Basic Analysis I: Introduction to Real Analysis, Volume I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nieuw Archief Voor Wiskunde
Nieuw Archief voor Wiskunde Boekbespreking Kevin Broughan Equivalents of the Riemann Hypothesis Volume 1: Arithmetic Equivalents Cambridge University Press, 2017 xx + 325 p., prijs £ 99.99 ISBN 9781107197046 Kevin Broughan Equivalents of the Riemann Hypothesis Volume 2: Analytic Equivalents Cambridge University Press, 2017 xix + 491 p., prijs £ 120.00 ISBN 9781107197121 Reviewed by Pieter Moree These two volumes give a survey of conjectures equivalent to the ber theorem says that r()x asymptotically behaves as xx/log . That Riemann Hypothesis (RH). The first volume deals largely with state- is a much weaker statement and is equivalent with there being no ments of an arithmetic nature, while the second part considers zeta zeros on the line v = 1. That there are no zeros with v > 1 is more analytic equivalents. a consequence of the prime product identity for g()s . The Riemann zeta function, is defined by It would go too far here to discuss all chapters and I will limit 3 myself to some chapters that are either close to my mathematical 1 (1) g()s = / s , expertise or those discussing some of the most famous RH equiv- n = 1 n alences. Most of the criteria have their own chapter devoted to with si=+v t a complex number having real part v > 1 . It is easily them, Chapter 10 has various criteria that are discussed more brief- seen to converge for such s. By analytic continuation the Riemann ly. A nice example is Redheffer’s criterion. It states that RH holds zeta function can be uniquely defined for all s ! 1. -
The Modal Logic of Potential Infinity, with an Application to Free Choice
The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity. -
Math 35: Real Analysis Winter 2018 Chapter 2
Math 35: Real Analysis Winter 2018 Monday 01/22/18 Lecture 8 Chapter 2 - Sequences Chapter 2.1 - Convergent sequences Aim: Give a rigorous denition of convergence for sequences. Denition 1 A sequence (of real numbers) a : N ! R; n 7! a(n) is a function from the natural numbers to the real numbers. Though it is a function it is usually denoted as a list (an)n2N or (an)n or fang (notation from the book) The numbers a1; a2; a3;::: are called the terms of the sequence. Example 2: Find the rst ve terms of the following sequences an then sketch the sequence a) in a dot-plot. n a) (−1) . n n2N b) 2n . n! n2N c) the sequence (an)n2N dened by a1 = 1; a2 = 1 and an = an−1 + an−2 for all n ≥ 3: (Fibonacci sequence) Math 35: Real Analysis Winter 2018 Monday 01/22/18 Similar as for functions from R to R we have the following denitions for sequences: Denition 3 (bounded sequences) Let (an)n be a sequence of real numbers then a) the sequence (an)n is bounded above if there is an M 2 R, such that an ≤ M for all n 2 N : In this case M is called an upper bound of (an)n. b) the sequence (an)n is bounded below if there is an m 2 R, such that m ≤ an for all n 2 N : In this case m is called a lower bound of (an)n. c) the sequence (an)n is bounded if there is an M~ 2 R, such that janj ≤ M~ for all n 2 N : In this case M~ is called a bound of (an)n. -
Sequences and Their Limits
Sequences and their limits c Frank Zorzitto, Faculty of Mathematics University of Waterloo The limit idea For the purposes of calculus, a sequence is simply a list of numbers x1; x2; x3; : : : ; xn;::: that goes on indefinitely. The numbers in the sequence are usually called terms, so that x1 is the first term, x2 is the second term, and the entry xn in the general nth position is the nth term, naturally. The subscript n = 1; 2; 3;::: that marks the position of the terms will sometimes be called the index. We shall deal only with real sequences, namely those whose terms are real numbers. Here are some examples of sequences. • the sequence of positive integers: 1; 2; 3; : : : ; n; : : : • the sequence of primes in their natural order: 2; 3; 5; 7; 11; ::: • the decimal sequence that estimates 1=3: :3;:33;:333;:3333;:33333;::: • a binary sequence: 0; 1; 0; 1; 0; 1;::: • the zero sequence: 0; 0; 0; 0;::: • a geometric sequence: 1; r; r2; r3; : : : ; rn;::: 1 −1 1 (−1)n • a sequence that alternates in sign: 2 ; 3 ; 4 ;:::; n ;::: • a constant sequence: −5; −5; −5; −5; −5;::: 1 2 3 4 n • an increasing sequence: 2 ; 3 ; 4 ; 5 :::; n+1 ;::: 1 1 1 1 • a decreasing