Invasive Plants Established in the United States That

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Plants Established in the United States That Lepidium latifolium Broadleaved pepper weed Introduction There are 180 members of the genus Lepidium worldwide. Sixteen species are reported from China [218]. Taxonomy Order: Papaverales Suborder: Capparineae Family: Cruciferae (Brassicaceae) Species of Lepidium in China Tribe: Lepidieae DC. Scientific Name Scientific Name Genus: Lepidium L. Section: Lepidium L. alashanicum S. L. Yang L. ferganense Korsh. Species: Lepidium latifolium L. L. apetalum Willd. L. lacerum C. A. Meyer L. campestre (L.) R. Br.* L. latifolium L. Description L. capitatum Hook. f. et Thoms. L. obtusum Basin. Lepidium latifolium is an herbaceous perennial about 30-150 cm in length. L. cartilagineum (J. May.) Thell. L. perfoliatum L. The erect stems are glabrous or L. cordatum Willd. ex Stev. L. ruderale L. sparsely pubescent, branched in the L. cuneiforme C. Y. Wu L. sativum L. upper part, and woody at the base. The basal leaves and the leaves in the L. densiflorum Schrad. L. virginicum L. lower part of the stems are leathery, * Recorded as L. campestre (L.) R. Br. f. glabratum (Lej. et Court.) Thell. in FRPS. oblong-lanceolate, or ovate, 3-6 cm long and 3-5 cm wide, abruptly acute or pubescent, and wingless. Seeds are Distribution light brown, broadly elliptic, about 1 L. latifolium occurs in Gansu, Hebei, or obtuse at the apex, cuneate at the [61, 218] base, and entire or dentate margins. The mm long, and also wingless . Heilongjiang, Henan, Inner Mongolia, petiole is about 1-3 cm in length. The Liaoning, Ningxia, Qinghai, Shaanxi, Habitat Shandong, Shanxi, Sichuan, Tibet, sessile upper leaves are lanceolate or [218] oblong-elliptic, 2-5 cm long and 5-15 L. latifolium occurs in field margins and Xinjiang provinces . cm wide. The paniculate raceme has and saline meadows, along roadsides, glabrescent sepals, which are ovoid and on slopes, at elevations of 100- Economic Importance 4300 m[218]. L. latifolium can also L.latifolium is used medicinally in oblong, or nearly orbicular, about 1 [218] mm in height, with a rounded apex. be found in crop field margins, northwestern China . Petals are white, obovate, about 2 along roadsides and arid, sandy mm long, with a rounded apex. The places at elevations of 600-1200 Related Species flowers appear from May to July. m in Xinjiang[21, 218]. L. obtusum Basin is distinguished In July through September, oblong- from L. latifolium by its obtuse apex, elliptic fruits appear. Fruits are 1.5-3 mm long, glabrous, nearly glabrous, Invasive Plants Established in the United States that are Found in Asia and Their Associated Natural Enemies – Volume 2 — 15 basally cordate fruits, and raceme Tibet, and Xinjiang provinces[61, associated with members of the genus inflorescence. It occurs in pastures, 218]. Lepidium. Nineteen arthropods are field margins, waste places, and deserts listed in association with members at elevations of 400–2800 m in Gansu, Natural Enemies of Lepidium of the genus Lepidium. Inner Mongolia, Ningxia, Qinghai, Seven fungi have been recorded as Fungi Phylum Family Species H. R. Ref. Erysiphe betae (Vaňha) Weltzien po [26]* Ascomycota Erysiphaceae p [24] Erysiphe cruciferarum Opiz ex L. Junell n/a [182] Albugo candida (Pers.) Kuntze po [202] Albuginaceae Albugo lepidii A.N.S. Rao po [202] Oomycota Peronospora lepidii-virginici Gäum. mo [26] Peronosporaceae po [202] Peronospora parasitica (Pers.) de Bary po [26] Anamorphic Guignardia Phyllosticta lepidii Brunaud n/a [182] * Recorded as Erysiphe polygoni DC. Arthropods Order Family Species H. R. Ref. Acariformes Tetranychidae Tetranychus urticae (Koch) p [168] Phyllotreta turcmenica Weise po [91] Chrysomelidae Coleoptera Phyllotreta vittula (Redtenbacher) po [91] Curculionidae Sympiezomias velatus (Chevrolat) po [191] Lygaeidae NySius ericae (Schilling) po [124] Miridae Adelphocoris lineolatus (Goeze) p [217] Hemiptera Eurydema maracandicum Oschanin p [217]I Pentatomidae Eurydema ventrale Kolenati p [208] Eurydema wilkinsi Distant p [207] Homoptera Aphididae Aphis gossypii Glover po [5] po [119] Crambidae Loxostege sticticalis L. p [33] p [131] Agrotis crassa (Hübner) p [130]II Noctuidae Discestra trifolii (Hüfnagel) po [200]III Lepidoptera Leucania zeae (Duponchel) po [10] Mamestra brassicae (L.) p [140] Pieris rapae (L.) po [198] Pieridae Pieris canidia minima Verity po [102] Plutellidae Plutella xylostella L. po [112] po [149] Thysanoptera Thripidae Thrips tabaci Lindemann po [66] I Recorded as Eurydema festiva chlorotica Horváth II Recorded as Euxoa conspicua Hübner III Recorded as Scotogramma trifolii (Rottenberg) 16 — Invasive Plants Established in the United States that are Found in Asia and Their Associated Natural Enemies – Volume 2.
