Extending SVG Fonts with Graphite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origins of the Underline As Visual Representation of the Hyperlink on the Web: a Case Study in Skeuomorphism
The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Romano, John J. 2016. The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797379 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Origins of the Underline as Visual Representation of the Hyperlink on the Web: A Case Study in Skeuomorphism John J Romano A Thesis in the Field of Visual Arts for the Degree of Master of Liberal Arts in Extension Studies Harvard University November 2016 Abstract This thesis investigates the process by which the underline came to be used as the default signifier of hyperlinks on the World Wide Web. Created in 1990 by Tim Berners- Lee, the web quickly became the most used hypertext system in the world, and most browsers default to indicating hyperlinks with an underline. To answer the question of why the underline was chosen over competing demarcation techniques, the thesis applies the methods of history of technology and sociology of technology. Before the invention of the web, the underline–also known as the vinculum–was used in many contexts in writing systems; collecting entities together to form a whole and ascribing additional meaning to the content. -
Supreme Court of the State of New York Appellate Division: Second Judicial Department
Supreme Court of the State of New York Appellate Division: Second Judicial Department A GLOSSARY OF TERMS FOR FORMATTING COMPUTER-GENERATED BRIEFS, WITH EXAMPLES The rules concerning the formatting of briefs are contained in CPLR 5529 and in § 1250.8 of the Practice Rules of the Appellate Division. Those rules cover technical matters and therefore use certain technical terms which may be unfamiliar to attorneys and litigants. The following glossary is offered as an aid to the understanding of the rules. Typeface: A typeface is a complete set of characters of a particular and consistent design for the composition of text, and is also called a font. Typefaces often come in sets which usually include a bold and an italic version in addition to the basic design. Proportionally Spaced Typeface: Proportionally spaced type is designed so that the amount of horizontal space each letter occupies on a line of text is proportional to the design of each letter, the letter i, for example, being narrower than the letter w. More text of the same type size fits on a horizontal line of proportionally spaced type than a horizontal line of the same length of monospaced type. This sentence is set in Times New Roman, which is a proportionally spaced typeface. Monospaced Typeface: In a monospaced typeface, each letter occupies the same amount of space on a horizontal line of text. This sentence is set in Courier, which is a monospaced typeface. Point Size: A point is a unit of measurement used by printers equal to approximately 1/72 of an inch. -
Desktop + Mobile Style Guide 06.22.15
DESKTOP + MOBILE STYLE GUIDE 06.22.15 SITE BASICS PRIMARY TYPEFACE PRIMARY COLORS SECONDARY COLORS Helvetica, Arial, sans-serif R0 G70 B127 R0 G24 B46 HEX# 00467F HEX# 00182E R255 G201 B57 R47 G107 B189 HEX# FFC939 HEX# 2F6BBD R77 G79 B83 HEX# 4D4F53 R0 G0 B0 HEX# 000000 2 UNIVERSAL ELEMENTS PRIMARY BUTTONS LINKS CARETS IDLE ROLLOVER IDLE ROLLOVER ON CLEAN BACKGROUND PRIMARY NAVIGATION ON BUSY BACKGROUND IDLE ROLLOVER 3 HEADINGS AND LISTS A Font Family Helvetica, Arial, sans-serif B Font Family Helvetica, Arial, sans-serif Font Size 40px/48px Font Size 30px A Font Weight Bold Color #ffffff Color #000000 B C C Font Family Helvetica, Arial, sans-serif D Font Family Helvetica, Arial, sans-serif Font Weight Bold Font Size 24px/34px D Font Size 24px/34px Color #000000 Color #2F6BBD E E Font Family Helvetica, Arial, sans-serif F Font Family Helvetica, Arial, sans-serif Font Size 24px/34px Font Size 24px/34px F Color #000000 Color #000000 Margin-bottom 34px Margin-bottom 17px G Font Family Helvetica, Arial, sans-serif Font Size 24px/34px Color #000000 Margin-bottom 17px G 4 DESKTOP TYPOGRAPHY B A A Font Family Helvetica, Arial, sans-serif B Font Family Helvetica, Arial, sans-serif C Font Size 16px Font Size 16px Font Weight Bold Color #ffffff Color #cccccc Hover Underline Hover Underline C Font Family Helvetica, Arial, sans-serif D Font Family Helvetica, Arial, sans-serif Font Weight Bold Font Size 24px/30px D Font Size 22px/24px Color #000000 E Color #ffffff F E Font Family Helvetica, Arial, sans-serif F Font Family Helvetica, Arial, sans-serif -
Afgbaskerville (The Type Face)
