Estimating the Freshwater Budget of High-Latitude
Total Page:16
File Type:pdf, Size:1020Kb
ABSTRACT As the most land-locked of the world’s oceans, freshwater input from the land surface strongly controls the salinity of the Arctic Ocean, and subsequently the thermohaline circulation of the North Atlantic. There is mounting evidence of recent warming in the arctic, including thinning of sea ice, permafrost warming and increases in fall and winter streamflow in Siberia and Alaska. Such changes have the potential to feedback and further influence global climate through the modulation of fresh water inputs to the Arctic Ocean, and subsequently, the rate of deep water formation in the Greenland Sea. Based on observations alone we do not have the ability to close the water budget of the Arctic drainage basin, or make predictions regarding its response to warmer temperatures. This dissertation describes a course of research aimed at better estimating the arctic regional water budget, with a focus on the influence of lakes and wetlands and sublimation from blowing snow. In low-gradient arctic watersheds, permafrost contributes to the generation of extensive wetlands, ponds and lakes in a semi-arid region of precipitation. In the Putuligayuk catchment in northern Alaska, water balance calculations indicate that between 24 and 42 percent of snow melt water is not immediately available for runoff. This observed storage effect can be explained in large part by the excess of evapotranspiration over summer precipitation from open water areas which results in a seasonal reduction in the extent of surface water of 58 to 73 percent. A lake and wetland algorithm added to the Variable Infiltration Capacity (VIC) macroscale hydrology model is able to simulate this seasonal reduction in wetland extent. An algorithm to represent topographically induced sub-grid variability in wind speed and blowing snow sublimation was designed for use within the VIC model. Annual average sublimation from blowing snow predicted by this model for a region on the Alaskan north slope varies from 55 mm in the foothills of the Brooks Range to approximately 25 mm on the Arctic coastal plain. TABLE OF CONTENTS List of Figures.................................................................................................................................iii List of Tables ..................................................................................................................................iii Chapter I: Introduction.....................................................................................................................1 Background......................................................................................................................................1 Objectives and Dissertation Format.................................................................................................4 Chapter II: The Arctic Drainage Basin ............................................................................................7 Hydroclimatology of the arctic drainage basin................................................................................8 Expoloratory simulations of Arctic Hydrology .............................................................................11 Summary........................................................................................................................................15 Chapter III: The Role of Surface Storage in a Low-Gradient Arctic Watershed...........................18 Introduction....................................................................................................................................18 Site Description..............................................................................................................................20 Methodology..................................................................................................................................22 Results............................................................................................................................................29 Synthesis and Discussion...............................................................................................................36 Conclusions....................................................................................................................................44 Chapter IV: A predictive model of the effects of lakes and wetlands on the water balance of Arctic Environments ......................................................................................................................46 Introduction....................................................................................................................................46 i Model Description .........................................................................................................................48 Model Application .........................................................................................................................57 Summary........................................................................................................................................68 Chapter V: Parameterization of the sublimation of blowing snow in a macroscale hydrology model .............................................................................................................................................71 Introduction....................................................................................................................................71 Model Description .........................................................................................................................73 Test applications of the VIC blowing snow algorithm ..................................................................87 Discussion and Sensitivity .............................................................................................................96 Conclusions and Recommendations ..............................................................................................99 Chapter VI: Conclusions..............................................................................................................101 Summary......................................................................................................................................101 Recommendations........................................................................................................................104 References....................................................................................................................................107 Appendix A: The hydroclimatology of the Arctic drainage basin...............................................117 ii LIST OF FIGURES Figure 2.1. a) Vegetation of the Arctic drainage basin and b) Distribution of continuous and discontinuous permafrost in the Northern Hemisphere, adapted from the Circum-Arctic map of permafrost and ground- ice conditions (Brown et al. 1997). .................................................................................................................8 Figure 2.2 a) Fraction of total precipitation falling as snow for stations in the Mackenzie River basin and b) Transect of the snow fraction versus latitude for stations between 120oW and 115oW, station elevation is represented by the solid black line. ...............................................................................................................10 Figure 2.3. Snow cover extent for the Mackenzie and Ob River basins: A) remotely-sensed, B) temperature index snow model and C) energy-balance snow model ............................................................13 Figure 2.4. Simulated average annual hydrographs for the Ob (left) and Mackenzie (right) Rivers. a) using the Anderson (1973) temperature index snow model; b) using an energy balance snow model ........14 Figure 2.5. Simulated and observed discharge for A) the Lena River and B) the Yenesei River. Parameters for the simulation were transferred from the calibrated Ob River parameters without adjustment. ............15 Figure 2.6. Circumpolar average annual days of snow cover a) from visual satellite data and b) simulated using the energy balance snow model...........................................................................................................16 Figure 3.1. Location and vegetation of the Putuligayuk River on the Alaska North Slope. Vegetation classification from Landsat MSS images by Muller et al. (1999)..................................................................21 Figure 3.2. Discharge for the Putuligayuk River for the 17 years of record (1970-1985, 1999-2000): a) normalized cumulative discharge and b) total discharge..............................................................................22 Figure 3.3. Photographs of characteristic classification training areas on the Alaskan North Slope, a) dry tundra, b) flooded tundra, c) emergent grasses and d) sparsely vegetated mud flats. ..................................25 Figure 3.4. ScanSAR image of the Prudhoe Bay area from June 14, 2000. Red circles indicate the location of the training areas from GPS surveys and the green line indicates the Putuligayuk catchment boundary above the gauge location...............................................................................................................................26 Figure 3.5. Time series of backscatter for training areas and meteorological conditions at the time of satellite overpass for summer 2000: a) Daily minimum air temperature,