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Nota Lepidopterologica
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2006 Band/Volume: 29 Autor(en)/Author(s): Fibiger Michael, Sammut Paul M., Seguna Anthony, Catania Aldo Artikel/Article: Recent records of Noctuidae from Malta, with five species new to the European fauna, and a new subspecies 193-213 ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Notalepid. 29(3/4): 193-213 193 Recent records of Noctuidae from Malta, with five species new to the European fauna, and a new subspecies Michael Fibiger Paul Sammut-, Anthony Seguna \ & Aldo Catania^ ' Molbecha Allé 49, 4180 Sor0, Denmark; e-mail: [email protected] 2 137, 'Fawkner/2\ Dingli Rd., Rabat, RBT 07, Malta; e-mail: [email protected] ^ 'Redeemer', Triq 1-Emigrant, Naxxar, Malta; e-mail: [email protected] ^ 'Rama Rama', Triq Möns. Anton Cilia, Zebbug, Malta; e-mail: [email protected] Abstract. Recent records of Noctuoidea from Malta are given. Five noctuid species are recorded from Europe for the first time: Eublemma conistrota Hampson, 1910, Eiiblemma deserti Rothschild, 1909, Anumeta hilgerti (Rothschild 1909), Hadiila deserticula (Hampson 1905), and Eiixoa canariensis Rebel, 1902. New synonyms are stated: Leptosia velocissima f. tarda Turati, 1926, syn. n. and Leptosia griseimargo Warren, 1912, syn. n., both synonyms of Metachrostis velox (Hübner, 1813); and Pseudohadena (Eremohadena) roseonitens espugnensis Lajonquiere, 1964, syn. n., a synonym of P. (E.) roseonitens roseonitens (Oberthür, 1887). A new subspecies of Xylena exsoleta (Linneaus, 1758), Xylena exsoleta maltensis ssp. n., is established. The literature on Maltese Noctuoidea is reviewed and erronuousely reported species are indicated.