sequence: 1; 2 ; 3 ; 4 ;:::; n ;::: 3 2 4 3 5 4 n+1 n • a sequence used to estimate e: ( 2 ) ; ( 3 ) ; ( 4 ) :::; ( n ) ::: 1 • a seemingly random sequence: sin 1; sin 2; sin 3;:::; sin n; : : : • the sequence of decimals that approximates π: 3; 3:1; 3:14; 3:141; 3:1415; 3:14159; 3:141592; 3:1415926; 3:14159265;::: • a sequence that lists all fractions between 0 and 1, written in their lowest form, in groups of increasing denominator with increasing numerator in each group: 1 1 2 1 3 1 2 3 4 1 5 1 2 3 4 5 6 1 3 5 7 1 2 4 5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;::: 2 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 It is plain to see that the possibilities for sequences are endless. -
Introduction to Real Analysis I
ROWAN UNIVERSITY Department of Mathematics Syllabus Math 01.330 - Introduction to Real Analysis I CATALOG DESCRIPTION: Math 01.330 Introduction to Real Analysis I 3 s.h. (Prerequisites: Math 01.230 Calculus III and Math 03.150 Discrete Math with a grade of C- or better in both courses) This course prepares the student for more advanced courses in analysis as well as introducing rigorous mathematical thought processes. Topics included are: sets, functions, the real number system, sequences, limits, continuity and derivatives. OBJECTIVES: Students will demonstrate the ability to use rigorous mathematical thought processes in the following areas: sets, functions, sequences, limits, continuity, and derivatives. CONTENTS: 1.0 Introduction 1.1 Real numbers 1.1.1 Absolute values, triangle inequality 1.1.2 Archimedean property, rational numbers are dense 1.2 Sets and functions 1.2.1 Set relations, cartesian product 1.2.2 One-to-one, onto, and inverse functions 1.3 Cardinality 1.3.1 One-to-one correspondence 1.3.2 Countable and uncountable sets 1.4 Methods of proof 1.4.1 Direct proof 1.4.2 Contrapositive proof 1.4.3 Proof by contradiction 1.4.4 Mathematical induction 2.0 Sequences 2.1 Convergence 2.1.1 Cauchy's epsilon definition of convergence 2.1.2 Uniqueness of limits 2.1.3 Divergence to infinity 2.1.4 Convergent sequences are bounded 2.2 Limit theorems 2.2.1 Summation/product of sequences 2.2.2 Squeeze theorem 2.3 Cauchy sequences 2.2.3 Convergent sequences are Cauchy sequences 2.2.4 Completeness axiom 2.2.5 Bounded monotone sequences are -
Real Analysis Mathematical Knowledge for Teaching: an Investigation
IUMPST: The Journal. Vol 1 (Content Knowledge), February 2021 [www.k-12prep.math.ttu.edu] ISSN 2165-7874 REAL ANALYSIS MATHEMATICAL KNOWLEDGE FOR TEACHING: AN INVESTIGATION Blain Patterson Virginia Military Institute [email protected] The goal of this research was to investigate the relationship between real analysis content and high school mathematics teaching so that we can ultimately better prepare our teachers to teach high school mathematics. Specifically, I investigated the following research questions. (1) What connections between real analysis and high school mathematics content do teachers make when solving tasks? (2) What real analysis content is potentially used by mathematics teachers during the instructional process? Keywords: Teacher Content Knowledge, Real Analysis, Mathematical Understanding for Secondary Teachers (MUST) Introduction What do mathematics teachers need to know to be successful in the classroom? This question has been at the forefront of mathematics education research for several years. Clearly, high school mathematics teachers should have a deep understanding of the material they teach, such as algebra, geometry, functions, probability, and statistics (Association of Mathematics Teacher Educators, 2017). However, only having knowledge of the content being taught may lead to various pedagogical difficulties, such as primarily focusing on procedural fluency rather than conceptual understanding (Ma, 1999). The general perception by mathematicians and mathematics educators alike is that teachers should have some knowledge of mathematics beyond what they teach (Association of Mathematics Teacher Educators, 2017; Conference Board of the Mathematical Sciences, 2012, Wasserman & Stockton, 2013). The rationale being that concepts from advanced mathematics courses, such as abstract algebra and real analysis, are connected to high school mathematics content (Wasserman, Fukawa-Connelly, Villanueva, Meja-Ramos, & Weber, 2017). -
What Will Count As Mathematics in 2100?
