Limits of Functions University Students’ Concept Development

Total Page:16

File Type:pdf, Size:1020Kb

Limits of Functions University Students’ Concept Development 2006:08 DOCTORAL T H E SI S Limits of Functions University Students’ Concept Development Kristina Juter Luleå University of Technology Department of Mathematics 2006:08|: 02-544|: - -- 06 ⁄08 -- Limits of Functions- University Students’ Concept Development by Kristina Juter Department of Mathematics Luleå University of Technology SE-971 87 Luleå February 2006 2 Abstract This PhD thesis consists of six articles and a concise synopsis that generally frame these articles. The theories and methods used are outlined and discussed in the synopsis to show their relation. The articles are published or accepted for publication (see the list of publications at page 9) with the following abstracts: I: Limits of functions – how do students handle them? This paper aims at formulating and analysing the development of 15 students in their creations of mental representations of limits of functions during a basic mathematics course at a Swedish university. Their concept images are sought via questionnaires and interviews. How do students respond to limits of functions? The data indicate that some students have incoherent representations, but they do not recognise it themselves. II: Limits of functions: Traces of students’ concept images Students at a Swedish university were subjects in a study about learning limits of functions. The students’ perceptions were investigated in terms of traces of concept images through interviews and problem solving. The results imply that most students’ foundations were not sufficiently strong for them to understand the concept of limit well enough to be able to form coherent concept images. The traces of the students’ concept images reveal confusion about different features of the limit concept. III: Students’ attitudes to mathematics and performance in limits of functions The main aim of this article is to discuss the attitudes to mathematics of students taking a basic mathematics course at a Swedish university, and to explore possible links between how well such students manage to solve tasks about limits of functions and their attitudes. Two groups, each of about a hundred students, were investigated using questionnaires, field notes and interviews. From the results presented a connection can be inferred between students’ attitudes to mathematics and their ability to solve limit tasks. Students with positive attitudes perform better in solving limit problems. The educational implications of these findings are also discussed. IV: Limits of functions as they developed through time and as students learn them today In this article, the ways first year university students’ develop the concept of limits are compared to the historical development of the concept. The 3 aim is to find out if the students perceive the notion as mathematicians of the past did as understandings of the concept evolved. The results imply that there are some similarities, for example, the struggle with rigour and attainability. Knowledge of such critical areas can be used to improve the students’ opportunities of learning limits of functions. Some teaching aspects are also discussed. V: Limits of functions - students solving tasks Students solve problems to learn mathematics. How do they cope with the problems and explain their solutions? This study is about students at a Swedish university, solving tasks about limits of functions. The students are enrolled in their first university course in mathematics. They study algebra and calculus for 20 weeks fulltime. There are many possible problems for the students to handle including the notion of function, the formal definition and limits as unattainable values for functions. Many students do not possess enough knowledge about limits to solve and explain solutions to non-standard problems. Some students arrive at correct answers through erroneous reasoning. VI: Limits and infinity: A study of university students’ performance Students’ work with limits of functions includes the concept of infinity. These concepts are complex but necessary for mathematics studies. A study of student solutions to limit tasks was conducted to reveal how students handled limits of functions and infinity at a Swedish university. As a background to the students’ and teachers’ situations we have also analysed textbooks and curricula. One result is that many students were unable to handle limits correctly. Some students gave correct answers with incorrect explanations to tasks. Textbooks used at upper secondary schools do not provide much theory or many tasks about limits and infinity so most students new to university do not have a developed image of these concepts. 