gfaBaskerville (the type face) xagfi {the type} {the man} abcdefghijklmn opqrstuvwxyz ABCDEFGHI JKLMNOPQR STUVWXYZ Having been an early admirer of the beauty of letters, I vertical stress relatively low contrast “became insensibly desirous of contributing to the perfection Baskerville is a transitional type of them. I formed to myself ideas of greater accuracy than had yet appeared, and had endeavoured to produce a set of types according to what I conceived to be their true { old style type modern type proportion. oblique stress vertical stress —John Baskerville, preface to Milton, 1758 relatively low contrast high contrast (Anatomy of a Typeface) ” {looks} use of orthogonal lines use of orthogonal + curvy lines FHTt BDp use of curvy lines use of diagonal lines cOQ vwXZ In order to truely appreciate the quialities of Baskerville, one must understand the The Baskerville type is known for the crisp edges, high contrast and generous process of its creation. Being a printer, John Baskerville paid close attention to the proportions. Baskerville is categorized as a transitional typeface in between classical technology, creating his own intense black ink. He boiled fine linseed oil to a certain typefaces and the high contrast modern faces. density, dissolved rosin, and let it subside for months before using it. He also studied and invested in presses, resulting in the development of high standards for presses altogether. {anatomy} crossbar serif ear head serif ascender counter apex A a x g Q b q O spur x-height descender swash {characteristics} {1}g Q {2} A {3} {4}J {5}C {6}E {7}ea {1} tail on lower case g does not close {2} swash-like tail of Q {4} J well below baseline {3} high crossbar and pointed apex of A {5} top and bottom serifs on C {6} long lower arm of E {7} small counter of italic e compared to italic a {comparison} Bembo Baskerville Bembo Baskerville d The head serif of Baskerville is generally more horizontal than that of Bembo. -
Basic Styles of Lettering for Monuments and Markers.Indd
BASIC STYLES OF LETTERING FOR MONUMENTS AND MARKERS Monument Builders of North America, Inc. AA GuideGuide ToTo TheThe SelectionSelection ofof LETTERINGLETTERING From primitive times, man has sought to crude or garish or awkward letters, but in communicate with his fellow men through letters of harmonized alphabets which have symbols and graphics which conveyed dignity, balance and legibility. At the same meaning. Slowly he evolved signs and time, they are letters which are designed to hieroglyphics which became the visual engrave or incise cleanly and clearly into expression of his language. monumental stone, and to resist change or obliteration through year after year of Ultimately, this process evolved into the exposure. writing and the alphabets of the various tongues and civilizations. The early scribes The purpose of this book is to illustrate the and artists refi ned these alphabets, and the basic styles or types of alphabets which have development of printing led to the design been proved in memorial art, and which are of alphabets of related character and ready both appropriate and practical in the lettering readability. of monuments and markers. Memorial art--one of the oldest of the arts- Lettering or engraving of family memorials -was among the fi rst to use symbols and or individual markers is done today with “letters” to inscribe lasting records and history superb fi delity through the use of lasers or the into stone. The sculptors and carvers of each sandblast process, which employs a powerful generation infl uenced the form of letters and stream or jet of abrasive “sand” to cut into the numerals and used them to add both meaning granite or marble. -
Glyphs! Data Communication for Primary Mathematicians. REPORT NO ISBN-1-56417-663-0 PUB DATE 97 NOTE 68P
DOCUMENT RESUME ED 401 134 SE 059 203 AUTHOR O'Connell, Susan R. TITLE Glyphs! Data Communication for Primary Mathematicians. REPORT NO ISBN-1-56417-663-0 PUB DATE 97 NOTE 68p. AVAILABLE FROM Good Apple, 299 Jefferson Road, P.O. Box 480, Parsippany, NJ 07054-0480 (GA 1573). PUB TYPE Guides Classroom Use Teaching Guides (For Teacher) (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Communication Skills; *Data Analysis; *Data Interpretation; Elementary Education; Learning Activities; *Mathematics Instruction; Teaching Methods; Thinking Skills ABSTRACT Glyphs, a way of representing data pictorially, are a new way for elementary students to collect, display, and interpret data. This book contains a number of glyph activities that can be used as creative educational tools -for grades 1=-3. Each glyph_has three essential construction elements: the glyph survey (the questions that are asked), the glyph directions (tell what to draw based on the answers given), and the glyph pattern (a reproducible provided in this book or a shape that is hand drawn on a sheet of paper). Glyph activities begin with the collection of data followed by displaying the data by following a series of directions. Once glyphs are created they can be analyzed and interpreted' in many ways. In the process of exploring their glyphs students are provided' with opportunities to communicate their mathematical thinking both orally and in writing. Along with building data analysis and communication skills, glyphs also stimulate students' mathematical reasoning as they compare, contrast, and draw conclusions. (JRH). *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. -
