, those under objective (2 and 3) are presented in Part II, those under objective (4) are presented in Part m, those under objective (5) are presented in Part IV, those under objective (6) are presented in Part V, and those imder objective (7) are presented in Part VI. Preceding Part I is a literatiire review and after Part VI is a summary and conclusions.
Recommended publications
  • Identification and Characterization of a Mammalian 14-Kda
    Eur. J. Biochem. 269, 5016–5023 (2002) Ó FEBS 2002 doi:10.1046/j.1432-1033.2002.03206.x Identification and characterization of a mammalian 14-kDa phosphohistidine phosphatase Pia Ek1, Gunilla Pettersson1,BoEk2, Feng Gong1, Jin-Ping Li1 and O¨ rjan Zetterqvist1 1Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; 2Department of Plant Biology, The Swedish University of Agricultural Sciences, Uppsala, Sweden Protein histidine phosphorylation in eukaryotes has been cloning from a human embryonic kidney cell cDNA- sparsely studied compared to protein serine/threonine and library followed by expression and purification, yielded a tyrosine phosphorylation. In an attempt to rectify this by protein with a molecular mass of 13 700 Da, and an probing porcine liver cytosol with the phosphohistidine- EDTA-insensitive phosphohistidine phosphatase activity containing peptide succinyl-Ala-His(P)-Pro-Phe-p-nitro- of 9 lmolÆmin)1Æmg)1 towards phosphopeptide I. No anilide (phosphopeptide I), we observed a phosphatase detectable activity was obtained towards a set of phos- activity that was insensitive towards okadaic acid and phoserine-, phosphothreonine-, and phosphotyrosine pep- EDTA. This suggested the existence of a phosphohistidine tides. Northern blot analysis indicated that the human phosphatase different from protein phosphatase 1, 2A phosphohistidine phosphatase mRNA was present pre- and 2C. A 1000-fold purification to apparent homogeneity ferentially in heart and skeletal muscle. These results gave a 14-kDa phosphatase with a specific activity of 3 provide a new tool for studying eukaryotic histidine )1 )1 lmolÆmin Æmg at pH 7.5 with 7 lM phosphopeptide I phosphorylation/dephosphorylation. as substrate. Partial amino-acid sequence determination of Keywords: dephosphorylation; N-phosphorylation; phos- the purified porcine enzyme by MS revealed similarity phoamidase; phosphopeptide; protein histidine phospha- with a human sequence representing a human chromo- tase.
    [Show full text]
  • Natural Products Containing 'Rare'
    molecules Review Natural Products Containing ‘Rare’ Organophosphorus Functional Groups Janusz J. Petkowski 1,* , William Bains 2 and Sara Seager 1,3,4 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; [email protected] 2 Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK; [email protected] 3 Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA 4 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA * Correspondence: [email protected] Received: 21 January 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P–N, P–S, and P–C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P–S) and phosphoramidate (P–N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell.
    [Show full text]
  • Natural Products Containing 'Rare'
    Natural Products Containing ‘Rare’ Organophosphorus Functional Groups The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Petkowski, Janusz, et al. “Natural Products Containing ‘Rare’ Organophosphorus Functional Groups.” Molecules, vol. 24, no. 5, Feb. 2019, p. 866. As Published http://dx.doi.org/10.3390/molecules24050866 Publisher Multidisciplinary Digital Publishing Institute Version Final published version Citable link http://hdl.handle.net/1721.1/120918 Terms of Use Creative Commons Attribution Detailed Terms https://creativecommons.org/licenses/by/4.0/ molecules Review Natural Products Containing ‘Rare’ Organophosphorus Functional Groups Janusz J. Petkowski 1,* , William Bains 2 and Sara Seager 1,3,4 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA; [email protected] 2 Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK; [email protected] 3 Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA 4 Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA * Correspondence: [email protected] Received: 21 January 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P–N (phosphoramidate), P–S (phosphorothioate), and P–C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life.
    [Show full text]
  • Advances in Development of New Tools for the Study of Phosphohistidine Mehul V Makwana1,2, Richmond Muimo2 and Richard FW Jackson1
    Laboratory Investigation (2017), 1–13 © 2017 USCAP, Inc All rights reserved 0023-6837/17 $32.00 PATHOBIOLOGY IN FOCUS Corrected Advances in development of new tools for the study of phosphohistidine Mehul V Makwana1,2, Richmond Muimo2 and Richard FW Jackson1 Protein phosphorylation is an important post-translational modification that is an integral part of cellular function. The O-phosphorylated amino-acid residues, such as phosphoserine (pSer), phosphothreonine (pThr) and phosphotyrosine (pTyr), have dominated the literature while the acid labile N-linked phosphorylated amino acids, such as phosphohistidine (pHis), have largely been historically overlooked because of the acidic conditions routinely used in amino-acid detection and analysis. This review highlights some misinterpretations that have arisen in the existing literature, pinpoints outstanding questions and potential future directions to clarify the role of pHis in mammalian signalling systems. Particular emphasis is placed on pHis isomerization and the hybrid functionality for both pHis and pTyr of the proposed τ-pHis analogue bearing the triazole residue. Laboratory Investigation advance online publication, 4 December 2017; doi:10.1038/labinvest.2017.126 Protein phosphorylation is one of the most commonly chemical properties: first, unlike other phosphorylated studied post-translational modifications. In general, the residues there are two isomers of pHis; τ- and π-pHis, both phosphorylation of any amino-acid residue results in a of which are found in nature (Figure 1).3,4 The τ- and π-pHis change in charge and thus in the protein surface potential. are chemically different from each other in both structure, For example, as phosphoryl groups exist mostly as a dianion reactivity and stability under certain conditions (vide infra).