4 Acknowledgements My supervisors, Professor Barbro Grevholm, Professor Lars-Erik Persson and Professor Gilah Leder, have all been there for me throughout the period of my research education and I wish to thank each of them for that. Barbro, I am very happy to have been able to discuss all sorts of issues with you and for your encouragement when I needed it. Thank you for tirelessly reading and commenting on my texts at all times. Lars-Erik, thank you for your support and your very positive attitude to me and my work. You really strengthened my confidence with your enthusiasm. Gilah, thank you for your constructive advice and all your efforts to help me, in particular during my visit at La Trobe University. It was really an adventure, which you made possible. Especially thanks for the kangaroo expedition at the golf course. I am very grateful for the hospitality of the Mathematics department at Lund University for letting me take time and space to carry out my two studies. Especially thanks to Per-Anders Ivert, Bengt Gamstedt, Tomas Claesson, Kjell Elfström, Catarina Petersson and Agneta Ohlzon. I want to thank ‘Luleå Tekniska Universitet’ for the generous team work together with ‘Högskolan Kristianstad’ that has given me the opportunity to do my doctoral studies in Kristianstad near my home. I also want to thank ‘Vetenskapsrådet’ and ‘Riksbankens Jubileumsfond’ for funding my research studies and the board of ‘Forskarskolan i matematik med ämnesdidaktisk inriktning’ for making the project possible. I would also like to thank ‘Högskolan Kristianstad’ for supporting me. There have been two important seminars during my research education where my thesis has been read and commented by an opponent. The first was a licentiate seminar in January 2004 and the second was a 90% seminar in January 2006. I would like to thank Professor Johan Lithner and Professor Mogens Niss respectively for their valuable remarks and suggestions at those seminars. Last, but perhaps most, I want to thank every single one of the students who participated in the studies. Their endless willingness to answer my questions was inspiring. Kristina 5 6 Contents Abstract 3 Acknowledgements 5 Contents 7 List of Publications 9 Introduction 11 Background and Questions 11 Theoretical Overview 12 Limits of Functions 12 Learning 14 Terminology 20 The Empirical Study 21 Rationale of the Empirical Study 22 The First Study 22 The Second Study 24 Methodological Remarks 27 Analysis of Data 29 Results 30 Ethical Issues and Scientific Quality 33 Discussion 34 New Results for the Field 34 Implications for Teaching and Learning 35 Further Research 37 Conclusions 38 References 40 Appendix 47 Article I Article II Article III Article IV Article V Article VI 7 8 List of Publications I Juter, K. (2005a). Limits of functions – how do students handle them? Pythagoras 61, 11-20. II Juter, K. (2005c). Limits of functions: Traces of students’ concept images, Nordic Studies in Mathematics Education 10(3-4), 65-82. Parts of the content of this article was presented at a conference and published as: II* Juter, K. (2004b). University students’ perceptions of limits of functions. In B. Tadich, S. Tobias, C. Brew, B. Beatty & P. Sullivan (Eds.), MAV (The Mathematics Association of Victoria) annual conference 2004, Towards excellence in mathematics (pp. 228-236). Melbourne, Australia: The Mathematics Association of Victoria. III Juter, K. (2005b). Students’ attitudes to mathematics and performance in limits of functions, Mathematics Education Research Journal 17(2), 91- 110. IV Juter, K. (2006a). Limits of functions as they developed through time and as students learn them today, to appear in Mathematical Thinking and Learning. V Juter, K. (2006b). Limits of functions - students solving tasks, to appear in Australian Senior Mathematics Journal 20(1). Parts of the content of this article was presented at a conference and published as: V* Juter, K. (2004a). Limits of functions – How students solve tasks. In C. Bergsten & B. Grevholm (Eds.), Mathematics and language, Proceedings of MADIF 4, the 4th Swedish Mathematics Education Research Seminar (pp. 146-156). Linköping, Sweden: Svensk Förening för Matematikdidaktisk Forskning. VI Juter, K., & Grevholm, B. (2006). Limits and infinity: A study of university students' performance. To appear in C. Bergsten, B. Grevholm, H. Måsøval, & F. Rønning (Eds.), Relating practice and research in mathematics education. Fourth Nordic Conference on Mathematics Education, Trondheim, 2nd-6th of September 2005. Trondheim: Sør- Trøndelag University College. 9 10 Introduction Background and Questions Learning mathematics is an endeavour requiring a number of abilities, which vary for different mathematical topics. How individuals learn mathematics can also vary. Some go through hard work followed by a period of enlightenment (Hadamard, 1949), whereas others simply endure hard work. Mathematics