Copyrighted Material
INDEX A Bertsch, Fred, 16 Caslon Italic, 86 accents, 224 Best, Mark, 87 Caslon Openface, 68 Adobe Bickham Script Pro, 30, 208 Betz, Jennifer, 292 Cassandre, A. M., 87 Adobe Caslon Pro, 40 Bézier curve, 281 Cassidy, Brian, 268, 279 Adobe InDesign soft ware, 116, 128, 130, 163, Bible, 6–7 casual scripts typeface design, 44 168, 173, 175, 182, 188, 190, 195, 218 Bickham Script Pro, 43 cave drawing, type development, 3–4 Adobe Minion Pro, 195 Bilardello, Robin, 122 Caxton, 110 Adobe Systems, 20, 29 Binner Gothic, 92 centered type alignment Adobe Text Composer, 173 Birch, 95 formatting, 114–15, 116 Adobe Wood Type Ornaments, 229 bitmapped (screen) fonts, 28–29 horizontal alignment, 168–69 AIDS awareness, 79 Black, Kathleen, 233 Century, 189 Akuin, Vincent, 157 black letter typeface design, 45 Chan, Derek, 132 Alexander Isley, Inc., 138 Black Sabbath, 96 Chantry, Art, 84, 121, 140, 148 Alfon, 71 Blake, Marty, 90, 92, 95, 140, 204 character, glyph compared, 49 alignment block type project, 62–63 character parts, typeface design, 38–39 fi ne-tuning, 167–71 Blok Design, 141 character relationships, kerning, spacing formatting, 114–23 Bodoni, 95, 99 considerations, 187–89 alternate characters, refi nement, 208 Bodoni, Giambattista, 14, 15 Charlemagne, 206 American Type Founders (ATF), 16 boldface, hierarchy and emphasis technique, China, type development, 5 Amnesty International, 246 143 Cholla typeface family, 122 A N D, 150, 225 boustrophedon, Greek alphabet, 5 circle P (sound recording copyright And Atelier, 139 bowl symbol), 223 angled brackets, -
Kahk' Uti' Chan Yopat
Glyph Dwellers Report 57 September 2017 A New Teotiwa Lord of the South: K’ahk’ Uti’ Chan Yopat (578-628 C.E.) and the Renaissance of Copan Péter Bíró Independent Scholar Classic Maya inscriptions recorded political discourse commissioned by title-holding elite, typically rulers of a given city. The subject of the inscriptions was manifold, but most of them described various period- ending ceremonies connected to the passage of time. Within this general framework, statements contained information about the most culturally significant life-events of their commissioners. This information was organized according to discursive norms involving the application of literary devices such as parallel structures, difrasismos, ellipsis, etc. Each center had its own variations and preferences in applying such norms, which changed during the six centuries of Classic Maya civilization. Epigraphers have thus far rarely investigated Classic Maya political discourse in general and its regional-, site-, and period-specific features in particular. It is possible to posit very general variations, for example the presence or absence of secondary elite inscriptions, which makes the Western Maya region different from other areas of the Maya Lowlands (Bíró 2011). There are many other discursive differences not yet thoroughly investigated. It is still debated whether these regional (and according to some) temporal discursive differences related to social phenomena or whether they strictly express literary variation (see Zender 2004). The resolution of this question has several implications for historical solutions such as the collapse of Classic Maya civilization or the hypothesis of status rivalry, war, and the role of the secondary elite. There are indications of ruler-specific textual strategies when inscriptions are relatively uniform; that is, they contain the same information, and their organization is similar. -
Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim, Jin Hyung Kim
Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim, Jin Hyung Kim To cite this version: Dae Hwan Kim, Jin Hyung Kim. Ligature Modeling for Recognition of Characters Written in 3D Space. Tenth International Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1, Oct 2006, La Baule (France). inria-00105116 HAL Id: inria-00105116 https://hal.inria.fr/inria-00105116 Submitted on 10 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim Jin Hyung Kim Artificial Intelligence and Artificial Intelligence and Pattern Recognition Lab. Pattern Recognition Lab. KAIST, Daejeon, KAIST, Daejeon, South Korea South Korea [email protected] [email protected] Abstract defined shape of character while it showed high recognition performance. Moreover when a user writes In this work, we propose a 3D space handwriting multiple stroke character such as ‘4’, the user has to recognition system by combining 2D space handwriting write a new shape which is predefined in a uni-stroke models and 3D space ligature models based on that the and which he/she has never seen. -
Package 'Systemfonts'