What will count as mathematics in 2100? Keith Devlin What is mathematics today? What is mathematics? That’s one of the most basic questions in the philosophy of mathematics. The answer has changed several times throughout history. Up to 500 B.C. or thereabouts, mathematics was—if it was anything to be given a name—the systematic use of numbers. This was the period of Egyptian, Babylonian, and early Chinese and Japanese mathematics. In those civilizations, mathematics consisted primarily of arithmetic. It was largely utilitarian, and very much of a cookbook variety. (“Do such and such to a number and you will get the answer.”) Modern mathematics, as an area of study, traces its lineage to the ancient Greeks of the period from around 500 B.C. to 300 A.D. From the perspective of what is classified as mathematics today, the ancient Greeks focused on properties of number and shape (geometry). [The word “mathematics” itself comes from the Greek for “that which is learnable.” As always when interpreting one culture or age with another, it has to be acknowledged that things often appear quite different to those within a particular culture or age than when viewed from the other.] It was with the Greeks that mathematics came into being as an identifiable discipline, and not just a collection of techniques for measuring, counting, and accounting. Greek interest in mathematics was not just utilitarian; they regarded mathematics as an intellectual pursuit having both aesthetic and religious elements. Around 500 B.C., Thales of Miletus (now part of Turkey) introduced the idea that the precisely stated assertions of mathematics could be logically proved by a formal argument. -
Math 370 - Real Analysis
Math 370 - Real Analysis G.Pugh Jan 4 2016 1 / 28 Real Analysis 2 / 28 What is Real Analysis? I Wikipedia: Real analysis. has its beginnings in the rigorous formulation of calculus. It is a branch of mathematical analysis dealing with the set of real numbers. In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the calculus of the real numbers, and continuity, smoothness and related properties of real-valued functions. I mathematical analysis: the branch of pure mathematics most explicitly concerned with the notion of a limit, whether the limit of a sequence or the limit of a function. It also includes the theories of differentiation, integration and measure, infinite series, and analytic functions. 3 / 28 In other words. I In calculus, we learn how to apply tools (theorems) to solve problems (optimization, related rates, linear approximation.) I In real analysis, we very carefully prove these theorems to show that they are indeed valid. 4 / 28 Thinking back to calculus. I Most every important concept was defined in terms of limits: continuity, the derivative, the definite integral I But, the notion of the limit itself was rather vague I For example, sin x lim = 1 x!0 x means sin (x)=x gets close to 1 as x gets close to 0. 5 / 28 The key notion I The key and subtle concept that makes calculus work is that of the limit I Notion of a limit was truly a major advance in mathematics. Instead of thinking of numbers as only those quantities that could be calculated in a finite number of steps, a number could be viewed as the result of a process, a target reachable after an infinite number of steps. -
Surprises from Mathematics Education Research: Student (Mis)Use of Mathematical Definitions Barbara S
Surprises from Mathematics Education Research: Student (Mis)use of Mathematical Definitions Barbara S. Edwards and Michael B. Ward 1. INTRODUCTION. The authors of this paper met at a summer institute sponsored by the Oregon Collaborative for Excellence in the Preparation of Teachers (OCEPT). Edwards is a researcher in undergraduate mathematics education. Ward, a pure math- ematician teaching at an undergraduate institution, had had little exposure to math- ematics education research prior to the OCEPT program. At the institute, Edwards described to Ward the results of her Ph.D. dissertation [5] on student understanding and use of definitions in undergraduate real analysis. In that study, tasks involving the definitions of “limit” and “continuity,” for example, were problematic for some of the students. Ward’s intuitive reaction was that those words were “loaded” with conno- tations from their nonmathematical use and from their less than completely rigorous use in elementary calculus. He said, “I’ll bet students have less difficulty or, at least, different difficulties with definitions in abstract algebra. The words there, like ‘group’ and ‘coset,’ are not so loaded.” Eventually, with OCEPT support, the authors studied student understanding and use of definitions in an introductory abstract algebra course populated by undergradu- ate mathematics majors and taught by Ward. The “surprises” in the title are outcomes that surprised Ward, among others. He was surprised to see his algebra students having difficulties very similar to those of Edwards’s analysis students. (So he lost his bet.) In particular, he was surprised to see difficulties arising from the students’ understanding of the very nature of mathematical definitions, not just from the content of the defini- tions. -