Recommended publications
  • Nieuw Archief Voor Wiskunde
    Nieuw Archief voor Wiskunde Boekbespreking Kevin Broughan Equivalents of the Riemann Hypothesis Volume 1: Arithmetic Equivalents Cambridge University Press, 2017 xx + 325 p., prijs £ 99.99 ISBN 9781107197046 Kevin Broughan Equivalents of the Riemann Hypothesis Volume 2: Analytic Equivalents Cambridge University Press, 2017 xix + 491 p., prijs £ 120.00 ISBN 9781107197121 Reviewed by Pieter Moree These two volumes give a survey of conjectures equivalent to the ber theorem says that r()x asymptotically behaves as xx/log . That Riemann Hypothesis (RH). The first volume deals largely with state- is a much weaker statement and is equivalent with there being no ments of an arithmetic nature, while the second part considers zeta zeros on the line v = 1. That there are no zeros with v > 1 is more analytic equivalents. a consequence of the prime product identity for g()s . The Riemann zeta function, is defined by It would go too far here to discuss all chapters and I will limit 3 myself to some chapters that are either close to my mathematical 1 (1) g()s = / s , expertise or those discussing some of the most famous RH equiv- n = 1 n alences. Most of the criteria have their own chapter devoted to with si=+v t a complex number having real part v > 1 . It is easily them, Chapter 10 has various criteria that are discussed more brief- seen to converge for such s. By analytic continuation the Riemann ly. A nice example is Redheffer’s criterion. It states that RH holds zeta function can be uniquely defined for all s ! 1.
    [Show full text]
  • Calculus for the Life Sciences I Lecture Notes – Limits, Continuity, and the Derivative
    Limits Continuity Derivative Calculus for the Life Sciences I Lecture Notes – Limits, Continuity, and the Derivative Joseph M. Mahaffy, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://www-rohan.sdsu.edu/∼jmahaffy Spring 2013 Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (1/24) Limits Continuity Derivative Outline 1 Limits Definition Examples of Limit 2 Continuity Examples of Continuity 3 Derivative Examples of a derivative Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (2/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Present definitions of limits, continuity, and derivative Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits are central to Calculus Present definitions of limits, continuity, and derivative Sketch the formal mathematics for these definitions Lecture Notes – Limits, Continuity, and the Deriv Joseph M. Mahaffy, [email protected] — (3/24) Limits Definition Continuity Examples of Limit Derivative Introduction Limits
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • Hegel on Calculus
    HISTORY OF PHILOSOPHY QUARTERLY Volume 34, Number 4, October 2017 HEGEL ON CALCULUS Ralph M. Kaufmann and Christopher Yeomans t is fair to say that Georg Wilhelm Friedrich Hegel’s philosophy of Imathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twenti- eth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel’s) the untimely appear- ance of naïveté. The common view was expressed by Bertrand Russell: The great [mathematicians] of the seventeenth and eighteenth cen- turies were so much impressed by the results of their new methods that they did not trouble to examine their foundations. Although their arguments were fallacious, a special Providence saw to it that their conclusions were more or less true. Hegel fastened upon the obscuri- ties in the foundations of mathematics, turned them into dialectical contradictions, and resolved them by nonsensical syntheses. .The resulting puzzles [of mathematics] were all cleared up during the nine- teenth century, not by heroic philosophical doctrines such as that of Kant or that of Hegel, but by patient attention to detail (1956, 368–69). Recently, however, interest in Hegel’s discussion of calculus has been awakened by an unlikely source: Gilles Deleuze. In particular, work by Simon Duffy and Henry Somers-Hall has demonstrated how close Deleuze and Hegel are in their treatment of the calculus as compared with most other philosophers of mathematics.