Package ‘systemfonts’ May 11, 2021 Type Package Title System Native Font Finding Version 1.0.2 Maintainer Thomas Lin Pedersen <[email protected]> Description Provides system native access to the font catalogue. As font handling varies between systems it is difficult to correctly locate installed fonts across different operating systems. The 'systemfonts' package provides bindings to the native libraries on Windows, macOS and Linux for finding font files that can then be used further by e.g. graphic devices. The main use is intended to be from compiled code but 'systemfonts' also provides access from R. License MIT + file LICENSE Encoding UTF-8 RoxygenNote 7.1.1 Depends R (>= 3.2.0) SystemRequirements c(``C++11'', ``\{}n fontconfig'', ``\{}n freetype2''), C++11 Suggests testthat (>= 2.1.0), covr, knitr, rmarkdown, tools VignetteBuilder knitr URL https://github.com/r-lib/systemfonts BugReports https://github.com/r-lib/systemfonts/issues LinkingTo cpp11 (>= 0.2.1) NeedsCompilation yes Author Thomas Lin Pedersen [aut, cre] (<https://orcid.org/0000-0002-5147-4711>), Jeroen Ooms [aut] (<https://orcid.org/0000-0002-4035-0289>), Devon Govett [aut] (Author of font-manager), RStudio [cph] Repository CRAN Date/Publication 2021-05-11 12:10:05 UTC 1 2 font_fallback R topics documented: font_fallback . .2 font_feature . .3 font_info . .5 glyph_info . .6 match_font . .7 register_font . .8 register_variant . .9 reset_font_cache . 11 shape_string . 11 string_metrics_dev . 14 string_width . 15 string_widths_dev . 16 str_split_emoji . 17 system_fonts . 18 Index 19 font_fallback Get the fallback font for a given string Description A fallback font is a font to use as a substitute if the chosen font does not contain the requested characters. -
USER MANUAL SWASH Version 7.01
SWASH USER MANUAL SWASH version 7.01 SWASH USER MANUAL by : TheSWASHteam mail address : Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section P.O. Box 5048 2600 GA Delft The Netherlands website : http://www.tudelft.nl/swash Copyright (c) 2010-2020 Delft University of Technology. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back- Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1. iv Contents 1 About this manual 1 2 Generaldescriptionandinstructionsforuse 3 2.1 Introduction................................... 3 2.2 Background,featuresandapplications . ...... 3 2.2.1 Objectiveandcontext ......................... 3 2.2.2 Abird’s-eyeviewofSWASH. 4 2.2.3 ModelfeaturesandvalidityofSWASH . 7 2.2.4 Relation to Boussinesq-type wave models . .... 8 2.2.5 Relation to circulation and coastal flow models. ...... 9 2.3 Internal scenarios, shortcomings and coding bugs . ......... 9 2.4 Unitsandcoordinatesystems . 10 2.5 Choiceofgridsandtimewindows . .. 11 2.5.1 Introduction............................... 11 2.5.2 Computationalgridandtimewindow . 12 2.5.3 Inputgrid(s)andtimewindow(s) . 13 2.5.4 Input grid(s) for transport of constituents . ...... 14 2.5.5 Outputgrids .............................. 15 2.6 Boundaryconditions .............................. 16 2.7 Timeanddatenotation ............................ 17 2.8 Troubleshooting................................. 17 3 Input and output files 19 3.1 General ..................................... 19 3.2 Input/outputfacilities . .. 19 3.3 Printfileanderrormessages . .. 20 4 Description of commands 21 4.1 Listofavailablecommands. -
Choosing Fonts – Quick Tips
Choosing Fonts – Quick Tips 1. Choose complementary fonts – choose a font that matches the mood of your design. For business cards, it is probably best to choose a classic font. *Note: These fonts are not available in Canva, but are in the Microsoft Office Suite. For some good Canva options, go to this link – https://www.canva.com/learn/canva-for-work-brand-fonts/ Examples: Serif Fonts: Sans Serif Fonts: Times New Roman Helvetica Cambria Arial Georgia Verdana Courier New Calibri Century Schoolbook 2. Establish a visual hierarchy – Use fonts to separate different types of information and guide the reader - Use different fonts, sizes, weights (boldness), and even color - Example: Heading (Helvetica, SZ 22, Bold) Sub-heading (Helvetica, SZ 16, Italics) Body Text (Garamond, SZ 12, Regular) Captions (Garamond, SZ 10, Regular 3. Mix Serifs and Sans Serifs – This is one of the best ways to add visual interest to type. See in the above example how I combined Helvetica, a sans serif font, with Garamond, a serif font. 4. Create Contrast, Not Conflict: Fonts that are too dissimilar may not pair well together. Contrast is good, but fonts need a connecting element. Conflict Contrast 5. Use Fonts from the Same Family: These fonts were created to work together. For example, the fonts in the Arial or Courier families. 6. Limit Your Number of Fonts: No more than 2 or 3 is a good rule – for business cards, choose 2. 7. Trust Your Eye: These are not concrete rules – you will know if a design element works or not! .