Analogues of the Robin-Lagarias Criteria for the Riemann Hypothesis
Analogues of the Robin-Lagarias Criteria for the Riemann Hypothesis Lawrence C. Washington1 and Ambrose Yang2 1Department of Mathematics, University of Maryland 2Montgomery Blair High School August 12, 2020 Abstract Robin's criterion states that the Riemann hypothesis is equivalent to σ(n) < eγ n log log n for all integers n ≥ 5041, where σ(n) is the sum of divisors of n and γ is the Euler-Mascheroni constant. We prove that the Riemann hypothesis is equivalent to the statement that σ(n) < eγ 4 3 2 2 n log log n for all odd numbers n ≥ 3 · 5 · 7 · 11 ··· 67. Lagarias's criterion for the Riemann hypothesis states that the Riemann hypothesis is equivalent to σ(n) < Hn +exp Hn log Hn for all integers n ≥ 1, where Hn is the nth harmonic number. We establish an analogue to Lagarias's 0 criterion for the Riemann hypothesis by creating a new harmonic series Hn = 2Hn − H2n and 3n 0 0 demonstrating that the Riemann hypothesis is equivalent to σ(n) ≤ log n + exp Hn log Hn for all odd n ≥ 3. We prove stronger analogues to Robin's inequality for odd squarefree numbers. Furthermore, we find a general formula that studies the effect of the prime factorization of n and its behavior in Robin's inequality. 1 Introduction The Riemann hypothesis, an unproven conjecture formulated by Bernhard Riemann in 1859, states that all non-real zeroes of the Riemann zeta function 1 X 1 ζ(s) = ns n=1 1 arXiv:2008.04787v1 [math.NT] 11 Aug 2020 have real part 2 . -
The Reverse Mathematics of Non-Decreasing Subsequences Ludovic Patey
The reverse mathematics of non-decreasing subsequences Ludovic Patey To cite this version: Ludovic Patey. The reverse mathematics of non-decreasing subsequences. Archive for Mathematical Logic, Springer Verlag, 2017, 56 (5-6), pp.491 - 506. 10.1007/s00153-017-0536-9. hal-01888765 HAL Id: hal-01888765 https://hal.archives-ouvertes.fr/hal-01888765 Submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE REVERSE MATHEMATICS OF NON-DECREASING SUBSEQUENCES LUDOVIC PATEY Abstract. Every function over the natural numbers has an infinite subdo- main on which the function is non-decreasing. Motivated by a question of Dzhafarov and Schweber, we study the reverse mathematics of variants of this statement. It turns out that this statement restricted to computably bounded functions is computationally weak and does not imply the existence of the halting set. On the other hand, we prove that it is not a consequence of Ramsey's theorem for pairs. This statement can therefore be seen as an arguably natural principle between the arithmetic comprehension axiom and stable Ramsey's theorem for pairs. 1. Introduction A non-decreasing subsequence for a function f : N ! N is a set X ⊆ N such that f(x) ≤ f(y) for every pair x < y 2 X. -
Chapter 8 Ordered Sets
Chapter VIII Ordered Sets, Ordinals and Transfinite Methods 1. Introduction In this chapter, we will look at certain kinds of ordered sets. If a set \ is ordered in a reasonable way, then there is a natural way to define an “order topology” on \. Most interesting (for our purposes) will be ordered sets that satisfy a very strong ordering condition: that every nonempty subset contains a smallest element. Such sets are called well-ordered. The most familiar example of a well-ordered set is and it is the well-ordering property that lets us do mathematical induction in In this chapter we will see “longer” well ordered sets and these will give us a new proof method called “transfinite induction.” But we begin with something simpler. 2. Partially Ordered Sets Recall that a relation V\ on a set is a subset of \‚\ (see Definition I.5.2 ). If ÐBßCÑ−V, we write BVCÞ An “order” on a set \ is refers to a relation on \ that satisfies some additional conditions. Order relations are usually denoted by symbols such asŸ¡ß£ , , or . Definition 2.1 A relation V\ on is called: transitive ifÀ a +ß ,ß - − \ Ð+V, and ,V-Ñ Ê +V-Þ reflexive ifÀa+−\+V+ antisymmetric ifÀ a +ß , − \ Ð+V, and ,V+ Ñ Ê Ð+ œ ,Ñ symmetric ifÀ a +ß , − \ +V, Í ,V+ (that is, the set V is “symmetric” with respect to thediagonal ? œÖÐBßBÑÀB−\ש\‚\). Example 2.2 1) The relation “œ\ ” on a set is transitive, reflexive, symmetric, and antisymmetric. Viewed as a subset of \‚\, the relation “ œ ” is the diagonal set ? œÖÐBßBÑÀB−\×Þ 2) In ‘, the usual order relation is transitive and antisymmetric, but not reflexive or symmetric.