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note
    Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note: BMNA = Butterflies and Moths of North America web site MPG = Moth Photographers Group web site Most are from the Essig Museum’s California Moth Specimens Database web site Arctiidae. Tiger and Lichen Moths. Apantesis proxima (Notarctia proxima). Mexican Tiger Moth. 8181 [BMNA] Ectypia clio (clio). Clio Tiger Moth. 8249 Estigmene acrea (acrea). Salt Marsh Moth. 8131 Euchaetes zella. 8232 Autostichidae (Deoclonidae). Oegoconia novimundi. Four-spotted Yellowneck Moth. 1134 (Oegoconia quadripuncta mis-applied) Bucculatricidae. Ribbed Cocoon-maker Moths. Bucculatrix enceliae. Brittlebrush Moth. 0546 Cossidae. Goat Moths, Carpenterworm Moths, and Leopard Moths. Comadia henrici. 2679 Givira mucida. 2660 Hypopta palmata. 2656 Prionoxystus robiniae (mixtus). Carpenterworm or Locust Borer. 2693 Depressariidae. Pseudethmia protuberans. 1008 [MPG] Ethmiidae. Now assigned to Depressariidae. Ethmiinae. Ethmia timberlakei. 0984 Pseudethmia protuberans. 1008 Gelechiidae. Twirler Moths. Aristotelia adceanotha. 1726 [Sighting 1019513 BMNA] Chionodes abdominella. 2054 Chionodes dentella. 2071 Chionodes fructuaria. 2078 Chionodes kincaidella. 2086 (reared from Atriplex acanthocarpa in Texas) Chionodes oecus. 2086.2 Chionodes sistrella. 2116 Chionodes xanthophilella. 2125 Faculta inaequalis. Palo Verde Webworm. 2206 Friseria cockerelli. Mesquite Webworm. 1916 Gelechia desiliens. 1938 Isophrictis sabulella. 1701 Keiferia lycopersicella. Tomato Pinworm. 2047 Pectinophora gossypiella. Pink Bollworm. 2261 Prolita puertella. 1895 Prolita veledae. 1903 Geometridae. Inchworm Moths, Loopers, Geometers, or Measuring Worms. Archirhoe neomexicana. 7295 Chesiadodes coniferaria. 6535 Chlorochlamys appellaria. 7073 Cyclophora nanaria. Dwarf Tawny Wave. W 7140 Dichorda illustraria. 7055 Dichordophora phoenix. Phoenix Emerald. 7057 Digrammia colorata. Creosote Moth. 6381 Digrammia irrorata (rubricata). 6395 Digrammia pictipennata. 6372 Digrammia puertata.
    [Show full text]
  • WO 2017/087846 Al 26 May 20 17 (26.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/087846 Al 26 May 20 17 (26.05.2017) W P O P C T (51) International Patent Classification: (74) Agents: VEITENHEIMER, Erich et al; Cooley LLP, A01M 29/12 (201 1.01) C12N 15/53 (2006.01) 1299 Pennsylvania Avenue, N.W., Suite 700, Washington, A 7/46 (2006.01) C12N 15/63 (2006.01) District of Columbia 20004-2400 (US). A61K 9/42 (2006.01) C12P 7/64 (2006.01) (81) Designated States (unless otherwise indicated, for every C07C 57/66 (2006.01) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 16/062852 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 18 November 2016 (18.1 1.2016) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (25) Filing Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 62/257,054 18 November 2015 (18.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Testing a Popular Indicator Taxon at Local Scales
    Biological Conservation 103 (2002) 361–370 www.elsevier.com/locate/biocon Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales Taylor H. Ricketts*, Gretchen C. Daily, Paul R. Ehrlich Department of Biological Sciences, Gilbert Hall, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA Received 23 July 2000; received in revised form 2 May 2001; accepted 10 June 2001 Abstract Indicator taxa are often proposed as efficient ways of identifying conservation priorities, but the correlation between putative indicators and other taxa has not been adequately tested. We examined whether a popular indicator taxon, the butterflies, could provide a useful surrogate measure of diversity in a closely related but relatively poorly known group, the moths, at a local scale relevant to many conservation decisions (100–101 km2). We sampled butterflies and moths at 19 sites representing the three major terrestrial habitats in sub-alpine Colorado: meadows, aspen forests, and conifer forests. We found no correlation between moth and butterfly diversity across the 19 sites, using any of five different diversity measures. Correlations across only meadow sites (to test for correlation within a single, species-rich habitat) were also not significant. Butterflies were restricted largely to meadows, where their host plants occur and thermal environment is favorable. In contrast, all three habitats contained substantial moth diversity, and several moth species were restricted to each habitat. These findings suggest that (1) butterflies are unlikely to be useful indica- tors of moth diversity at a local scale; (2) phylogenetic relatedness is not a reliable criterion for selecting appropriate indicator taxa; and (3) a habitat-based approach would more effectively conserve moth diversity in this landscape and may be preferable in many situations where indicator taxa relationships are untested.