    [Show full text]
  • Limits and Derivatives 2
    57425_02_ch02_p089-099.qk 11/21/08 10:34 AM Page 89 FPO thomasmayerarchive.com Limits and Derivatives 2 In A Preview of Calculus (page 3) we saw how the idea of a limit underlies the various branches of calculus. Thus it is appropriate to begin our study of calculus by investigating limits and their properties. The special type of limit that is used to find tangents and velocities gives rise to the central idea in differential calcu- lus, the derivative. We see how derivatives can be interpreted as rates of change in various situations and learn how the derivative of a function gives information about the original function. 89 57425_02_ch02_p089-099.qk 11/21/08 10:35 AM Page 90 90 CHAPTER 2 LIMITS AND DERIVATIVES 2.1 The Tangent and Velocity Problems In this section we see how limits arise when we attempt to find the tangent to a curve or the velocity of an object. The Tangent Problem The word tangent is derived from the Latin word tangens, which means “touching.” Thus t a tangent to a curve is a line that touches the curve. In other words, a tangent line should have the same direction as the curve at the point of contact. How can this idea be made precise? For a circle we could simply follow Euclid and say that a tangent is a line that intersects the circle once and only once, as in Figure 1(a). For more complicated curves this defini- tion is inadequate. Figure l(b) shows two lines and tl passing through a point P on a curve (a) C.
    [Show full text]
  • Limits of Functions
    Chapter 2 Limits of Functions In this chapter, we define limits of functions and describe some of their properties. 2.1. Limits We begin with the ϵ-δ definition of the limit of a function. Definition 2.1. Let f : A ! R, where A ⊂ R, and suppose that c 2 R is an accumulation point of A. Then lim f(x) = L x!c if for every ϵ > 0 there exists a δ > 0 such that 0 < jx − cj < δ and x 2 A implies that jf(x) − Lj < ϵ. We also denote limits by the `arrow' notation f(x) ! L as x ! c, and often leave it to be implicitly understood that x 2 A is restricted to the domain of f. Note that we exclude x = c, so the function need not be defined at c for the limit as x ! c to exist. Also note that it follows directly from the definition that lim f(x) = L if and only if lim jf(x) − Lj = 0: x!c x!c Example 2.2. Let A = [0; 1) n f9g and define f : A ! R by x − 9 f(x) = p : x − 3 We claim that lim f(x) = 6: x!9 To prove this, let ϵ >p 0 be given. For x 2 A, we have from the difference of two squares that f(x) = x + 3, and p x − 9 1 jf(x) − 6j = x − 3 = p ≤ jx − 9j: x + 3 3 Thus, if δ = 3ϵ, then jx − 9j < δ and x 2 A implies that jf(x) − 6j < ϵ.
    [Show full text]
  • MATH M25BH: Honors: Calculus with Analytic Geometry II 1
    MATH M25BH: Honors: Calculus with Analytic Geometry II 1 MATH M25BH: HONORS: CALCULUS WITH ANALYTIC GEOMETRY II Originator brendan_purdy Co-Contributor(s) Name(s) Abramoff, Phillip (pabramoff) Butler, Renee (dbutler) Balas, Kevin (kbalas) Enriquez, Marcos (menriquez) College Moorpark College Attach Support Documentation (as needed) Honors M25BH.pdf MATH M25BH_state approval letter_CCC000621759.pdf Discipline (CB01A) MATH - Mathematics Course Number (CB01B) M25BH Course Title (CB02) Honors: Calculus with Analytic Geometry II Banner/Short Title Honors: Calc/Analy Geometry II Credit Type Credit Start Term Fall 2021 Catalog Course Description Reviews integration. Covers area, volume, arc length, surface area, centers of mass, physics applications, techniques of integration, improper integrals, sequences, series, Taylor’s Theorem, parametric equations, polar coordinates, and conic sections with translations. Honors work challenges students to be more analytical and creative through expanded assignments and enrichment opportunities. Additional Catalog Notes Course Credit Limitations: 1. Credit will not be awarded for both the honors and regular versions of a course. Credit will be awarded only for the first course completed with a grade of "C" or better or "P". Honors Program requires a letter grade. 2. MATH M16B and MATH M25B or MATH M25BH combined: maximum one course for transfer credit. Taxonomy of Programs (TOP) Code (CB03) 1701.00 - Mathematics, General Course Credit Status (CB04) D (Credit - Degree Applicable) Course Transfer Status (CB05)