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Enzyme Activities in Soils As Affected by Management Practices Mine Ekenler Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 Enzyme activities in soils as affected by management practices Mine Ekenler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Biochemistry Commons Recommended Citation Ekenler, Mine, "Enzyme activities in soils as affected by management practices " (2002). Retrospective Theses and Dissertations. 510. https://lib.dr.iastate.edu/rtd/510 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • Comparative Genomics and Metabolomics Analysis Of
    www.nature.com/scientificreports OPEN Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH‑1 and CH‑2 Jibin Liu1,2,3,4, Anchun Cheng1,2,3,4*, Mingshu Wang1,2,3*, Mafeng Liu1,2,3, Dekang Zhu2,3, Qiao Yang1,2,3, Ying Wu1,2,3, Renyong Jia1,2,3, Shun Chen1,2,3, Xinxin Zhao1,2,3, Shaqiu Zhang1,2,3, Juan Huang1,2,3, Xumin Ou1,2,3, Sai Mao1,2,3, Qun Gao1,2,3, Xingjian Wen1,2,3, Ling Zhang1,2,3, Yunya Liu1,2,3, Yanling Yu1,2,3, Bin Tian1,3, Leichang Pan1,3, Mujeeb Ur Rehman1,3 & Xiaoyue Chen2,3 Riemerella anatipestifer is a major pathogenic microorganism in poultry causing serositis with signifcant mortality. Serotype 1 and 2 were most pathogenic, prevalent, and liable over the world. In this study, the intracellular metabolites in R. anatipestifer strains RA‑CH‑1 (serotype 1) and RA‑CH‑2 (serotype 2) were identifed by gas chromatography‑mass spectrometer (GC–MS). The metabolic profles were performed using hierarchical clustering and partial least squares discriminant analysis (PLS‑DA). The results of hierarchical cluster analysis showed that the amounts of the detected metabolites were more abundant in RA‑CH‑2. RA‑CH‑1 and RA‑CH‑2 were separated by the PLS‑DA model. 24 potential biomarkers participated in nine metabolisms were contributed predominantly to the separation. Based on the complete genome sequence database and metabolite data, the frst large‑scale metabolic models of iJL463 (RA‑CH‑1) and iDZ470 (RA‑CH‑2) were reconstructed. In addition, we explained the change of purine metabolism combined with the transcriptome and metabolomics data.
    [Show full text]
  • Bovine Liver Phosphoamidase As a Protein Histidine/Lysine Phosphatase
    J. Biochem. 126, 368-374 (1999) Bovine Liver Phosphoamidase as a Protein Histidine/Lysine Phosphatase Hiroyuki Hiraishi, Fumiaki Yokoi, and Akira Kumon1 Department of Biochemistry, Saga Medical School, Nabeshima 5-1-1, Saga, Saga 849-8501 Received March 8, 1999; accepted June 1, 1999 A 13-kDa phosphoamidase was isolated as a single band on SDS-PAGE from bovine liver. Its Stokes' radius, sedimentation coefficient, molecular mass, and optimal pH were estimated to be 1.6nm, 1.8s, 13kDa, and 6.5, respectively. The enzyme released P, from 3-phosphohistidine, 6-phospholysine, and amidophosphate at rates of 0.9, 0.6, and 2.6 ƒÊ mol/min/mg protein, respectively. However, it did not dephosphorylate phosphocrea tine, NƒÖ-phosphoarginine, imidodiphosphate, or O-phosphorylated compounds including inorganic pyrophosphate. It also dephosphorylated succinic thiokinase and nucleoside diphosphate kinase autophosphorylated at His residues, indicating that it works as a protein histidine phosphatase. A thiol reagent, 30ƒÊM N-ethylmaleimide, depressed the activity by half, while a thiol compound, 2-mercaptoethanol, protected the enzyme from heat-inactivation. Five millimolar divalent cations, such as Mg2+ and Mn2+, and 5mM EDTA, had no effect on the activity. Key words: characterization, nucleoside diphosphate kinase, protein histidine/lysine phosphatase, purification, succinic thiokinase. Phosphoamidases are enzymes that hydrolyze the nitrogen- phoamidase that is specific only for P-Arg and is free of the phosphorus bond (N-P bond) of given N-phosphorylated activity that hydrolyzes O-phosphorylated compounds and compounds. The phosphoamidase classified as [EC 3.9.1.1] N-phosphorylated compounds including P-His, P-Lys, NP, dephosphorylates phosphocreatine and NƒÖ-phosphoargi and phosphocreatine (7, 8).
    [Show full text]
  • Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application
    S S symmetry Review Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application Oleg I. Kolodiazhnyi V.P. Kukhar’ Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanska st., 1, 02094 Kyiv, Ukraine; [email protected] Abstract: Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science. Citation: Kolodiazhnyi, O.I. Keywords: stereochemistry; prebiotic chemistry; origin of life; DNA; RNA; phosphagens; nucleotides; Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, natural phosphonic acids; antibiotics; phosphonopeptides; phosphoramidates Application.
    [Show full text]