    [Show full text]
  • Negative Per Capita Effects of Two Invasive Plants, Lythrum Salicaria and Phalaris Arundinacea, Volume 99 on the Moth Diversity of Wetland Communities 229 Issue 3 L.L
    Online submission at: www.editorialmanager.com/ber Bulletin of Entomological Volume 99 Issue 3 Research June 2009 Bulletin of Research Papers Bulletin of K. Kishimoto-Yamada, T. Itioka, S. Sakai, K. Momose, T. Nagamitsu, H. Kaliang, P. Meleng, L. Chong, A.A. Hamid Karim, S. Yamane, M. Kato, C.A.M. Reid, T. Nakashizuka and T. Inoue Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual Entomological Research environmental changes in a Bornean rainforest 217 Entomological S.S. Schooler, P.B. McEvoy, P. Hammond and E.M. Coombs Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, Volume 99 on the moth diversity of wetland communities 229 Issue 3 L.L. Stelinski and L.J. Gut June 2009 Delayed mating in tortricid leafroller species: simultaneously aging both sexes prior to mating Research is more detrimental to female reproductive potential than aging either sex alone 245 Z. Lei, T.-X. Liu and S.M. Greenberg Feeding, oviposition and survival of Liriomyza trifolii (Diptera: Agromyzidae) on Bt and non-Bt cottons 253 99 Issue 3 June 2009 Volume S.J. Castle, N. Prabhaker, T.J. Henneberry and N.C. Toscano Host plant influence on susceptibility of Bemisia tabaci (Hemiptera: Aleyrodidae) to insecticides 263 M. Jonsson, S.D. Wratten, K.A. Robinson and S.A. Sam The impact of floral resources and omnivory on a four trophic level food web 275 R. Kahuthia-Gathu, B. Löhr, H.M. Poehling and P.K. Mbugua Diversity, distribution and role of wild crucifers in major cabbage and kale growing areas of Kenya 287 J.
    [Show full text]
  • Olfactory Male Sensitivity and Its Variation in Response to Fluoranalogs of the Main Pheromone Component of Female Mamestra Brassicae A
    Olfactory Male Sensitivity and Its Variation in Response to Fluoranalogs of the Main Pheromone Component of Female Mamestra brassicae A. A. Nikonov, T. V. Tyazhelova, Ye. A. Nesterov, V. M. Rastegayeva, F. E. Ilyasov, P. V. Mashkin and B. G. Kovalyov Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia Z. Naturforsch. 49c, 508-515 (1994); received September 14, 1993/March 14, 1994 Electroantennogramme, Chemical Communication. Fluoranalogs, Mamestra brassicae According to the EAG study and the field trapping tests, fluoranalogs of the main phero­ mone component of Mamestra brassicae females have been found to possess disguising properties for males when used together with the main pheromone component itself. In males, at low concentrations of the above substances the diminishing of attractivity of these blends correlates with the absence of EAG responses to them. An unequal action of these substances has been revealed in different concentration ranges of odours. The mechanisms of the action of these substances are under discussion. Introduction primary mechanisms of olfactory reception, in­ At present, an intensive search for effective bio­ cluding principles and mechanisms of odour infor­ logical ways of protecting plants from insect pests mation recognition; (ii) the changes in sensitivity is going on. One of the promising directions of this and those of distinguishing the odours by insects search is the use of natural pheromones as well as in natural conditions are weakly studied. their analogs, because their use in traps and other In this work we have studied electrical responses preparations has a weak toxicity and results in dis­ of antennae of Mamestra brassicae males to the turbances of sex communication of insects.
    [Show full text]
  • Coastal Sage Scrub at University of California, Los Angeles
    BIOLOGICAL ASSESSMENT: COASTAL SAGE SCRUB AT UNIVERSITY OF CALIFORNIA, LOS ANGELES Prepared by: Geography 123: Bioresource Management UCLA Department of Geography, Winter 1996 Dr. Rudi Mattoni Robert Hill Alberto Angulo Karl Hillway Josh Burnam Amanda Post John Chalekian Kris Pun Jean Chen Julien Scholnick Nathan Cortez David Sway Eric Duvernay Alyssa Varvel Christine Farris Greg Wilson Danny Fry Crystal Yancey Edited by: Travis Longcore with Dr. Rudi Mattoni, Invertebrates Jesus Maldonado, Mammals Dr. Fritz Hertel, Birds Jan Scow, Plants December 1, 1997 TABLE OF CONTENTS CHAPTER 1: INTRODUCTION ..........................................................................................................................1 CHAPTER 2: PHYSICAL DESCRIPTION ........................................................................................................2 GEOLOGICAL FRAMEWORK.....................................................................................................................................2 LANDFORMS AND SOILS ..........................................................................................................................................2 The West Terrace ...............................................................................................................................................3 Soil Tests.............................................................................................................................................................4 SLOPE, EROSION, AND RUNOFF ..............................................................................................................................4
    [Show full text]