Chapter 8 Ordered Sets
Chapter VIII Ordered Sets, Ordinals and Transfinite Methods 1. Introduction In this chapter, we will look at certain kinds of ordered sets. If a set \ is ordered in a reasonable way, then there is a natural way to define an “order topology” on \. Most interesting (for our purposes) will be ordered sets that satisfy a very strong ordering condition: that every nonempty subset contains a smallest element. Such sets are called well-ordered. The most familiar example of a well-ordered set is and it is the well-ordering property that lets us do mathematical induction in In this chapter we will see “longer” well ordered sets and these will give us a new proof method called “transfinite induction.” But we begin with something simpler. 2. Partially Ordered Sets Recall that a relation V\ on a set is a subset of \‚\ (see Definition I.5.2 ). If ÐBßCÑ−V, we write BVCÞ An “order” on a set \ is refers to a relation on \ that satisfies some additional conditions. Order relations are usually denoted by symbols such asŸ¡ß£ , , or . Definition 2.1 A relation V\ on is called: transitive ifÀ a +ß ,ß - − \ Ð+V, and ,V-Ñ Ê +V-Þ reflexive ifÀa+−\+V+ antisymmetric ifÀ a +ß , − \ Ð+V, and ,V+ Ñ Ê Ð+ œ ,Ñ symmetric ifÀ a +ß , − \ +V, Í ,V+ (that is, the set V is “symmetric” with respect to thediagonal ? œÖÐBßBÑÀB−\ש\‚\). Example 2.2 1) The relation “œ\ ” on a set is transitive, reflexive, symmetric, and antisymmetric. Viewed as a subset of \‚\, the relation “ œ ” is the diagonal set ? œÖÐBßBÑÀB−\×Þ 2) In ‘, the usual order relation is transitive and antisymmetric, but not reflexive or symmetric.
[Show full text]