    [Show full text]
  • Sequences and Their Limits
    Sequences and their limits c Frank Zorzitto, Faculty of Mathematics University of Waterloo The limit idea For the purposes of calculus, a sequence is simply a list of numbers x1; x2; x3; : : : ; xn;::: that goes on indefinitely. The numbers in the sequence are usually called terms, so that x1 is the first term, x2 is the second term, and the entry xn in the general nth position is the nth term, naturally. The subscript n = 1; 2; 3;::: that marks the position of the terms will sometimes be called the index. We shall deal only with real sequences, namely those whose terms are real numbers. Here are some examples of sequences. • the sequence of positive integers: 1; 2; 3; : : : ; n; : : : • the sequence of primes in their natural order: 2; 3; 5; 7; 11; ::: • the decimal sequence that estimates 1=3: :3;:33;:333;:3333;:33333;::: • a binary sequence: 0; 1; 0; 1; 0; 1;::: • the zero sequence: 0; 0; 0; 0;::: • a geometric sequence: 1; r; r2; r3; : : : ; rn;::: 1 −1 1 (−1)n • a sequence that alternates in sign: 2 ; 3 ; 4 ;:::; n ;::: • a constant sequence: −5; −5; −5; −5; −5;::: 1 2 3 4 n • an increasing sequence: 2 ; 3 ; 4 ; 5 :::; n+1 ;::: 1 1 1 1 • a decreasing sequence: 1; 2 ; 3 ; 4 ;:::; n ;::: 3 2 4 3 5 4 n+1 n • a sequence used to estimate e: ( 2 ) ; ( 3 ) ; ( 4 ) :::; ( n ) ::: 1 • a seemingly random sequence: sin 1; sin 2; sin 3;:::; sin n; : : : • the sequence of decimals that approximates π: 3; 3:1; 3:14; 3:141; 3:1415; 3:14159; 3:141592; 3:1415926; 3:14159265;::: • a sequence that lists all fractions between 0 and 1, written in their lowest form, in groups of increasing denominator with increasing numerator in each group: 1 1 2 1 3 1 2 3 4 1 5 1 2 3 4 5 6 1 3 5 7 1 2 4 5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;::: 2 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 It is plain to see that the possibilities for sequences are endless.
    [Show full text]
  • Mathematics for Economics Anthony Tay 7. Limits of a Function The
    Mathematics for Economics Anthony Tay 7. Limits of a function The concept of a limit of a function is one of the most important in mathematics. Many key concepts are defined in terms of limits (e.g., derivatives and continuity). The primary objective of this section is to help you acquire a firm intuitive understanding of the concept. Roughly speaking, the limit concept is concerned with the behavior of a function f around a certain point (say a ) rather than with the value fa() of the function at that point. The question is: what happens to the value of fx() when x gets closer and closer to a (without ever reaching a )? ln x Example 7.1 Take the function fx()= . 5 x2 −1 4 This function is not defined at the point x =1, because = 3 the denominator at x 1 is zero. However, as x f(x) = ln(x) / (x2-1) 1 2 ‘tends’ to 1, the value of the function ‘tends’ to 2 . We 1 say that “the limit of the function fx() is 2 as x 1 approaches 1, or 0 0 0.5 1 1.5 2 lnx 1 lim = x→1 x2 −1 2 It is important to be clear: the limit of a function and the value of a function are two completely different concepts. In example 7.1, for instance, the value of fx() at x =1 does not even exist; the function is undefined there. However, the limit as x →1 does exist: the value of the function fx() does tend to 1 something (in this case: 2 ) as x gets closer and closer to 1.
    [Show full text]
  • Maximum and Minimum Definition
    Maximum and Minimum Definition: Definition: Let f be defined in an interval I. For all x, y in the interval I. If f(x) < f(y) whenever x < y then we say f is increasing in the interval I. If f(x) > f(y) whenever x < y then we say f is decreasing in the interval I. Graphically, a function is increasing if its graph goes uphill when x moves from left to right; and if the function is decresing then its graph goes downhill when x moves from left to right. Notice that a function may be increasing in part of its domain while decreasing in some other parts of its domain. For example, consider f(x) = x2. Notice that the graph of f goes downhill before x = 0 and it goes uphill after x = 0. So f(x) = x2 is decreasing on the interval (−∞; 0) and increasing on the interval (0; 1). Consider f(x) = sin x. π π 3π 5π 7π 9π f is increasing on the intervals (− 2 ; 2 ), ( 2 ; 2 ), ( 2 ; 2 )...etc, while it is de- π 3π 5π 7π 9π 11π creasing on the intervals ( 2 ; 2 ), ( 2 ; 2 ), ( 2 ; 2 )...etc. In general, f = sin x is (2n+1)π (2n+3)π increasing on any interval of the form ( 2 ; 2 ), where n is an odd integer. (2m+1)π (2m+3)π f(x) = sin x is decreasing on any interval of the form ( 2 ; 2 ), where m is an even integer. What about a constant function? Is a constant function an increasing function or decreasing function? Well, it is like asking when you walking on a flat road, as you going uphill or downhill? From our definition, a constant function is neither increasing nor decreasing.
    [Show full text]
  • CHAPTER 2: Limits and Continuity
    CHAPTER 2: Limits and Continuity 2.1: An Introduction to Limits 2.2: Properties of Limits 2.3: Limits and Infinity I: Horizontal Asymptotes (HAs) 2.4: Limits and Infinity II: Vertical Asymptotes (VAs) 2.5: The Indeterminate Forms 0/0 and / 2.6: The Squeeze (Sandwich) Theorem 2.7: Precise Definitions of Limits 2.8: Continuity • The conventional approach to calculus is founded on limits. • In this chapter, we will develop the concept of a limit by example. • Properties of limits will be established along the way. • We will use limits to analyze asymptotic behaviors of functions and their graphs. • Limits will be formally defined near the end of the chapter. • Continuity of a function (at a point and on an interval) will be defined using limits. (Section 2.1: An Introduction to Limits) 2.1.1 SECTION 2.1: AN INTRODUCTION TO LIMITS LEARNING OBJECTIVES • Understand the concept of (and notation for) a limit of a rational function at a point in its domain, and understand that “limits are local.” • Evaluate such limits. • Distinguish between one-sided (left-hand and right-hand) limits and two-sided limits and what it means for such limits to exist. • Use numerical / tabular methods to guess at limit values. • Distinguish between limit values and function values at a point. • Understand the use of neighborhoods and punctured neighborhoods in the evaluation of one-sided and two-sided limits. • Evaluate some limits involving piecewise-defined functions. PART A: THE LIMIT OF A FUNCTION AT A POINT Our study of calculus begins with an understanding of the expression lim fx(), x a where a is a real number (in short, a ) and f is a function.
    [Show full text]
  • Basic Analysis I: Introduction to Real Analysis, Volume I
    Basic Analysis I Introduction to Real Analysis, Volume I by Jiríˇ Lebl June 8, 2021 (version 5.4) 2 Typeset in LATEX. Copyright ©2009–2021 Jiríˇ Lebl This work is dual licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License and the Creative Commons Attribution-Share Alike 4.0 International License. To view a copy of these licenses, visit https://creativecommons.org/licenses/ by-nc-sa/4.0/ or https://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons PO Box 1866, Mountain View, CA 94042, USA. You can use, print, duplicate, share this book as much as you want. You can base your own notes on it and reuse parts if you keep the license the same. You can assume the license is either the CC-BY-NC-SA or CC-BY-SA, whichever is compatible with what you wish to do, your derivative works must use at least one of the licenses. Derivative works must be prominently marked as such. During the writing of this book, the author was in part supported by NSF grants DMS-0900885 and DMS-1362337. The date is the main identifier of version. The major version / edition number is raised only if there have been substantial changes. Each volume has its own version number. Edition number started at 4, that is, version 4.0, as it was not kept track of before. See https://www.jirka.org/ra/ for more information (including contact information, possible updates and errata). The LATEX source for the book is available for possible modification and customization at github: https://github.com/jirilebl/ra Contents Introduction 5 0.1 About this book ....................................5 0.2 About analysis ....................................7 0.3 Basic set theory ....................................8 1 Real Numbers 21 1.1 Basic properties ...................................
    [Show full text]